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Abstract 17 

A number of social-ecological systems exhibit complex behaviour associated with nonlinearities, 18 

bifurcations, and interaction with stochastic drivers. These systems are often prone to abrupt 19 

and unexpected instabilities and state shifts that emerge as a discontinuous response to gradual 20 

changes in environmental drivers.  Predicting such behaviours is crucial to the prevention of or 21 

preparation for unwanted regime shifts. Recent research in ecology has investigated early 22 

warning signs that anticipate the divergence of univariate ecosystem dynamics from a stable 23 

attractor. To date, leading indicators of instability in systems with multiple interacting 24 

components have remained poorly investigated. This is a major limitation in the understanding 25 

of the dynamics of complex social-ecological networks. Here, we develop a theoretical framework 26 

to demonstrate that rising variance – measured, for example, by the maximum element of the 27 

covariance matrix of the network – is an effective leading indicator of network instability. We 28 

show that its reliability and robustness depend more on the sign of the interactions within the 29 

network than the network structure or noise intensity. Mutualistic, scale free and small world 30 

networks are less stable than their antagonistic or random counterparts but their instability is 31 

more reliably predicted by this leading indicator. These results provide new advances in 32 

multidimensional early warning analysis and offer a framework to evaluate the resilience of 33 

social-ecological networks. 34 

 35 

 36 
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Introduction 38 

Social-ecological systems are often difficult to investigate and manage because of their inherent 39 

complexity (1). Small variations in external drivers can lead to abrupt changes associated with 40 

instabilities and bifurcations in the underlying dynamics (2-4). These transitions can occur in a 41 

variety of ecological and social systems, and are often unexpected and difficult to revert (4). 42 

Anticipating critical transitions and divergence from the present state of the system is 43 

particularly crucial to the prevention or mitigation of the effects of unwanted and irreversible 44 

changes (5-10). Recent research in ecology has focused on leading indicators of regime shift in 45 

ecosystems characterized by one state variable (5,7,11,12). These indicators are typically 46 

associated with the critical slowing down phenomenon: as the system approaches a critical 47 

transition, its response to small perturbations of the stable state becomes slower (11). It has 48 

been shown that in univariate systems (i.e., with only one state variable) critical slowing down 49 

entails an increase in the temporal variance and autocorrelation of the state variable (5). The 50 

case of systems with several mutually interacting components, however, has remained poorly 51 

investigated (13-15), while the connection between network stability and research on indicators 52 

for loss of resilience has been elusive (16).  53 

Here we develop a theoretical framework to analyze early warning signs of instability and regime 54 

shift in complex networks. We provide analytical expressions for a set of precursors of instability 55 

in complex systems with additive noise for a variety of network structures.  56 

We consider a social-ecological system with N components (nodes) coupled through a set of 57 

links. The state of the system is expressed by the vector x of length N, whose terms xi represent 58 

the state of node i. The local stability of a state x* is evaluated through a linearization,  ,  59 

where y=x−x* is the displacement of x from x*; A is the N × N matrix expressing the interactions 60 
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among nodes in the (linearized) dynamics (see Methods). In population ecology this framework 61 

is typically used to express the dynamics of a community of N populations interacting according 62 

to the relationships determined by the matrix A, often known as "community matrix"(2,17-19); 63 

likewise, in social systems A describes the network of interactions (e.g., trade, migration, flow of 64 

information among people, groups of individuals, or countries (20-23)). The off-diagonal terms of 65 

A determine the pairs of interacting nodes as well as the strength of their interaction. The 66 

dynamics are stable if the maximum real part of the eigenvalues of A, Max[Re(λ)], is negative. 67 

 68 
Classic ecological theories (2,3) have considered the case of networks with randomly connected 69 

nodes (with a certain probability, C). The strength (p) of the interactions between them is 70 

represented by a zero-mean random variable of variance σ2. May (2,3) showed that random 71 

networks become unstable as connectivity (i.e., C), size (i.e., N) or the strength variance increase. 72 

The stability of networks with prescribed architectures (e.g., predator-prey, competitive or 73 

mutualistic interactions) also depends on connectivity, strength variance, system size, as well as 74 

on the network structure (17,19). 75 

More generally, the off-diagonal terms of A may result from a set of "rules" expressed as a 76 

function of a few parameters of which connectivity and strength variance are just an example. 77 

Changes in the structure and intensity of the interactions correspond to variations in these 78 

parameters, which, in turn, can lead to instability by modifying the community matrix and its 79 

eigenvalues. How can we evaluate whether ongoing changes in the interactions within a social-80 

ecological network are reducing its resilience? Is there a way to use measurable quantities to 81 

determine whether the system is about to become unstable?  82 

 83 
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In one-dimensional systems leading indicators are typically associated with behaviors resulting 84 

from the eigenvalue tending to zero at the onset of instability. This effect entails a slower return 85 

to equilibrium after a "small" perturbation (11,24). Known as "critical slowing down", this 86 

phenomenon exists also in systems with multiple interacting components, though it is hard to 87 

recognize and therefore it does not constitute an effective leading indicator of instability. In fact, 88 

in “real world” applications the equations driving the dynamics are not known and, therefore, the 89 

network nodes in which slowing down is expected to occur are not known a priori. Critical 90 

slowing down, however, has been related to an increase in variance and autocorrelation in the 91 

state variable of one dimensional systems (5,7,25). Here we provide a theoretical framework to 92 

investigate early-warnings in the variance, autocorrelation, and power spectrum of multi-93 

dimensional systems with interactions described by a given network structure. 94 

 95 

Methods  96 

We consider a network with N interacting nodes. The state of the system, x={x1, x2,  … xN} , is 97 

governed by dynamics:  , where f={f1, f2, …, fN} is a N-dimensional 98 

vector function expressing the deterministic component of the dynamics of x, as a function of a 99 

set of parameters, p and C; I is the identity matrix, and  dW is an additive stochastic driver 100 

represented by a white Gaussian noise of mean zero and intensity 



dt . If we consider a small 101 

perturbation y forcing the system away from its equilibrium point x* (i.e., y=x−x*), inserting x= 102 

x*+y in the above equation and linearizing  f(x*+y, p, C) around x* we obtain  103 

       Wp d+dt)(=d IyAy  ,                                             (1) 104 

 105 

where *|]/[ xxjiij xfA   . Eq. (1) is a multivariate Ornstein–Uhlenbeck process (26).  106 
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The stable states, x*, of Eq. (1) are the same as those of their deterministic counterparts, 107 

 (27). These states are stable if the maximum real part of the eigenvalues of A is 108 

negative. To identify early warning signs of network instability, we relate the steady state 109 

covariance matrix  to the eigenvalues, , of A, where ys is calculated from the steady 110 

state solution of Eq. (1).  We first look for leading indicators of instability in the behavior of the 111 

covariance matrix, Sy, of y as the system approaches instability. The (i,j) element of Sy is: 112 



Sy(i, j)  yiy j  yi y j , where 



 represents the average. The covariance matrix of the 113 

stationary dynamics of the system can be obtained (26) as the solution of  Eq. (2): 114 

 115 

 .                              (2)                                116 

 117 

Sy is a function of the linearization matrix, A(p,C), which, in turn, depends on the control 118 

parameters (p or C). At the onset of instability (i.e., as Max[Re()] 0) the maximum  element of 119 

the covariance matrix, Sy, of y increases. More details on the time-lag correlation and power 120 

spectrum can be found in the Supplementary Materials. While the linearization matrix, A, here 121 

accounts the interconnections existing among nodes within the network (i.e. the pairs of nodes 122 

that are connected by a link (3, 17)), the covariance matrix, Sy, expresses the variance of the 123 

fluctuations of the state variable at each node (diagonal terms) and the interrelationship 124 

(positive or negative) of the fluctuations between pairs of nodes (off-diagonal terms). To better 125 

understand the structure of Sy, we look at the case of a network with only two nodes. In this case 126 

the above equation for the covariance matrix can be solved analytically, and the covariance 127 

matrix reads (26)  128 
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where Det is the determinant and Tr the trace of the matrix, which can be expressed as a function 130 

of the eigenvalues, λ1,2.  131 

Thus, the covariance matrix diverges for 1, 20. The time correlation matrix, ρy(Δ), can also be 132 

computed analytically and also diverges for 1, 20, independently of . The general analytical 133 

expressions of ρy(Δ) and of the power spectrum of y are also reported in the Supplementary 134 

Materials.  135 

We generate networks of size N, with a variety of architectures for A (see  Supplementary 136 

Materials), and reach instability either by  keeping constant the connectivity, C, while changing 137 

the strength of the interactions, p, or by varying C for a fixed p (2,17,19). We then use the 138 

analytical relationship between the steady state covariance matrix, Sy, of y and the eigenvalues of 139 

the matrix A (Eq. (2)). Similarly, we express the time-lag correlation, y, and the power spectrum, 140 

Py, of y as a function of A and its eigenvalues.  141 

 142 

Results and discussion 143 

We find that the elements of both Sy and y increase as the system approaches instability (i.e., 144 

Max[Re(λ)]→0). Therefore, we investigate potential indicators for early warning in the behavior 145 

of suitable components of Sy, y and Py for Max[Re(λ)]→0. To that end we first consider the 146 

components of Sy corresponding to the most connected, the most central (28) and the least 147 

connected nodes of the network. We also consider indicators based on the properties of the 148 

entire network, such as the maximum and the difference between the maximum and minimum of 149 

the matrix Sy. 150 
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Most of the indicators based on the covariance matrix, Sy, have a non-trivial dependence on 151 

Max[Re(λ)] (see Figures 1, S1-S6). The maximum element of Sy (Max[Sy]) and Max[Sy]-Min[Sy] 152 

provide the most effective indicator of early warning in most networks (Figures 1, S7 and S8).  In 153 

mutualistic (++) networks Max[Sy] corresponds to the most connected node (the “hub”), 154 

regardless of their topological structure (Supplementary Materials, Figures S9-S10). All these 155 

indicators based on Sy improve their performances when the size, N, of the network increases 156 

(compare main panels to insets in Figure 1; see also Supplementary Materials, Figure S11). Thus 157 

our ability to detect early warning signs and predict tipping points is enhanced in more diverse 158 

systems (16).    159 

We also look at the relationship between the maximum element of the time-lag correlation 160 

matrix, y() (where  is the time lag), and Max[Re(λ)] for different values of Δ, p and C (Figures 161 

S12-S14). Although significant, these indicators are less efficient with respect to the case with 162 

zero time-lag (i.e., indicators based on Sy).  Finally, the power spectrum does not appear to be an 163 

effective indicator, as we identified only weak changes in Py for increasing values of p and 164 

Max[Re(λ)] (see Supplementary Materials, Figure S15).  Therefore, here we focus on early 165 

warning signs provided by the way Max[Sy] varies as a function of changes in Max[Re(λ)]  .  166 

A warning sign is effective if (a) it appears in time to prevent (or prepare for) the occurrence of 167 

instability (29-30); (b) it relies on a  well-defined and easy to recognize indicator (e.g., a 168 

detectable or significant increase in variance (29-30)); and (c) it does not give false positives (or 169 

false negatives) (31). We use these criteria to evaluate the effectiveness of Max[Sy] as a leading 170 

indicator of instability with different network structures and levels of noise (32). 171 

To investigate the effect of noise, we first consider the “mean-field” case of networks in which the 172 

absolute value of the interaction strength between connected nodes is a constant, p; we gradually 173 
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increase p or C until Max[Re(λ)] becomes positive (17-19).  We observe (Figure 2) a consistent 174 

increase in Max[Sy] for all network structures, regardless of whether instability is attained by 175 

increasing interaction strength or connectivity (Figures S1-S6). The network structure, however, 176 

affects the timeliness of Max[Sy] as a leading indicator. In fact, Max[Sy] exhibits a more defined 177 

increase and a better anticipation of the onset of instability in the case of random networks than 178 

with all the other structures. In the case of these “mean field” networks we did not consider the 179 

antagonistic structure because antagonistic networks with constant interaction strength (in 180 

absolute value) are always stable regardless of the parameters p and C (see Supplementary 181 

Materials, Figs. S1, S2).   182 

Likewise, in the case of random interaction strengths Max[Sy] exhibits a well-defined increase 183 

and a better anticipation of the instability in random networks than with the more organized 184 

structures  typical of ecological or social systems (Figures 3, S3-S6). The seemingly weaker 185 

increase in Max[Sy] observed in the social-ecological networks is only an apparent effect of the 186 

scale. Indeed, as it will be shown later, suitable detection criteria of early warnings are more 187 

successful in mutualistic networks than in their random counterparts. Noise has the effect of 188 

amplifying the intensity of the warning sign (compare the scales in Figs. 2 and 3), while inducing 189 

weak random fluctuations with no substantial impact on the overall behavior of Max[Sy] at the 190 

onset of instability (see Supplementary Materials). In scale free networks the increase in Max[Sy] 191 

(Figure 3) is again only apparently muted. In fact, in these networks detection criteria are quite 192 

successful in recognizing early warning signs (Figure 4); moreover, local indicators (e.g., the 193 

variance of the most central node) can exhibit a more pronounced increase that can be used  as 194 

an early warning sign of instability (Figure 1 and Supplementary Materials). 195 

 196 
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Conclusions 197 

We have identified some suitable early warning signs in social-ecological networks in agreement 198 

with those identified by Ref. (33), and provided a theoretical framework for their interpretation. 199 

Overall, the performances of Max[Sy] as a leading indicator of instability change between random, 200 

antagonistic, mutualistic/social networks. This indicator gives an earlier and “sharper” warning 201 

sign in random than mutualistic and social networks. The warning sign, however, is harder to 202 

detect and is more likely to be missed in random and antagonistic networks than in their 203 

mutualistic or social counterparts (Figures 4, S16). Thus, by affecting the probability that early 204 

warnings are missed, the sign of the interactions within the network determines the consistency 205 

and reliability of this leading indicator. In fact, different realizations of the same network 206 

dynamics can yield different results in the behavior of Max[Sy] and thus this indicator might not 207 

detect in useful advance the emergence of instability (Figures S17-S18). The probability of true 208 

positives is close to 100% (i.e., negligible probability of false negatives) in mutualistic networks, 209 

and much smaller in random and antagonistic (predator-prey, cascade or compartment) 210 

networks (Figures 4, S16). Thus, while mutualistic networks are less stable than their 211 

antagonistic counterparts (17), their instability can be predicted with less uncertainty. An 212 

increase in Max[Sy], however, would not provide information on how close the system is to the 213 

onset of instability. Rather, it would just indicate that the system is losing resilience and 214 

approaching unstable conditions (29). Therefore, in contrast to previous expectations (16), it is 215 

not the heterogeneity in the topology of the network that plays a key role in the abruptness of 216 

critical transitions and our ability to predict them. Rather, it is the type of interactions between 217 

the nodes that determines how networks respond to external perturbations. In fact, there is a 218 

trade-off between local and systemic resilience: mutualism (++) is associated with a reduced 219 
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local stability and resilience of the system (17,19), but does not induce abrupt critical transitions. 220 

In contrast, networks with mixtures of interaction types (+-,++, --) exhibit shorter recovery times 221 

after displacement from equilibrium (i.e., a stronger local resilience) (17-18), but in these 222 

systems the emergence of systemic instability and critical transitions is more difficult to predict 223 

in useful advance.  224 

This study combines stability theories from community ecology (2,17) to recent research on 225 

indicators of critical transition (7,9,16), and develops a unified framework that offers a new 226 

perspective for the evaluation of the resilience and anticipation of instability in social-ecological 227 

networks.  228 

229 
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Figures 306 

 307 

 308 

 309 

Figure 1. Leading indicators of instability based on different elements of the covariance matrix 310 

(Sy), including the maximum (in absolute value) element, Max[Sy], the difference between 311 

Max[Sy]  and Min[Sy], the element of Sy corresponding to the most connected, least connected, or 312 

highest eigenvector centrality (24) network node. Random (left) and scale free (right) (30) 313 

network generated   with N=50 and C=0.1 (main panels) and N=0.1 and C=0.5 (insets). Instability 314 

(i.e., decrease in Max[Re(λ)]) is attained by increasing the interaction strength p (mean field 315 

case). The figures represent average behavior over 100 realizations. 316 

317 
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 318 

 319 

 320 

Figure 2. Max[Sy]as a leading indicator of instability in a “mean field” network with constant 321 

interaction intensity (in absolute value) , p. Instability is attained by increasing p (main panel A, 322 

with N=20, C=0.2) or C (inset B, with N=20, and C increasing from 0.1 to 1) with different network 323 

structures. The figures represent average behavior over 1000 realizations. 324 

 325 

 326 

  327 

328 
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 329 

 330 

 331 

Figure 3. A) Case with random interaction strength (see methods). Main panel: instability is 332 

reached by increasing p (with N=20; C=0.2). First inset (B): p is constant while C  increases 333 

between 0.1 and 1. C) Same as the first inset (B) but only for the scale-free network (notice the 334 

different scale on the vertical axis). The figures represent average behavior over 1000 335 

realizations. 336 

 337 
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 338 

Figure 4. Distribution of the correlation, ρK, between Max[Sy] and the parameter p, after 1000 339 

realizations for the full disordered (not mean-field) case. If ρK is significant (p-value<0.05) and ρK 340 

> 0.5 the increase in Max[Sy] is interpreted as an early warning sign. We calculate these detection 341 

statistics for several realizations of each network structure and determine the probability of 342 

detecting the early warning sign of instability. We consider eleven different network 343 

architectures typical of ecological or social networks, including random (R), predator-prey (PP), 344 

cascade (Casc), compartmentalized (Comp), mutualistic (M), bipartite (Bip), nested (N), nested 345 

with competition (N+C), scale free (SF), and small world (SW). These networks have different 346 

structures for the adjacency matrix and different combination of interaction types, i.e (++) 347 

mutualistic, (+-) antagonistic, (--) competitive or a combination of them (See Supplementary 348 

Materials for more details). 349 
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Supplementary online materials 1 

S1. Structures of Socio-Ecological Interacting systems.  2 

a) Random matrix (1) with connectivity C. We pick an element Ai,j at random, and with 3 

probability C we assign a link between nodes i-j and j-i (Aj,i). Each of these two links has  a 4 

weight (or strength), p, that is positive (or negative) with probability 0.5; b) Antagonistic 5 

matrix (2), where connections are again random (with probability C), but if Ai,j has sign +(–), 6 

then Aj,i has sign – (+); c) Cascade network (3):  links occur with a given probability, but form a 7 

hierarchical structure, whereby there is a top “predator” (with sign +) that feeds on all the 8 

other species (with sign -);  then there is the second top predator, and so on; species left with 9 

the lowest ranking function as producers; d) Compartmentalized structure (5), formed by 10 

groups of antagonistic species that interact only with species within their own group; e) 11 

Mutualistic network (6), with a random matrix, but where both Ai,j and  Aj,i have positive signs 12 

(++); f) Modular mutualistic matrix (5): nodes are divided into communities that positively 13 

interact within their groups (++). g) Bipartite Mutualistic matrix (6): nodes are divided into 14 

two groups, and each node positively interacts only with nodes of the other group (++); h) 15 

Bipartite Nested Mutualistic (7): a bipartite graph is generated with hierarchical structure 16 

where specialist nodes (i.e., with only few mutualistic links) tend to interact with a suitable 17 

subset of the  mutualistic partners of the generalist nodes (++); i) Nested Mutualistic with 18 

Competition (8): nodes are divided into two groups; each node positively interact with nodes 19 

of the opposite group (++), while compete with nodes of the same group (--); j) Barabasi-20 

Albert (BA) networks (9):  binary one-zero networks are generated with power-law degree 21 

distribution. This algorithm simulates a preferential attachment process, in which a new 22 

vertex with d edges is added at each step. The BA graph displays a scale-free behavior that 23 

strongly correlates with the network's robustness to failure. We then assign to each link a 24 
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positive weight p; The connectivity of the BA networks is controlled indirectly by the 25 

parameter d. In our simulation we set d=1 to generate low connectivity networks, d=2 for 26 

average connectivity and d=4 for high connectivity. k) Watts-Strogatz (WS) network (10): this 27 

is a one-parameter (degree of disorder r) model that interpolates between an ordered finite 28 

dimensional lattice and a random graph. Its main property is to display both high clustering 29 

coefficient and small world property. The WS model displays this duality for a wide range of 30 

the rewiring probabilities r. In our simulation we used r=0.3. The connectivity of the WS 31 

model depends on the starting 2k-regular graph (10). For low connectivity we set k=2; for 32 

average connectivity k=4; for high connectivity k>5. 33 

The linkage density in each network is described by the parameter C  (the connectivity ). 34 

We generate each of the structures (a)-(k) keeping constant the connectivity C and changing 35 

the strength of the interactions (alternatively, we fix p and vary C), until the dynamics become 36 

unstable (1,6). Thus, we use the parameter, p, as an indicator of the weights of the interactions 37 

between connected nodes (connectivity). We consider three different levels of disorder in the 38 

control parameter p: 1) Mean Field: where we assign a constant value, p. We do not consider 39 

antagonistic mean field networks (i.e., with constant |p| but (+-) interactions) because they 40 

are always stable (see below); 2) Weak disorder: the interaction strength is drawn from a 41 

normal distribution with mean p and standard deviation 0.1 p (i.e.,  N(p, 0.1 p); 3) Strong 42 

disorder: interaction strengths are drawn at random from  ±|N (0, p)| (6). Therefore, in all 43 

these cases, by increasing the value of p (C) the resilience decreases until the system become 44 

unstable for  p= pc , or C=Cc
 (6). 45 

 46 

 47 
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S2.1 Early Warnings in Multidimensional Mean Field Networks 48 

 49 

In the mean field case with (++) interactions, the matrix is symmetric (A=AT) and therefore all 50 

eigenvalues are real numbers. In this case we note that, if U is the matrix of the eigenvectors 51 

of A (i.e. A ui= i ui), then U A UT=diag(), where diag( ) is a diagonal matrix with all the 52 

eigenvalues of A. Therefore in this case we can write Eq. (2) in the main text as: 53 

)()(  diagdiagIUAUUSUUSUAUU TT

y

T

y

T  , 54 

where IUUT   and T

yUSU is a diagonal matrix whose i-th eigenvalue is



i  


2i
. 55 

Therefore if the socio-ecological system reaches an instability (i.e. i=0) for a given i, then 56 

there is at least one element of the matrix and thus of Sy that diverges. 57 

We also notice that in the mean field case we omit the analysis of early-warning performed on 58 

antagonistic (+-) matrices, A’. In fact, if A’ is anti-symmetric (i.e., A’=-A’T, and thus with 59 

predator prey, cascade or compartmentalized interactions), then the early warning analysis 60 

on those matrices is trivial as their stability does not depend on p or C. In fact, if we multiply 61 

the off-diagonal terms of those matrices by the imaginary unit i, i.e. B=i (A’-I A’), then B is 62 

Hermitian and has all real eigenvalues. Therefore A’-I A’ has all pure complex eigenvalues 63 

independently of p and C, which means that A’ is always stable – given that the self interaction 64 

terms are negative constant, i.e. A’i,i=-d<0. 65 

Figures S1 and S2 show a rise in Max[Sy] as the system approaches instability in mean field 66 

networks.  67 

 68 

69 
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 70 

 71 

Figure S1. Increase in Max[Sy] as Max[Re(λ)] tends to zero for mean field networks of size, 72 

N=20, C=0.2. Increasing values of Max[Re(λ)] are obtained by increasing the interaction 73 

strength, p. The plotted values are the ensemble averages of 1000 realizations. 74 

 75 

 76 

 77 

 78 

 79 

 80 

Figure S2. Increase in Max[Sy] as Max[Re(λ)]→0 for mean field networks of size, N=20, p<<pc. 81 

Increasing values of Max[Re(λ)] are obtained by increasing the connectivity, C. The plotted 82 

values are the ensemble averages of 1000 realizations. 83 

84 
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S2.2 Early Warnings in Complex Networks with Weak Disorder 85 

 86 

 87 

Figure S3. Increase in Max[Sy] as Max[Re(λ)] tends to zoro for complex networks with “weak” 88 

disorder (see Section 1) of size, N=20 and C=0.2. Increasing values of Max[Re(λ)] are obtained 89 

by increasing the interaction strength, p. The plotted values are the ensemble averages of 90 

1000 realizations. 91 

 92 

 93 

 94 
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 95 

 96 

Figure S4. Increase in Max[Sy] as Max[Re(λ)]→0 for complex networks with “weak” disorder 97 

(see Section 1) of size, N=20 and p<<pc.. Increasing values of Max[Re(λ)] are obtained by 98 

increasing the connectivity, C. The plotted values are the ensemble averages of 1000 99 

realizations. 100 

 101 

102 
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S2.3 Early Warnings in Complex Networks with Strong Disorder 103 

 104 

 105 

Figure S5. Increase in Max[Sy] as Max[Re(λ)] tends to zero for complex networks with 106 

“strong” disorder (see Section 1) of size, N=20 and C=0.2. Increasing values of Max[Re(λ)] are 107 

obtained by increasing the interaction strength, p. The plotted values are the ensemble 108 

averages of 1000 realizations. 109 

 110 

 111 
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 112 

 113 

Figure S6. Increase in Max[Sy] as Max[Re(λ)] tends to zero for complex networks with 114 

“strong” disorder (see Section 1) of size, N=20. Increasing values of Max[Re(λ)] are obtained 115 

by increasing the connectivity, C. The plotted values are the ensemble averages of 1000 116 

realizations. 117 

 118 

S3. Indicators and Node Properties 119 

In this section we show more analysis on the effectiveness of different node variances as 120 

precursors of instability. 121 

 122 

 123 
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 124 

Figure S7. Elements of the covariance matrix Sy corresponding to nodes with the highest 125 

number of connections (green), lowest number of connections (light blue), highest 126 

eigenvector centrality (gold), max[Sy] (violet) and max[Sy]-min[Sy] (purple),  in the case of:  127 

(A) mutualistic, (B) mutualistic nested with competition, (C) small world interactions, for 128 

mean field networks (of size N=20 and connectivity C=0.3). The plotted values are the 129 

ensemble averages of 1000 realizations. 130 

 131 

 132 

 133 

Figure S8. Elements of the covariance matrix Sy corresponding to nodes with the highest 134 

number of connections (green), lowest number of connections (light blue), highest 135 

eigenvector centrality (gold), max[Sy] (violet) and max[Sy]-min[Sy] (purple)  in the case of (A)  136 

random, (B) predator-prey, (C) mutualistic, (D) mutualistic nested with competition, (E) Small 137 

world, (F) Barabasi-Albert, networks  with strong disorder (of size N=20 and connectivity 138 

C=0.3). The plotted values are the ensemble averages of 1000 realizations. 139 

 140 
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 141 

 142 

Figure S9. Frequency distribution of the degrees (i.e., number of connections) of the 143 

networks’ nodes and (with partially filled circles) of the nodes associated with the maximum 144 

value of the covariance matrix Sy in mean field networks with a variety of interactions. Based 145 

on a set of 100 realizations. Notice how, in mutualistic networks the node corresponding to 146 

max[Sy] is associated with the nodes with the highest degrees (i.e. the generalist species). 147 

 148 
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 149 

Figure S10. Frequency distribution of the degrees (i.e., number of connections) of the 150 

networks’ nodes, and (with partially filled circles) frequency distribution of the nodes 151 

associated with the maximum value of the covariance matrix Sy in “strongly” disorganized 152 

networks with a variety of interactions. Based on a set of 100 realizations. Notice how, in 153 

mutualistic networks the node corresponding to max[Sy] is associated with the nodes with the 154 

highest degrees (i.e. the generalist species). 155 

 156 

 157 
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 159 

 160 

 161 

Figure S11. Effect of the network size on the magnitude of the early warning sign. Maximum 162 

real part (in absolute value) of the network’s eigenvalues as a function of the network size, N 163 

for a random network with C=0.25 and p=pc=1/NC. As N  increases the max of Re(λ) tends to 164 

zero  as Max[Re(λ)] ~ N-1.5and the resilience of the system decreases, while the “height” of the 165 

early warning increases. Therefore, as N increases, the early warning sign becomes sharper 166 

(see also Figure 1 in the main text). 167 

 168 

 169 
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S4. Early Warning for Time Correlation Matrix and Power Spectrum  171 

 172 

We calculate the time lag correlation matrix, y() (where Δ is the time lag), and the power 173 

spectrum, P y()  (where ω is the frequency) for the steady state dynamics: 174 

))(()()(),()(  pExpptt y

T

ssy Ayy                   (3) 175 

2

11
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y AIAP 





 
              (4) 176 

The following figures show the behavior of the autocorrelation and power spectrum as the 177 

system approaches instability.  178 

  179 

 180 

Figure S12. Increase in Max[ρy] as Max[Re(λ)] tends to zero for “strongly” disordered  181 

networks with a random architecture with N=20 and C=0.3. Increasing values of Max[Re(λ)] 182 

are obtained by increasing the interaction strength, p. The plotted values are ensemble 183 

averages of 100 realizations. 184 
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 185 

Figure S13. Increase in Max[ρy] as Max[Re(λ)] tends to zero for “strongly” disordered  186 

networks with a predator-prey architecture and N=20, C=0.3. Increasing values of Max[Re(λ)] 187 

are obtained by increasing the interaction strength, p. The plotted values are ensemble 188 

averages of 100 realizations. 189 

190 
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 191 

Figure S14. Increase in Max[ρy] as Max[Re(λ)] tends to zero for “strongly” disordered  192 

networks with a mutualistic architecture and N=20, C=0.3. Increasing values of Max[Re(λ)] 193 

are obtained by increasing the interaction strength, p. The plotted values are ensemble 194 

averages of 100 realizations. 195 
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 197 

 198 

 199 

Figure S15. Left panel: max element of the power spectrum matrix as a function of frequency 200 

for three different architectures. The impact of the structure on the spectrum is negligible. 201 

Right panel: Power spectrum evaluated in the minimum and maximum frequency as p tends 202 

to pc  (and thus  Max[Re(λ)] tends to zero)  for strongly disordered systems (N=20 and C=0.2)  203 

with random, predator-prey, and mutualistic interactions. Increasing values of Max[Re(λ)] 204 

lead to a decrease in = Max[P(min)] - Max[P(max)], that therefore might be considered a 205 

precursor for a critical transition. However, the intensity of this early warning sign is quite 206 

weak and thus difficult to detect. The plotted values are ensemble averages of 100 207 

realizations. 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 
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S5. Early Warning Detection 217 

To evaluate whether the onset to instability can be anticipated in time by an increase in 218 

Max[Sy] (or in other suitably chosen elements of Sy), we test the correlation (11) between 219 

Max[Sy] and the control parameter (p or C) that is gradually varied to increase Max[Re(λ)] up 220 

to a given threshold (here chosen equal to −0.2). If the correlation, ρk, (evaluated with the 221 

Kendall-τ test) is significant and greater than 0.5, the increase in Max[Sy] is interpreted as an 222 

early warning sign. We repeat this analysis for 1000 realizations of the random interaction 223 

strength network and determine the distribution of correlations along with the number of 224 

realizations with positive warning sign. 225 

 226 

 227 

 228 

 229 

Figure S16. Probability of detecting true positives (i.e. of not missing a warning sign) in the 230 

case of mean field networks, using the same detection criteria as in Figure 4. 231 

 232 

 233 
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 234 

 235 

Figure S17. Frequency distribution of the ρK statictics used to detect early warning signs of 236 

instability in the case of mean field networks. 237 

 238 

 239 

 240 
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 242 

Figure S18. Frequency distribution of the ρK statictics used to detect early warning signs of 243 

instability in the case of full disordered networks. 244 

 245 
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