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Abstract

Motivation: The multispecies coalescent model provides
a formal framework for the assignment of individual or-
ganisms to species, where the species are modeled as the
branches of the species tree. None of the available ap-
proaches so far have simultaneously co-estimated all the
relevant parameters in the model, without restricting the
parameter space by requiring a guide tree and/or prior
assignment of individuals to clusters or species.
Results: We present DISSECT, which explores the full
space of possible clusterings of individuals and species tree
topologies in a Bayesian framework. It uses an approxi-
mation to avoid the need for reversible-jump MCMC, in
the form of a prior that is a modification of the birth-
death prior for the species tree. It incorporates a spike
near zero in the density for node heights. The model has
two extra parameters: one controls the degree of approx-
imation, and the second controls the prior distribution
on the numbers of species. It is implemented as part of
BEAST and requires only a few changes from a standard
*BEAST analysis. The method is evaluated on simulated
data and demonstrated on an empirical data set. The
method is shown to be insensitive to the degree of ap-
proximation, but quite sensitive to the second parameter,
suggesting that large numbers of sequences are needed to
draw firm conclusions.
Availability: http://code.google.com/p/beast-mcmc/,
http://www.indriid.com/dissectinbeast.html
Contact: art@gjones.name, www.indriid.com

Supplementary information: Supplementary material

is available.

1 Introduction

Despite its alleged status as a fundamental concept in
biology, the species category has lacked a definition
allowing explicit testing of particular species limits
(e.g., de Queiroz, 2007). In recent years however,
several methods have been proposed for the task of

delimiting species based on molecular data (see Fu-
jita et al., 2012; Miralles and Vences, 2013, for re-
views). Multispecies coalescent (Yang and Rannala,
2003) species limitation methods (MSCSLM) make
use of multi-locus sequence data to make inferences in
the presence of incomplete lineage sorting. We do not
consider methods that only take the current genetic
structure into account (e.g. STRUCTURE, STRUC-
TURAMA, Huelsenbeck and Andolfatto, 2007).

Motivation: Ence and Carstens (2011) intro-
duced the validatation/discovery terminology for
species delimitation. All current MCSSLM are either
heuristic (e.g. O’Meara, 2010), dependent on a guide
tree (e.g. Yang and Rannala, 2010; Satler et al., 2013)
or are validation methods which require prior assign-
ment of individuals to clusters or species. Here, we
take a Bayesian approach, which has the advantage
that nuisance parameters can be integrated out, and
also that prior taxonomic knowledge can properly be
taken to account.

Our contribution: We present a Bayesian
method DISSECT (Division of Individuals into
Species using Sequences and Epsilon-Collapsed
Trees) for species delimitation which requires no prior
assignment of individuals to clusters or species, but
instead explores the full space of possible clusterings
and tree topologies. It is along the lines of the method
of Yang and Rannala (2010) which employs a user-
supplied guide tree in which some nodes may be col-
lapsed (i.e., all descendants of these nodes assigned
to one species). The two operations of collapsing a
node, and of setting its height to zero, have the same
effect on the likelihood, since the multispecies coales-
cent density is the same for a single population and a
population which has just split at time zero. When a
node is collapsed, the dimensionality of the parame-
ter space changes, so a reversible-jump Markov Chain
Monte Carlo (rjMCMC) algorithm is needed to sam-
ple the species trees. The basic idea behind DIS-
SECT is to sample trees in which each tip represents
a single individual (or a cluster of individuals which
definitely belong in one species), but replace the usual
prior density on node heights with one which includes
a spike near zero. The dimensionality of the param-
eter space is fixed, but nodes whose heights have a
high posterior probability of being within the spike
can be interpreted as ‘probably collapsed’.

Related work: Knowles and Carstens (2007) de-
vised a Maximum Likelihood approach which used
fixed gene trees as input data and hierarchical like-
lihood ratio tests to compare different species classi-
fications. These were treated as different stochastic
models with different sets of parameters, and the hi-
erarchical likelihood ratio tests require the models to
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be nested. Thus, for example, the classification of
putative species A, B, and C into AB and C or A
and BC can not be compared in this way, whereas
ABC can be compared to either. O’Meara (2010)
devised parametric and non-parametric heuristic dis-
covery methods to simultaneously find an optimal as-
signment of individuals to species and their tree rela-
tionships. Yang and Rannala (2010, 2013) developed
the idea in a Bayesian framework, in which the gene
trees are co-estimated with a constrained species tree,
and implemented this in the software BP&P.
Two options are described in Yang and Rannala

(2010). In the simplest option, the dimensionality of
the parameter space does not change, and there is
no special prior involved. Species are inferred by set-
ting a threshold on the posterior node heights, with
small heights interpreted as evidence for collapsing a
node. This is similar to using *BEAST (Heled and
Drummond, 2010) with each individual in its own
‘species’ in the XML file, and estimating the actual
species afterwards. Yang and Rannala’s other (main)
method employs a user-supplied guide tree in which
some nodes may be collapsed. This drastically limits
the number of possible species delimitations that are
considered. DISSECT might loosely be described as
‘between’ or ‘combining’ these two options.
An alternative is to use Bayes Factors, which can

be achieved from accurate marginal likelihood esti-
mates (Xie et al., 2011; Baele et al., 2012). Grummer
et al. (2013) and Aydin and Oxelman (submitted)
used this approach to choose among species classifica-
tions, and Leaché et al. (2013) extended the approach
to be used for SNP data.

2 Methods

A set of individual organisms will be called a cluster.
Each possible cluster of individuals in the analysis is a
candidate for constituting a species. A set of clusters
which do not overlap one another and which together
include all the individuals in the analysis will be re-
ferred to as a clustering. In an analysis using DIS-
SECT, some sets of individuals may be grouped by
the user as minimal clusters: these may be merged
but never split. We use ‘gene’ in a loose sense, to
mean an alignment of a sequence region which is as-
sumed to be homologous and unlinked to other such
regions. A ‘gene copy’ is a single row from such an
alignment.

2.1 The model

In Bayesian phylogenetic analysis, a prior distribu-
tion over species trees is needed, and for rooted trees

as used here, the reconstructed birth-death process
(Gernhard, 2008) is most often used. It includes the
Yule process as a special case. The process is as-
sumed to begin at some time t in the past with a
single species, and is conditioned on producing the
observed number of species at present. The time t
is called the origin time or origin height. The-
orem 2.5 of Gernhard (2008), following Thompson
(1975) shows that, conditioned on t, the speciation
rate λ, and the extinction rate µ, the density of the
unordered node heights are independently and iden-
tically distributed (i.i.d.) and are also independent of
the number of tips k. This nice mathematical prop-
erty makes the present model tractable. Let the den-
sity of a node height s be f(s|k, t, λ, µ) = f(s|t, λ, µ).
In the present model, f(s) is replaced with with a
mixture of f(s) and another density m(s) for s:

(1− w)f(s|t, λ, µ) + wm(s) (1)

where w is a user-chosen weight in [0, 1], and this
density is used for all the n−1 node heights in a tree
with n tips. The joint density is then

n−1∏
i=1

(
(1− w)f(si|t, λ, µ) + wm(si)

)
(2)

where s1, . . . , sn−1 are unordered node heights. This
can be expanded as

n∑
k=1

(1−w)k−1wn−k
∑

X∈C(k)

∏
i∈X

f(si|t, λ, µ)
∏
i/∈X

m(si)

where C(k) is the set of subsets of {1, . . . , n − 1} of
size k − 1. If m(s) was the Dirac delta function δ(s)
(Dirac, 1958) the result would be a distribution in
which the trees with k external branches of nonzero
length (that is, the trees with k ‘real’ tips) have total
probability mass

|C(k)|(1− w)k−1wn−k =

(
n− 1

k − 1

)
(1− w)k−1wn−k.

(3)
Note that the product

∏
i∈X f(si|t, λ, µ) is the den-

sity for a reconstructed birth-death process with k
tips whose node heights are the k − 1 nonzero si. In
practice one cannot sample from such a distribution
without implementing reversible jump MCMC, but
it can be approximated it using

m(s) = ϵ−11[0,ϵ](s) (4)

where ϵ is small.
Figures 1 and 2 illustrate the densities f and (1−

w)f+wm respectively for the case n = 3, where there
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are two internal node heights. One way of sampling
trees from the reconstructed birth-death process for
n = 3, is to pick a point (x, y) from a density such as
the one in Figure 1; then choose a random ordering
of the tip labels from left to right; then insert x and y
between them; and finally join the nodes to form the
tree. The same process is shown in Figure 2 for the
mixture density m. If the point (x, y) is in one of the
two ‘walls’ along the axes, one node will be collapsed.
If the point (x, y) is in the ‘pillar’ near the origin, both
nodes will be collapsed. The approximation means
that there is a possibility that a true speciation which
is more recent than ϵ, will be missed.

This is very similar to a model in which a separate
reconstructed birth-death process is assumed for each
k and a rjMCMC is used to sample from the cluster-
ings and trees. Apart from the approximation involv-
ing ϵ, the other difference is that the density q(t|k) for
t would normally depend on k in the reversible-jump
version, whereas in equation (2) there is no such de-
pendence: a single density for t for all k is needed. It
seems reasonable to assume a density for q(t) which
mixes q(t|k) using the probabilities from expression
(3). In a normal BEAST or *BEAST analysis using
the birth-death prior, an improper uniform prior on
[0,∞) is assumed for the origin time t of the tree,
and the process is then conditioned on the number of
species k. The conditional density for t is shown in
Theorem 3.2 of Gernhard (2008) to be

q(t|k) = kλk(λ− µ)2
(1− e−(λ−µ)t)k−1e−(λ−µ)t

(λ− µe−(λ−µ)t)k+1
(5)

Using the probabilities from expression (3), the prior
density for t is

q(t) =
n∑

k=1

(
n− 1

k − 1

)
(1− w)k−1wn−kq(t|k) (6)

This can be simplified as shown in the supplementary
information.

The model was implemented in BEAST by adding
a class BirthDeathCollapseModel, which is similar to
the usual BirthDeathModel. It contains a parame-
ter for the origin height t as well as for the diversi-
fication rate and relative death rate as in the usual
birth-death model. An additional MCMC operator
is needed to sample from t. This can be added using
one of the existing operators in the XML. We used
a ScaleOperator. No new MCMC operators were
added to explore the space of species trees: the ex-
isting NodeReHeight operator explores the posterior
as modified by the prior in equation (2).

2.2 DISSECT workflow

The analysis can be run in the development version
of BEAST (Drummond et al., 2012), see supplemen-
tary data for instructions. BEAUTi can be used to
set up most of the analysis, as if for a *BEAST anal-
ysis. The word ‘species’, as it appears in BEAUTi
and in the BEAST XML file, is interpreted as a min-
imal cluster. Two changes need to be made to the
XML file. The birth-death model must be replaced
with a birth-death-collapse model, where ϵ can be set,
and an operator must be added for the origin height.
The parameter w can either be given a fixed value,
or estimated by adding a hyperprior and an operator.
The trees sampled from the posterior can be analyzed
with a tool called SpeciesDelimitationAnalyser. This
uses a user-supplied threshold τ (either ϵ or larger)
for assigning individuals to clusters, and produces a
table Ω of clusterings Z1, Z2, . . . Zz with correspond-
ing posterior probabilities p1, p2, . . . pz which sum to
1. The clusterings are sorted in order of decreasing
posterior probability. An R script for producing a
similarity matrix (see section 3.4) is provided in the
supplementary information.

2.3 Advice on choosing parameters
and priors

The parameter w can be chosen to reflect prior knowl-
edge about the likely number of species. As a conse-
quence of the structure of the model, even when w is
fixed, the prior on the number of species k is some-
what diffuse: it is not possible to insist on exactly
7 species for example. In the case of fixed w, the
number of trees with k ‘real’ tips in the prior has the
distribution of 1 +X where X is a random variable
having the binomial distribution with size parameter
n − 1 and probability parameter 1 − w. Its mean
is thus 1 + (n − 1)(1 − w). If the individuals have
been assigned in previous work to k0 species, then
w = (n − k0)/(n − 1) seems a reasonable choice. If
the value of w is estimated, and a beta prior is used,
the prior distribution on k− 1 is a beta-binomial dis-
tribution, which can be explored using the R package
VGAM (Yee, 2010, , see also supplementary informa-
tion). If w is fixed at zero, the value of ϵ becomes
irrelevant, and the model becomes equivalent to the
birth-death model as used in *BEAST, except that
the origin height is estimated instead of being inte-
grated out analytically.

The parameter ϵ should be set to a small value
such as 1e-4 or 1e-5. The value is a compromise be-
tween exactly matching a particular model and the
practicalities of computation. Extremely small val-
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ues may lead to poor mixing, although we have only
observed a substantial effect for ϵ below 1e-6. If ϵ is
too large it will not be possible to distinguish very
recent divergences. For most analyses there will not
be enough data to distinguish speciations with node
heights below 1e-4, since the expected number of mu-
tations separating the species is only one per 5,000
sites, so the choice of ϵ will not be at all critical.

When the number of individuals per species is
small, it becomes difficult to estimate the population
size parameters in each branch in the multispecies co-
alescent model. In such a case, care must be taken to
use a sensible prior on these parameters, especially
the ‘species.popMean’ parameter. We recommend
that the prior should be proper, and diffuse enough
to accommodate extreme but possible values, but not
absurdly diffuse. This is good advice anyway when
using *BEAST, but it becomes more critical when
using DISSECT, since it will typically be harder to
ensure that the number of individuals per species is
not small.

3 Evaluation

3.1 Simulated scenarios and parame-
ter settings

Two sets of simulations were run. The first set eval-
uates the performance of DISSECT as the number of
genes and the amount of incomplete lineage sorting
varies, and assesses the sensitivity of the method to
choices of ϵ and w. The second set focuses on the case
of one true species. We use Ne to mean the effective
number of (diploid) individuals in a population. If
Ne is constant, this means that the expected time
for two gene copies to coalesce is 2Ne generations.
We denote the mutation rate per site per generation
by T . Node heights and ϵ are in the same units as
the product TNe. Note that the topology and node
heights of the gene trees only depend on the product
TNe, so a scenario with T=1e-8 and Ne = 50, 000
is equivalent to one with T=1e-9 and Ne = 500, 000
and so on. There are two sources of ‘noise’ in the
data: one comes from coalescences which are deeper
than species tree node height, and the other from the
randomness of mutations. For a node height of 0.001
and a gene length of 500, the expected number of sub-
stitutions separating two species is 1, so around 37%
of pairs of gene copies from different species would be
identical if they coalesced at the species node height.
In all cases the threshold τ in SpeciesDelimitation-
Analyser was set equal to ϵ

The first set SIM-5x5 of simulations all use 25 in-

dividuals, 5 assigned to each of 5 species, with one
gene copy per individual. The species tree has a comb
topology with node heights at 0.001, 0.002, 0.004, and
0.008. These heights are chosen to roughly approxi-
mate those in the empirical data set (see below). The
value of Ne was 50,000 at the tips and at the root-
ward ends of branches, and 100,000 at the root and
tipwards ends of internal branches, varying linearly
along the branches. The length of the genes was set
to 500 sites, and the number of genes G was set to
3 or 9. The mutation rate T was set to 1e-8 or 4e-8,
representing a moderate and a large amount of in-
complete lineage sorting. The root of the species tree
is at 0.008/T generations, and is therefore 800,000
generations when T = 1e-8 and 200,000 generations
when T = 4e-8. To get some idea of the amount of
signal and noise due deep to coalescences in the data,
consider the G = 9 case, where there are 4,500 sites.
For a very small value of T , the number of variable
sites would be about 100. In the case T = 1e-8, the
number of variables site was around 200, and in the
case T = 4e-8, it was around 400. The increase in
variable sites as T increases is due to deeper coales-
cences.

We explored the accuracy of the method with re-
spect to changes in ϵ by using a beta prior for w with
shape parameters 8 and 2, and setting ϵ to 0.0001=1e-
4, 3e-5, and 1e-5. We also explored the behavior with
respect to changes in w by fixing ϵ to 1e-4, and set-
ting w to 11/12, 5/6, and 17/24, corresponding to
prior means for k of 3, 5, and 8.

The second set SIM-1 of simulations all use T=1e-
8 and Ne = 100, 000. In this case a single species
was simulated, so the gene trees are all the result of
a coalescence process only. The product TNe scales
the number of substitutions, and thus affects the ac-
curacy with which genes trees can be estimated, but
does not change the underlying ‘shape’ of the prob-
lem. The value of ϵ was 3e-5. A beta prior with
shape parameters n− 1 and 1 was used for w, which
means that the true clustering has a probability of
0.5 in the prior for all n. We used n=4, 8, and 16
individuals and G was set to 3 and 9 to examine how
these variables affect the rate of false splits.

3.2 Implementation of simulations

The simulated data was generated and analysed
using R (R Development Core Team, 2011) and
the R packages APE (Paradis, 2004) and phang-
orn (Schliep, 2011). Gene trees were simulated
according to the multispecies coalescent model
for each scenario and parameter choice, for ten
replicates. Sequence alignments with 500 sites
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were generated for these gene trees using Seq-Gen
Rambaut and Grassly (1997) called with command
seqgen.exe -mHKY -t3.0 -f0.3,0.2,0.2,0.3.

This uses a strict clock and the HKY substitution
model, and all genes have the same mutation rate.
There is no site rate heterogeneity. These sequences
were then incorporated into BEAST XML files,
and DISSECT was run for 20 million generations
with the first 10 million discarded as burnin. The
priors for species.popMean, meanGrowthRate, and
the relative clock rates were all lognormals, with
means and standard deviations in log space equal
to -7 and 2; 4.6 and 2; and 0 and 1 respectively.
The prior for relativeDeathRate was uniform in
[0,1]. SpeciesDelimitationAnalyser was run after
DISSECT.

3.3 Empirical data

Species delimitation in the pocket gopher genus Tho-
momys subgenus Megascapheus has been controver-
sial, with a large number of species described by
early taxonomists. Most of these have been reduced
to subspecific rank by 20th century taxonomists in-
spired by the biological species concept (e.g., Wilson
and Reeder, 2005). According to opinion of these re-
cent authors, the number of species in the dataset of
Belfiore et al. (2008), also used by Heled and Drum-
mond (2010), vary between six and eight, depending
on how the species T. bottae, T. umbrinus, and T.
townsendii are delimited. We explored the dataset,
which consists of 26 individuals and seven non-coding
nuclear sequence regions (Belfiore et al., 2008), by
varying ϵ from 1e-7 to 1e-3=0.001, and by setting w
to 0.12 or 0.68 (corresponding to subspecies elevated
to species rank, and eight species, respectively). We
also used a Beta hyperprior with parameters 4 and 2
(Fig. 3). Each combination of ϵ and w was run for
200 million generations, saving parameter values and
species trees every 5000th generation. SpeciesDeli-
mationAnalyser was run with τ equal to ϵ, and one
magnitude of order larger.

3.4 Evaluation metrics

The number of possible clusterings of n individuals
(known as the Bell number Bn) increases rapidly with
n . For example B2 = 2, B3 = 5, B4 = 15, B5 = 52,
B10 = 115975, and B25 ≈ 4.6e18. (See O’Meara,
2010, for more details.) The accuracy of the esti-
mated number of species is not a good way to judge
the method, since the number may be correct despite
false splits and false merges which cancel out, or de-
spite major mis-assignments, or incorrect due to a

single individual being incorrectly merged or sepa-
rated from a cluster. There are approximately 2.4e15
ways in which 25 individuals can be grouped into 5
clusters. The situation is similar to that of inferring
phylogenies, where we typically do not expect every
clade to be correctly inferred if the number of species
is large. In order to assess the accuracy of DISSECT,
we therefore want a metric analogous to tree metrics
such as the Robinson-Foulds distance.

Rand index. We chose the Rand index (Rand,
1971), which measures the similarity R(X,Y ) be-
tween two clusterings X and Y of the same set (e.g.,
the set of individuals). The Rand index is always be-
tween 0 and 1, and is 1 when the match is perfect. We
also define R̄(X,Y ) = 1−R(X,Y ) which is a metric
in the mathematical sense, and which we will refer
to as the Rand metric. Firstly, in order to evaluate
the posterior distribution as a whole, we weight the
Rand metric between each clustering Zm in the ta-
ble Ω produced by DISSECT and the true clustering
Z⋆ by its posterior probability pm, and thus produce
an overall measure of the distance from the posterior
distribution to Z⋆:

D(Ω, Z⋆) =
z∑

m=1

pmR̄(Zm, Z⋆)).

This is our main tool for evaluating DISSECT on
simulated data.

Point estimator. The simplest point estimator
of the species limits, which we denote by Ẑ, is the
clustering with the highest posterior probability, that
is, the posterior mode. An alternative point estima-
tor is described in the supplementary information.

Similarity matrix. For any clustering Z in Ω,
define mat(Z) to be the symmetric matrix which has
(i, j)th entry equal to 1 if i and j are in the same
cluster in Z and 0 otherwise.We define the similarity
matrix to be the weighted sum of such matrices in
Ω:

M(Ω) =
z∑

m=1

pmmat(Zm).

The elements of M(Ω) are the posterior probabilities
for pairs of individuals to belong to the same clus-
ter. This matrix can be thought of as a posterior
mean in ‘similarity matrix space’. It makes a conve-
nient visual summary of the output from DISSECT.
The point estimators and M(Ω) are the main tools
for interpreting the output of DISSECT on empirical
data.

Credible sets. We define a distance between ma-
trices A and A′ as the mean absolute difference of
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off-diagonal elements between the two matrices:

Dmat(A,A′) =
1

n(n− 1)

n∑
i,j:i ̸=j

|Ai,j −A′
i,j |.

We calculate Dmat(Z,M(Ω)) for each clustering Z in
Ω and sort the clusterings on these distances in in-
creasing order. Then we add clusterings to the credi-
ble set until the sum of posterior probabilities reaches
the required size (e.g., 0.95). A single clustering may
be partly in and partly outside the credible set in
which case we regard it as belonging to the credible
set if half its posterior probability lies within the re-
quired size. We chose this credible set in preference to
a highest posterior density credible set because clus-
terings which only occur once in Ω can account for a
large fraction of the posterior probability mass, and
the distance from M(Ω) provides a sensible criterion
for including or excluding them.
Finally we note some connections between these

quantities. If A = mat(Z) and A′ = mat(Z ′)
for some clusterings Z and Z ′, then Dmat(A,A′) is
equal to R̄(Z,Z ′). Denote the true similarity ma-
trix mat(Z⋆) by M⋆. Then the distance between
the true and estimated similarity matrices, namely
Dmat(M(Ω),M⋆) is equal to D(Ω, Z⋆) (as shown in
the supplementary information) so D(Ω, Z⋆) can be
interpreted in two ways.

3.5 Results

Results for the first set SIM-5x5 are shown in Fig. 4
(varying ϵ) and Figs. 5, 6, 7, (varying w) and table 1.
These show no obvious differences when ϵ is changed
over an order of magnitude. Other figures supporting
this conclusion are in the supplementary information.
The results for varying w show some effect, at least
with the G = 9, T=1e-8 case in Figs. 5 and 7.
Results for the second set SIM-1 are shown in

Figs. 8 and 9. The point estimates were always cor-
rect. There were no false splits with high posterior
probabilities. The posterior probability of the correct
clustering increases with both n and G.
Varying ϵ between 1e-4 and 1e-7 on the Thomomys

data did not have any noticeable effects on the sim-
ilarity matrices generated from SpeciesDelimitation-
Analyzer (Fig. 10). Setting τ one magnitude of or-
der higher than ϵ increased posteriors for clusterings
in general, but not as much as increasing ϵ tenfold
and setting τ equal to ϵ (supplementary informa-
tion). Varying w had clear effects, with more and
smaller clusters for the small w=0.12 (Fig. 10). The
posterior mean values for w when estimated with a
Beta(4,2) prior distribution varied between 0.53 and

0.55 when ϵ was in the range not affecting the poste-
riors. Effective sample sizes (ESS) for most parame-
ters were well above 300, except for some population
size parameters for individual branches, and specia-
tion.likelihood, where the smallest ϵ values gave low
ESSs for w=0.68 and w estimated with Beta(4,2).
Fig. 11 shows the similarity matrix for ϵ=1e-5 and
w ∼Beta(4,2).

4 Discussion

4.1 Simulations

As expected, the accuracy increases with the num-
ber of unlinked loci and the ability to detect species
increases as the height of the nodes increases. The
insensitivity of the method to varying ϵ suggests that
the approximation is unlikely to bias the results.
The results in set SIM-5x5 for varying w in G=9,

T=1e-8 case (Figs 5, 6, 7) seem surprising, since this
is the easiest case where the influence of the prior is
expected to be least. One explanation is that with
less data or more deep coalescences, there are a mix-
ture of merge and split and mis-assignment errors,
and changing w increases some and decreases others.
When G=9, T=1e-8, merge errors are very rare, so
a bias towards merging in the prior is reduces the
overall error.
In table 1, the G=3,T=4e-8 results are poor, but

this may be because there are a huge number of clus-
terings with tiny posterior probabilities, making it di-
ficult to estimate the credible set. The true clustering
may be in the true credible set, but not in the credible
set that is estimated from ‘only’ 10,000 samples. We
tried ten longer runs of 60 million generations, with
10 million discarded as burnin, and every 1000th gen-
eration sampled, for one of theG=3,T=4e-8 scenarios
(eps3) and the true clustering was then found in the
credible set in all ten runs.
The results on the scenarios SIM-1 with one true

species show the method does not often infer false
splits, but it is also clear that a substantial number
of sequences are required in order to draw a firm con-
clusion even in this simplest of cases. A full evalua-
tion of the method on more complex cases is beyond
the scope of this paper. Note that even with two
true species, there is a 4-dimensional space of scenar-
ios to explore (node height, effective population size,
number of individuals, and number of loci).
In general, the number of species was over-

estimated in the scenarios used here (results not
shown). However, one could add very recent nodes to
the scenarios which would tend to be falsely merged
and result in an under-estimate instead. It would be
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interesting to evaluate the method on a large number
of scenarios produced by sampling from a birth-death
process. For the moment we suggest that estimates
of numbers of species are treated with caution.

4.2 Empirical example

The insensitivity of DISSECT to ϵ suggested by the
results from the simulated data seems corroborated
by the Thomomys data. In data sets of the size eval-
uated here, there is far too little information to de-
tect node heights smaller than 0.0001 substitutions
per site. On the other hand, the impact of w on the
data was noticeable, indicating that the data is not
informative enough to be strongly conclusive about
species delimitations. However, the possibility to in-
clude previous taxonomic opinions about species de-
limitations in the prior is promising, although it al-
lows only species numbers, not species assignments
to be considered.

The ambiguous assignment of several individuals
in the Thomomys data set may indicate violations
to the assumptions of the model (e.g., no hybridiza-
tions), or that the data is not informative enough.
To assess absolute fit of the data to the model, pos-
terior predictive simulation-based model checks may
give clues to the reasons for this (Reid et al., 2013).
Indeed, the Thomomys data showed poor fit to the
multispecies coalescent model in the survey by Reid
et al. (2013), and one possible reason to this might
be mis-assignment of alleles to species.

The multispecies coalescent model assumes no mi-
gration after speciation, which is instantaneous. This
is probably violated in most cases. Zhang et al.
(2011) found that low rates (< 0.1 migrant per gen-
eration) of migration had virtually no effect on the
accuracy of BP&P in a two-species simulation study.
However, at least when sample size is small, a single
sampled recent migrant can cause severe effects. The
coalescent prior on the gene trees will affect them in a
way that single recent introgressions will be “pushed
back” by other gene trees that reflect the “true” spe-
ciation event, such that the coalescent time for the
migrant may be biased. More research is needed to
evaluate the robustness of the model to hybridiza-
tion, and in particular perhaps, to gradual isolation
of species, which may be the most common form of
speciation (e.g., Barton and Charlesworth, 1984). If
this is true, it may be necessary to develop models
that better fit such data.

4.3 Conclusion

‘Given the intrinsic theoretical and empirical difficul-
ties of the problem, any success would be surprising.’
(O’Meara, 2010, p68). We believe that DISSECT
is a useful step forward on the theoretical and com-
putational side. The multispecies coalescent model
has assumptions that are likely to be violated and
it remains to be seen how important these are for
empirical data.
We have not formally evaluated the accuracy of the

species trees produced by DISSECT. However, apart
from the approximation involving ϵ, and the slightly
different prior on the tree root height, the DISSECT
model, when conditioned on a particular clustering
Z, is equivalent to *BEAST using Z to assign indi-
viduals to species. This means that DISSECT can be
used as in a regular *BEAST analysis, taking uncer-
tainties in species delimitation into account.
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Figure 1: Sampling trees from the usual birth-death
density

Figure 2: Sampling trees from the mixture density
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Figure 3: Prior distribution for the number of clusters
when w is 0.12 (black circles), 0.68 (black squares),
and has a Beta distribution with parameters 4 and 2
(open circles).
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Figure 4: The boxplots show the values of the error
metric D(Ω, Z⋆) over ten replicates as G, T, and ϵ
vary. In the labels, G3T4eps1 means the number of
genes G is 3, the mutation rate T is 4e-8, and ϵ is 1e-
5 = 0.00001. The other values of ϵ are 0.00003 and
0.0001. A beta prior with shape parameters 8 and 2
was used for w which is estimated.

eps10 eps3 eps1 k3 k5 k8
G3T4 2 5 4 4 3 2
G3T1 0 0 2 2 0 0
G9T4 0 0 1 1 1 0
G9T1 0 0 0 0 0 0

Table 1: Number of times out of 10 that the true clus-

tering failed to be in the 0.95 credible set, as G, T, and ϵ

(first 3 columns) and w (last 3 columns) vary.
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Figure 5: D(Ω, Z⋆) as G, T, and w vary. The num-
bers after the ‘k’ in the label are the prior mean values
for the number of species which are affected by the
value of w The value of ϵ is 0.0001.
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Figure 6: Rand metric between point estimate Ẑ and
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as Fig. 5.
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G9N16

G9N8

G9N4

G3N16

G3N8

G3N4

0.0 0.1 0.2 0.3 0.4
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plot shows D(Ω, Z⋆) for varying number of individ-
uals n and genes G. The value of ϵ is 3e-5. A beta
prior with shape parameters n-1 and 1 was used for
w which is estimated.
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Figure 9: The true clustering is a single cluster. The
boxplot shows the posterior probability of this, as n
and G vary. Other details as Fig. 8.
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Figure 10: Similarity matrices for the Thomomys
data set under various ϵ and collapse weight (w) val-
ues. The squares represent posterior probabilities
(white=0, black=1) for pairs of individuals to belong
to the same cluster. The ESS values are effective
sample sizes for speciation.likelihood. The right
column shows results when a Beta prior distribution
with parameters 4 and 2 was used.
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