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Social ecological systems are often difficult to investigate and manage because of their
inherent complexity!. Small variations in external drivers can lead to abrupt changes
associated with instabilities and bifurcations in the underlying dynamics2-4.
Anticipating critical transitions and divergence from the present state of the system is
particularly crucial to the prevention or mitigation of the effects of unwanted and
irreversible changes5-10. Recent research in ecology has focused on leading indicators
of regime shift in ecosystems characterized by one state variable57.11.12, The case of
systems with several mutually interacting components, however, has remained poorly
investigated13, while the connection between network stability and research on
indicators for loss of resilience has been elusivel4. Here we develop a theoretical
framework to analyze early warning signs of instability and regime shift in social
ecological networks. We provide analytical expressions for a set of precursors of
instability in social ecological systems with additive noise for a variety of network
structures. In particular, we show that the covariance matrix of the dynamics can
effectively anticipate the emergence of instability. We also compare signals of early
warning based on the dynamics of suitably selected nodes, to indicators based on the
integrated behavior of the whole network. We find that the performances of these
indicators are affected by the network structure and the type of interaction among
nodes. These results provide new advances in multidimensional early warning analysis

and offer a framework to evaluate the resilience of social ecological networks.

We consider a social-ecological system with N components (nodes) coupled through a set of
links. The state of the system is expressed by the vector x of length N, whose terms x;

represent the state of node i. The local stability of a state x* is evaluated through a
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linearization, :—: = A -y, where y=x-Xx" is the displacement of x from x*; A is the N x N matrix

expressing the interactions among nodes in the (linearized) dynamics (see Methods). In
population ecology this framework is typically used to express the dynamics of a community
of N populations interacting according to the relationships determined by the matrix A, often
known as "community matrix">1516; likewise, in social systems A describes the network of
interactions (e.g., trade, migration, flow of information among people, groups of individuals,
or countries!7-19). The off-diagonal terms of A determine the pairs of interacting nodes as well
as the strength of their interaction. The dynamics are stable if the maximum eigenvalue, Amax,

of A is negative.

Classic ecological theories?3 have considered the case of networks with randomly connected
nodes (with a certain probability, C). The strength (p) of the interactions between them is
represented by a zero-mean random variable of variance o2. May?3 showed that random
networks become unstable as connectivity (i.e., €), size (i.e., N) or strength variance increase.
These findings were recently generalized to the case of networks with prescribed structures
(e.g., predator-prey, competitive or mutualistic interactions)!>: the stability/instability of the
system was found to strongly depend on the network structure as well as on connectivity,
strength variance, and system size.

More in general, the off-diagonal terms of A may result from a set of "rules" expressed as a
function of a few parameters of which connectivity and strength variance are just an example.
Changes in the structure and intensity of the interactions correspond to variations in these
parameters, which, in turn, can lead to instability by modifying the community matrix and its
eigenvalues. How can we evaluate whether ongoing changes in the interactions within a
social-ecological network are reducing its resilience? Is there a way to use measurable

quantities to determine whether the system is about to become unstable?
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In one-dimensional systems leading indicators are typically associated with behaviors
resulting from the eigenvalue tending to zero at the onset of instability. This effect entails a
slower return to equilibrium after a "small" perturbation!120. Known as "critical slowing
down", this phenomenon exists also in systems with multiple interacting components, though
it is hard to recognize and therefore it does not constitute an effective leading indicator of
instability. In fact, in “real world” applications the equations driving the dynamics are not
known and, therefore, the network nodes in which slowing down is expected to occur are not
known a priory. Critical slowing down, however, has been related to an increase in variance
and autocorrelation in the state variable of one dimensional systems>721, Here we provide a
theoretical framework to investigate early-warnings in the variance, autocorrelation, and
power spectrum of multi-dimensional systems with interactions described by a given
network structure.

We generate networks of size N, with a variety of architectures for A (see Methods), and
reach instability either by keeping constant the connectivity, C, while changing the strength of
the interactions, p, or by varying C for a fixed p>15>. We then determine the analytical
relationship between the steady state covariance matrix, Sy, of y and the eigenvalues of the
matrix A. Similarly, we express the time-lag correlation, py, and the power spectrum, Py, of y
as function of A and its eigenvalues. We find that the elements of both Sy and py increase as
the system approaches instability (i.e, Amax —0). Therefore, we investigate potential
indicators for early warning in the behavior of suitable components of Sy, py and Py for Amax
—0. To that end we first consider the components of Sy corresponding to the most connected,
the most central?? and the least connected nodes of the network. We also consider indicators
based on the properties of the entire network, such as the maximum and the difference

between the maximum and minimum of the matrix Sy.
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We find that most of the indicators based on the covariance matrix, Sy, have a non-trivial
dependence on Anmax (see Figure 1). The maximum element of Sy (Max[Sy]) provides the most
effective indicator of early warning in most networks, except for the case of random networks,
in which Max[Sy]- Min[Sy] exhibits a stronger increase at the onset of instability (Figure 1). In
mutualistic (++) networks Max[Sy] corresponds to the most connected node (the “hub”),
regardless of their topological structure (Supplementary Information). All these indicators
based on Sy improve their performances when the size, N, of the network increases, as shown
by the comparison between main panels and insets in Figure 1 (see also Supplementary
Information). Thus our ability to detect early warning signs and predict tipping points is
enhanced in more diverse systemsl4.

We also look at the relationship between the maximum element of the time-lag correlation
matrix, py(A) (where A is the time lag), and the maximum eigenvalue, Amay, for different values
of A, p and C. We find that, although significant, these indicators are less efficient with respect
to the case with zero time-lag (i.e., indicators based on Sy). Finally, the power spectrum does
not appear to be an effective indicator, as we identified only weak changes in Py for increasing
values of p and Amax (see Supplementary Information). Therefore, here we focus on early
warning signs provided by the way Max[Sy] varies as a function of changes in Amax.

A warning sign is effective if (1) it appears in time to prevent (or prepare for) the occurrence
of instability23.24; (2) it relies on a well-defined and easy to recognize indicator (e.g., a
detectable or significant increase in variance2325); and (3) it does not give false positives (or
false negatives)2¢6. We use these criteria to evaluate the effectiveness of Max[Sy] as a leading
indicator of instability with different network structures and levels of noise24.

To investigate the effect of noise, we first consider the “mean-field” case of networks in which
the absolute value of the interaction strength between connected nodes is a constant, p; we

gradually increase p or C until the real part of the maximum eigenvalue of A becomes
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positivel5. We observe (Fig. 2) a consistent increase in Max[Sy] for all network structures,
regardless of whether instability is attained by increasing interaction strength or connectivity.
The network structure, however, affects the timeliness of Max[Sy] as a leading indicator. In
fact, Max[Sy] exhibits a more defined increase and a better anticipation of the onset of
instability in the case of random networks than with all the other structures. In the case of
these “mean field” networks we did not consider the antagonistic structure because
antagonistic networks with constant interaction strength (in absolute value) are always stable
regardless of the parameters p and C (see Supplementary Information).

Likewise, in the case of random interaction strengths (see Supplementary Information)
Max[Sy] exhibits a well-defined increase and a better anticipation of the instability in random
networks than with the more organized structures typical of ecological or social systems
(Figure 3). The seemingly weaker increase in Max[Sy] observed in the social ecological
networks is only an apparent effect of the scale. Indeed, as it will be shown later, suitable
detection criteria of early warnings are more successful in mutualistic networks than in their
random counterparts. It is also observed that noise has the effect of amplifying the intensity of
the warning sign (compare the scales in Figs. 2 and 3), while inducing some weak random
fluctuations with no substantial impact on the overall behavior of Max[Sy] at the onset of
instability (see Supplementary Information). In scale free networks the increase in Max[Sy]
(Fig. 3) is again only apparently muted. In fact, in these networks detection criteria are quite
successful in recognizing early warning signs (Figure 4); moreover, local indicators (e.g., the
variance of the most central node) can exhibit a more pronounced increase that can be used
as an early warning sign of instability (Figure 1 and Supplementary Informations).

Overall, the performances of Max[Sy| as a leading indicator of instability change between
random, antagonistic, mutualistic/social networks. This indicator gives an earlier and

“sharper” warning sign in random than mutualistic and social networks. The warning sign,
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however, is harder to detect and is more likely to be missed in random and antagonistic
networks than in their mutualistic or social counterparts. Thus, by affecting the probability
that early warnings are missed, the sign of the interactions within the network determines the
consistency and reliability of this leading indicator. In fact, different realizations of the same
network dynamics can yield different results in the behavior of Max[Sy] and thus this
indicator might not detect in useful advance the emergence of instability. The probability of
true positives is close to 100% (i.e., negligible probability of false negatives) in mutualistic
networks, and much smaller in random and antagonistic (predator-prey, cascade or
compartment) networks (Figure 4). Thus, while mutualistic networks are less stable than
their antagonistic counterparts!®, their instability can be predicted with less uncertainty. An
increase in Max[Sy], however, would not provide information on how close the system is to
the onset of instability. Rather, it would just indicate that the system is losing resilience and
approaching unstable conditions?3. Therefore, in contrast to previous expectations!4, it is not
the heterogeneity in the topology of the network that plays a key role in the abruptness of
critical transitions and our ability to predict them. Rather, it is the type of interactions
between the nodes that determines how networks respond to external perturbations. In fact,
there is a trade-off between local and systemic resilience: mutualism (++) is associated with a
reduced local stability and resilience of the system!>, but does not induce abrupt critical
transitions. In contrast, networks with mixtures of interaction types (+-,++--) exhibit shorter
recovery times after displacement from equilibrium (i.e., a stronger local resilience), but in
these systems the emergence of systemic instability and critical transitions is more difficult to
predict in useful advance.

This study combines stability theories from community ecology?!> to recent research on

indicators of critical transition?214, and develops a unified framework that offers a new
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perspective method for the evaluation of the resilience and anticipation of instability in social

ecological networks.

Methods Summary

Early Warning in Complex Networks. We consider a network with N interacting nodes. The
state of the system, x={x1, X2, ... xn}, is governed by the set of coupled dynamical equations
with additive noise: dx = f(x,p,C)dt +vIdW , where f={fi, f2, .., fu} is a N-dimensional
vector function expressing the deterministic component of the dynamics of x, as a function of
a set of parameters, p and C; I is the identity matrix, and v dW is the stochastic driver
represented by a white Gaussian noise of mean zero and intensity vd¢. This framework can
also be generalized to the case in which I is replaced by a non-diagonal matrix (i.e., with
correlation among the noise terms driving the dynamics of each node).

If we consider a small perturbation y forcing the system away from its equilibrium point x*
(i.e., y=x-Xx), inserting x= x"+y in the above equation and linearizing f(x*+y, p, C) around x*
we obtain

dy = A(p)ydt+IvdWw | (1)

where Al-j =[d f/d xj]‘m*. Eq. (1) is a multivariate Ornstein-Uhlenbeck process?’. Following

Allesina>, we build A for eleven different architectures (see Supplementary Information)

The stable states, x*, of stochastic dynamics driven by additive noise are the same as those of
their deterministic counterparts, 3 = f(x,p, C) 28. These states are stable if the maximum real
part of the eigenvalues of A is negative. To identify early warning signs of network instability,
we relate the steady state covariance matrix S, = (y., ¥T) to the eigenvalues, A of A, where ys

is calculated from the steady state solution of Eq. (1). The (i, j) element of Sy is:
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S,(i,)) = <yiyj> - <yl-><yj>, where < > represents the average. The covariance matrix of the

stationary dynamics of the system can be obtained as the solution of the equation27:

A(p,C)S,+5,AT(p,C) = —vI (2)
Sy is a function of the linearization matrix, A(p,C), which, in turn, depends on the control
parameters (p or C). At the onset of instability (i.e., as Re(Amax) —0) the maximum element of
the covariance matrix, Sy, of y increases (see Supplementary Information). More details on the
time-lag correlation, power spectrum, and the generation of social-ecological networks can be

found in the Supplementary Information.

Detection of early warning To evaluate whether the onset to instability can be anticipated in
time by an increase in Max[Sy] (or in other suitably chosen elements of Sy), we test the
correlation?> between Max[Sy] and the control parameter (p or C) that is gradually varied to
increase Max[Re(A)] up to a given threshold (here chosen equal to —0.2). If the correlation
(evaluated with the Kendall-t test) is significant and greater than 0.5, the increase in Max[Sy]
is interpreted as an early warning sign. We repeat this analysis for 1000 realizations of the
random interaction strength network and determine the distribution of correlations along

with the number of realizations with positive warning sign.
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Figure 1. Leading indicators of instability based on different elements of the covariance
matrix (Sy), including the maximum (in absolute value) element, Max[Sy] (purple), the
difference between Max[Sy] and Min[Sy] (pink), the element of Sy corresponding to the most
connected (gold), least connected (blue) or highest eigenvector centrality?? (green) network
node. Random (left) and scale free (right)2° network generated with N=50 and €=0.1 (main
panels) and N=10 and C=0.5 (insets). Instability (i.e., decrease in Max[Re(A)]) is attained by
increasing the interaction strength p (mean field case). The figures represent average

behavior over 100 realizations.
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Figure 2. Max[Sy]as a leading indicator of instability in a “mean field” network with constant

interaction intensity (in absolute value) , p. Instability is attained by increasing p (main panel

A, with N=20, €=0.2) or C (inset B, with N=20, and C increasing from 0.1 to 1) with different

network structures. The figures represent average behavior over 1000 realizations.
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Figure 3. A) Case with random interaction strength (see methods). Main panel: instability is
reached by increasing p (with N=20; €=0.2). First inset (B): p is constant while C increases
between 0.1 and 1. C) Same as the first inset (B) but only for the scale-free network (notice
the different scale on the vertical axis). The figures represent average behavior over 1000

realizations.
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Figure 4. Statistics of the early signs detection. We first calculate the distribution of the
correlation, pk, between Max[Sy] and the parameter p, after 1000 realizations for the full
disordered (not mean-field) case. If pk is significant (p-value<0.05) and px > 0.5 the increase
in Max[Sy] is interpreted as an early warning sign. We calculate these detection statistics for
several realizations of each network structure and determine the probability of detecting the
early warning sign of instability. We consider eleven different network architectures typical of
ecological or social networks, including random (R), predator-prey (PP), cascade (Casc),
compartmentalized (Comp), mutualistic (M), bipartite (Bip), nested (N), nested with
competition (N+C), scale free (SF), and small world (SW). These networks have different
structures for the adjacency matrix and different combination of interaction types, i.e (++)
mutualistic, (+-) antagonistic, (--) competitive or a combination of them (See Supplementary

Information for more details).
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