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 3 

Abstract 1 

Neutral community theory postulates a fundamental quantity, θ, which reflects the 2 

species diversity on a regional scale. While the recent genealogical formulation of community 3 

dynamics has considerably enhanced quantitative neutral ecology, its inferential aspects have 4 

remained computationally prohibitive. Here, we make use of a generalized version of the 5 

original two-level hierarchical framework in order to define a novel estimator for θ, which 6 

proves to be computationally efficient and robust when tested on a wide range of simulated 7 

neutral communities. Estimating θ from field data is also illustrated using two tropical forest 8 

datasets consisting of spatially separated permanent field plots. Preliminary results also reveal 9 

that our inferred regional diversity parameter based on community dynamics may be linked to 10 

widely used ordination techniques in ecology. This paper essentially paves the way for future 11 

work dealing with the parameter inference of neutral communities with respect to their spatial 12 

scale and structure. 13 

 14 
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 4 

Introduction 1 

In his now well known contribution, Hubbell (2001) introduced a neutral theory of 2 

biodiversity, building upon the mainland-island model borrowed from the theory of island 3 

biogeography (MacArthur & Wilson 1967). His theory basically describes a model of 4 

interacting communities where the slow and regional scale dynamics such as speciation and 5 

extinction occur on a metacommunity level and the relatively faster local demographic events 6 

such as the birth and death of individuals are the mainstay of the local community dynamics. 7 

Hubbell (2001) further imagined equilibrium situations for these two entities which are 8 

dictated by the parameter θ (the fundamental biodiversity number) for the metacommunity 9 

dynamics and an immigration parameter I (Etienne & Olff 2004) for the local community 10 

dynamics. The interaction between these entities is modelled through the arrival of immigrant 11 

individuals from the regional pool of species (i.e. the metacommunity) towards a single or 12 

multiple local communities. It can be further interpreted as a measure of the isolation that a 13 

local community undergoes from the regional species pool due to some form of limited 14 

dispersal or more exactly immigration-limitation (Beeravolu et al. 2009). Up till now, much 15 

of the interest on neutral models in ecology has been either based on this two-level spatially 16 

implicit hierarchical framework (Hubbell 2001; Vallade & Houchmandzadeh 2003; Etienne 17 

2005) or on spatially explicit models which do not make any such hierarchical distinctions 18 

(Chave & Leigh 2002; Zillio et al. 2005; O'Dwyer & Green 2009). In addition to model 19 

structure, details of the metacommunity processes such as speciation have been explored 20 

(Haegeman & Etienne 2008; Kopp 2010) though a consensus neutral approach is still lacking 21 

in community ecology (Gravel et al. 2006) and work is still in progress (Haegeman & Loreau 22 

2011). 23 

One explanation for the discord among ecologists, especially on the practical 24 

relevance of the two-level spatially implicit neutral model (hereafter denoted 2L-SINM), has 25 
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 5 

been the issue of neutral parameter inference. Most of the current methods consist of either 1 

fitting a species abundance distribution (Purves & Pacala 2005; Dornelas et al. 2006; McGill 2 

et al. 2006) or finding quantitative point estimates of the neutral parameters (Etienne et al. 3 

2006; Munoz et al. 2007). In the former, the general binning process of the species 4 

information into abundance classes, among other concerns (McGill et al. 2007), has raised 5 

several issues (Gray et al. 2006). At the same time the reliability of point estimates also 6 

remains doubtful (Leigh 2007), particularly as I and θ are known to be “hyperbolically 7 

correlated” when estimating them simultaneously (Beeravolu et al. Submitted manuscript; 8 

Etienne et al. 2006; Munoz et al. 2007; Beeravolu et al. 2009; Jabot & Chave 2009). Also, a 9 

basic contention underlying all these critiques has been the inherent insufficiency of the 10 

abundance information to fully elucidate ecological and evolutionary processes that neutral 11 

models aim to combine (Harte 2003).  12 

In this paper, we build upon a recently discussed neutral framework which resembles a 13 

decoupling of scales (Levin 1992) and further enhances the spatial structure of the 2L-SINM. 14 

This is accomplished by introducing an intermediate level of regional process which 15 

generalizes the classical 2L-SINM (Hubbell 2001) into a 3L-SINM (Munoz et al. 2008) and 16 

enables the relaxation of the speciation-drift (or speciation-extinction) equilibrium assumption 17 

on the pool of available immigrant individuals (Beeravolu et al. 2009). In a previous paper, 18 

Munoz et al. (2008) introduced the 3L-SINM and used the steady state results to improve on 19 

the independent estimation of the neutral immigration parameter I, whereas we use similar 20 

approaches to establish an independent inference of θ for the first time.  21 

 22 

Methodological background 23 

The hierarchical SINM 24 
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 6 

Under the original 2L-SINM model, local communities are defined as panmictic 1 

patches of species assemblages sufficiently isolated from each other so as not to receive an 2 

immigrant individual directly from another local community (Fig. 1). Besides, from a regional 3 

perspective, local communities are presented as immigration-limited samples of the same 4 

metacommunity and subject to a top-down arrival of immigrants depending upon the 5 

immigration probability m (which is the scaled version of I on the unit scale). One possible 6 

generalization of the 2L-SINM can then be defined as a regional scale common to all local 7 

communities and whose species composition is allowed to differ considerably from that of the 8 

metacommunity, sensu Hubbell (2001, pg. 122), which is supposed to be panmictic and at 9 

speciation-drift equilibrium (Munoz et al. 2008). In more practical terms, immigrant species 10 

originating from a common source pool may very well correspond to a particular sub-region 11 

of the larger hypothetical metacommunity. For instance, let a mountain range be characterized 12 

by a coherent biogeographical history and represent a large-scale metacommunity. If a deep 13 

gorge runs through this range at some point, for all practical purposes, we can consider a part 14 

of the range to be under some sort of isolation from immigrants coming from the rest of the 15 

metacommunity, especially for the case of sessile biota such as plants even though their 16 

overall floristic composition remains specific to the mountain biotope. 17 

Subsequently, the intermediate pool of species under the 3L-SINM can be modelled as 18 

a sample drawn from the metacommunity under the influence of non-neutral processes or 19 

simply as an immigration-limited sample (see Jabot et al. 2008 for a similar approach). 20 

Moreover, as for local communities, this intermediate pool can be described analytically using 21 

a genealogical approach (for each individual of a local community) similar to the coalescent 22 

theory of population genetics (Etienne & Olff 2004). The composition of this intermediate 23 

pool is then defined as the set of ancestor species having immigrated at some point of time 24 

into the local communities. This 3L-SINM also “collapses” back to the particular case of a 25 
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 7 

2L-SINM for the case of an immigration-unlimited random sample of the panmictic 1 

metacommunity (see Fig. 1). Besides, this collapse and vice versa forms the backbone of 2 

Munoz et al.’s (2007, Appendix) coalescence simulation strategy of multiple local community 3 

samples which is briefly described later (see “Simulating multiple local community 4 

samples”).  5 

 6 

Conditional similarity under the 3L-SINM 7 

Following Munoz et al. (2008), we refer to the similarity of individuals belonging to a 8 

same species within a local community sample (Fintra) using the Simpson concentration 9 

(Simpson 1949). Let S be the total number of species among N local community samples. For 10 

a given sample k (varying from 1 to N), this index represents the probability of randomly 11 

drawing (without replacement) two conspecific individuals (using Munoz et al.’s (2008) exact 12 

estimator of sample similarity): 13 

 14 
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1
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k sk
s

n n
=

=∑  and nsk is the number of individuals of the sth species found in the kth 17 

sample. We define the time dependant version, Fintra(k,t), of the intra sample similarity (or 18 

conspecific at time t) and in keeping with the 3L-SINM framework, the theoretical similarity 19 

at t between the intermediate (regional) pool of available immigrating species and a given 20 

local community k is Finter(pool,k,t). If each local sample is assumed to reasonably 21 

approximate the composition of its respective local community, it is possible to derive, as 22 

shown in the following, the time independent expectation Fintra(k) (Munoz et al. 2008, 23 

Appendix C). 24 
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Let us assume that, between a time step t and t+1, there occurs a random death in the 1 

kth local community, such that two randomly chosen individuals may or may not contain the 2 

dead individual with probability 2/nk and 1 – 2/nk respectively. Following a coalescent 3 

approach (see Etienne & Olff 2004, eqn 1), for every dead individual, the replacing individual 4 

is either the offspring of a local individual or an immigrant individual of a lineage currently 5 

not present in the community. In the former, the replacement probability is given by mk and 1 6 

– mk for the latter, where mk represents the immigration probability into the kth local 7 

community. Consequently, the conspecific probability (hereafter denoted CnP) at t+1 of two 8 

randomly chosen individuals from a community which include the dead individual is the sum 9 

of three different transition probabilities.  10 

When the replacement is an immigrating replacing individual, the CnP of the chosen 11 

couple is Finter(pool,k,t) which is the time conditional version of Finter(pool,k). If the 12 

replacement is a local event, it could be the descendant of the other individual, with 13 

probability 1/nk, in which case the CnP would be 1. If the replacing individual belongs to an 14 

offspring of an individual from the rest of the community (with probability 1 – 1/nk) the CnP 15 

is given by Fintra(k,t). We could also consider the possibility that the dying individual 16 

produces offspring (a modification of Moran’s (1958) model), thus adding to the competition 17 

for the vacant spot as suggested by Hubbell (1979; 2001), though this wouldn’t affect the final 18 

result (Munoz et al. 2008). In sum, considering all the transition probabilities defined above, 19 

we can write the full CnP at t+1 for any two individuals in a local community as (Munoz et al. 20 

2008, Appendix C)  21 

 22 
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 1 

Here, mk can be defined either as Ik/(Ik + nk) or Ik/(Ik + nk – 1) which corresponds to the 2 

unmodified and modified Moran’s models respectively and Ik stands for the number of 3 

immigrating individuals into kth local community (Etienne & Olff 2004). At steady state, 4 

Fintra(k,t+1) = Fintra(k,t) = Fintra(k), which reduces eqn (2) to 5 

 6 

 ( )( ) 1 1 ( , )
1

k
intra inter

k

I
F k F pool k

I
= − −

+
. (3) 7 

 8 

Let us assume that the k local community samples are far enough from each other in 9 

order to represent distinct communities and denote Finter(k) to be the CnP of an individual 10 

from the kth community and an individual from one of the k – 1 other communities. 11 

Consequently, the coalescence approach dictates that Finter(k) is equal to the CnP of their 12 

respective ancestors who are distinct immigrating individuals from the regional pool (i.e. 13 

Fintra(pool)) which can be written down as (Munoz et al. 2008, eqn 3): 14 

 15 

 ( ) ( , ) ( )inter inter intraF k F pool k F pool= = . (4) 16 

 17 

Local similarity under the 2L-SINM 18 

In this section, we develop the other key idea which pertains to the model “collapse” 19 

from the 3L-SINM to the 2L-SINM (see Fig. 1.) which entails that the results of the previous 20 

section also apply to the particular case of the 2L-SINM. For the sake of completeness, we 21 

also detail the analytical relationship linking Fintra(k) to the immigration parameter Ik and the 22 

biodiversity parameter θ for the 2L-SINM (see also Etienne 2005, eqn 8).  23 
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Let Fn(k) be the CnP of drawing a sample of n individuals from the kth local 1 

community and j the corresponding number of ancestors in the metacommunity for the same 2 

sample. In other words, the quantity j corresponds to the number of those individuals who 3 

were the first of every lineage to have immigrated into the community sample, which, for a 4 

sample of size n, is j < n original community lineages. Accordingly, we write the n-sample 5 

CnP as 6 

 7 
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 9 

where pcomm(j/n) is the probability of drawing a sample of n individuals from the kth local 10 

community which are the progeny of exactly j different immigrating individuals and pmeta(1/j), 11 

the probability that all of these j ancestors belong to the same species.  12 

The 2L-SINM describes a metacommunity at speciation-drift equilibrium whose 13 

sample abundance distribution can be described using well known multinomial formulas from 14 

the field of population genetics (see Hubbell 2001, 119). Thus a random sample from the 15 

metacommunity containing j individuals belonging to σ different species has the probability  16 

 17 
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where ( , )s jσ  is the unsigned Stirling number of the first kind and ( )jθ  is the Pochhammer 20 

notation for the rising factorial defined as ( ) ( )
1

: 1
j

j

i
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=

= + −∏  (Ewens 1972; Tavaré & Ewens 21 

1997, eqn 41.5). This can also be extended to an immigration-limited local community (at 22 
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immigration-drift equilibrium) where the immigration process replaces the speciation process 1 

and 2 

 3 
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 5 

Thus, eqn (5) can be rewritten as  6 

 7 

 

( ) ( )

1

1

( ) (1 ) ( )

( , )( )(1, )

( )

n

n meta comm
j

jn
k

j n
j k

F k p j p j n

s j n Is j

I

θ
θ

=

=

=

=

∑

∑
 (8) 8 

 9 

which, for the special case of a conspecific sample consisting of two individuals (i.e. n = 2) 10 

reduces to (Etienne 2005, eqn 8) 11 

 12 
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 14 

Using eqns (3), (4) and (9), the expression for θ simply reduces to 15 

 16 
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 18 

Estimator θ based on the conditional inter-sample similarity  19 
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Here, we define a statistic (previously used by Munoz et al. 2008) which measures the 1 

kth sample’s similarity with respect to the rest of the samples thereby providing an estimate of 2 

the quantity Finter(k). This can be written in terms of sampling without replacement as 3 

 4 
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=∑ . Using eqn (10), we can now write down our novel 7 

estimator for the biodiversity parameter θ as, 8 
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 11 

where Ek denotes the expectation over the k local community samples.  12 

While eqn (12) can be applied directly to simulated local community samples with a 13 

known theoretical θ, it needs to be adapted for a field dataset which may belong to a single or 14 

several metacommunities. In the following we attempt to identify a subset of the field dataset 15 

which is most likely to correspond to a 2L-SINM framework (i.e. a speciation-drift 16 

equilibrium at the metacommunity level). One possible way to go about this task is to 17 

measure the spread of the k̂θ  distribution and attempt to reduce it by using a sequential 18 

elimination scheme which opts out field samples one at a time.  19 

Let us assume that our field dataset consists of Y community samples of variable size. 20 

Our method consists of calculating the Ŷθ  value of a given dataset along with a measure of 21 

statistical deviation (denoted CODY, see below) and repeating the same by randomly pulling 22 
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out one sample at a time and computing 1Ŷθ −  and CODY–1. Among the Y values of 1Ŷθ −  thus 1 

obtained, we eliminate the sample whose absence produced the smallest CODY–1 value and 2 

then proceed with the sequential elimination scheme with the remaining Y–1 samples. We 3 

define our coefficient of deviation or COD (a robust analogue of the coefficient of variation) 4 

as the ratio of the mean absolute deviation (MAD) over the average where  5 

 6 
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 8 

The MAD is a well known robust statistic of the sample variation when the population 9 

distribution is unknown or for highly skewed curves commonly known as heavy-tailed 10 

distributions. For a normal distribution, the standard error can be roughly calculated as 1.253 11 

times its MAD value (MathWorks 2008). This descriptor should not be confused with the 12 

closely related median absolute deviation (also known as MAD) which uses a median instead 13 

of a mean. The elimination scheme was finally stopped with the appearance of a consistent 14 

asymptotic pattern of the sequentially obtained COD values which indicated a stable estimate 15 

for a network of samples. 16 

 17 

Applications 18 

Simulating multiple local community samples 19 

We simulated steady state local community samples following the modification of the 20 

sequential construction scheme of Etienne (2005, Appendix S2). The simulation algorithm 21 

basically follows the 3L-SINM structure with m for the intermediate pool set to 1 (refer to 22 

Fig. 1.) thereby producing samples strictly congruent with the 2L-SINM. Accordingly, we 23 
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create an explicit link between the ancestry information of the community samples and a large 1 

predefined metacommunity (see Munoz et al. 2007, Appendix).  2 

Every simulation consists of a set of N local community samples, each having a 3 

randomly chosen immigration parameter Ik (varying from 3 to 300) and sample size nk 4 

(varying from 200 to 600). Our criterion for the sample size corresponds approximately to the 5 

size of a hectare of tropical forest (i.e. nk = 400 trees above 10 cm of diameter) typically found 6 

in field studies involving several permanent sampling plots (Pyke et al. 2001; Ramesh et al. 7 

2010b). We also varied the number of samples (i.e. N) by simulating 5, 10, 20, 30 and 50 8 

samples. These simulations also need a biodiversity parameter to be defined for which we 9 

simulated sets of scenarios where θ = (10, 50, 100, 200, 300). In the following, we shall to a 10 

simulated sampling protocol (or SSP hereafter) as a simulation generated using the 11 

information provided by the couplet (N, θ) as the other parameters are chosen to vary at 12 

random (i.e. Ik and nk). Thus, we have considered a total of 5 (values for N) x 5 (values for θ) 13 

= 25 SSPs, each of which was in turn replicated 200 times whereby we obtained a grand total 14 

of 5000 estimates (denoted θ̂ ) of the theoretical biodiversity parameter θ. We assessed the 15 

performance of the estimation of θ by studying the histograms of the Relative Bias (RB) given 16 

by ˆ( )θ θ θ−  and the COD (cf. eqn (13)). 17 

 18 

Inferring θ using field data  19 

Apart from simulations, we estimated θ̂  using two tropical forest datasets each 20 

consisting of multiple small permanent field plots. Both these datasets consist of the 21 

abundance information of individuals above 10 cm of diameter at breast height which have 22 

been identified to the species level. The first dataset consists of 50 plots (mainly 1ha) along 23 

the Panama Canal Watershed (PCW) area set up by the CTFS (Pyke et al. 2001), a subset of 24 

which was previously used by Jabot et al. (2008) for inferring immigration parameters. This 25 
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freely available dataset is part of a larger study (the Marena dataset) and the field plots used in 1 

this paper are originally referred to using the following numbering 1-41, C1-C4 and S0-S4 2 

(see Condit et al. 2002, Appendix; Chave et al. 2004, Appendix B). Our second dataset also 3 

consists of 50 field plots (each of 1ha in size) of the wet evergreen forest type from the 4 

Western Ghats (WG) region of South India (extracted from Ramesh et al. 2010a). This dataset 5 

has been discussed previously by Munoz et al. (2007, Appendix) for the purpose of inferring 6 

neutral parameters.  7 

 8 

Results 9 

We studied the RB (relative bias) and the COD (coefficient of deviation, see eqn (13)) 10 

histograms for the various SSPs (simulated sampling protocols). The 5000 SSP estimates of 11 

θ̂  which make up the histograms were obtained in the matter of a few minutes using the 12 

MATLAB® software (MathWorks 2008). In both the five and fifty SSPs (Figs. 2 and 3 13 

respectively), the best fit normal curve clearly emphasized the increasing symmetry of the 14 

distribution of the RB of ̂θ  with increasing theoretical θ and suggested that the estimator is 15 

unbiased. In general, the RB distribution of θ̂  showed a tendency to be skewed for low values 16 

of θ while it became more symmetric and always remained centred around zero as θ increased 17 

(see also Figure S1 in the Supporting Information). At the same time, the COD distribution 18 

was skewed for a low number of samples (e.g. N = 5, 10) and a high theoretical θ and vice 19 

versa for N > 10, while the COD skewness varied little (for low θ) compared to the RB 20 

skewness (Figure S1). However, note that the COD histograms (Figs. 2 and 3) rarely exceed a 21 

maximum value of 0.2, which was used as a benchmark when estimating θ on field data for 22 

large N.  23 

We also applied our estimator to the two tropical forest datasets presented above (Fig. 24 

4). When using all the 50 field samples of the PCW data, we obtained a high COD50 value (≈ 25 
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0.8) in comparison to the COD histogram for the N = 50 strictly neutral SSPs (Fig. 3). In 1 

contrast, the COD50 for the WG data (≈ 0.2) was well within the range (not shown). 2 

Subsequently, we applied the sequential elimination scheme on both these datasets (cf. 3 

previous section) in order to identify the network of plots composing the ideal (i.e. panmictic) 4 

2L-SINM metacommunity. The estimation of the neutral biodiversity parameter for the WG 5 

dataset proved to be comparatively stable while its respective COD values fluctuated slightly 6 

(between 0.1 – 0.2) below the maximum value observed for strictly neutral simulations. 7 

Furthermore, our estimation of θ̂  for the WG data was well bounded by the values 62.33 and 8 

50.99 which are those found by Munoz et al. (2007) for the very same plots. For the PCW 9 

dataset, ̂θ  estimates reached a qualitatively stable estimate which corresponded to a COD < 10 

0.2. This was obtained after having sequentially eliminated 15 plots (COD < 0.2), though we 11 

continued to eliminate samples in order to check for its stability (Fig. 4). Besides, a closer 12 

look at the remaining PCW plots revealed that the first eight eliminated plots were part of the 13 

Outer PCW region (numbered 31-39, see Pyke et al. 2001, Fig. 1).  14 

 15 

Discussion 16 

In this paper, we have basically introduced a new estimator for multiple field samples 17 

of the neutral biodiversity parameter θ, first formulated by Hubbell. Subsequently, this 18 

estimator has been tested on wide-ranging simulations of multiple neutral local community 19 

samples at migration-drift equilibrium. A general conclusion from our simulation study is that 20 

the relative bias of ̂θ  seems to be relatively well distributed around zero with a progressive 21 

tightening of the same as θ increased. This property is highly desired given that currently 22 

available estimators of θ for a single local community sample present an increasing bias with 23 

increasing θ (Munoz et al. 2007). As for the estimation variance, measured using the COD 24 

values, we note that the number of community samples used (i.e. N) is an important factor as 25 
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a fewer number (e.g. 5 and 10) leads to an increase in the spread of the COD distribution (Fig. 1 

2). Our results can also be seen as a significant improvement in contrast to likelihood 2 

approaches (Etienne 2009b) which become computationally intractable for more than five 3 

samples of small size like the ones used in this paper (Beeravolu et al. Submitted manuscript). 4 

However, the technique presented here needs to be further compared to existing 5 

methods (Munoz et al. 2007; Etienne 2009a) that estimate θ from a single panmictic sample 6 

and also make use of the analytical expectations for the Ewens Multivariate Distribution 7 

(Ewens 1972) of population genetics literature. In particular, by randomly sampling an 8 

individual from several spatially separated samples these authors (Munoz et al. 2007; Etienne 9 

2009a) constitute a metacommunity sample which is repeated a number of times in order to 10 

hone their estimates of ̂θ . But this approach can be unreliable when the number of local 11 

community samples is small as it would provide a (relatively small) metacommunity sample 12 

with insufficient information for inferential purposes. Though, an added advantage of using 13 

the Ewens estimation for θ is the availability of an analytical expression for the induced bias 14 

which decreases with increasing sample size and increases with an increase in θ (Donnelly & 15 

Tavaré 1995, 414; Tavaré & Ewens 1997, 236).  16 

Moreover, as our estimates using the WG data seem to be relatively robust to the 17 

sequential elimination scheme and coherent with Munoz et al.’s (2007) estimates, the 50-18 

sample evergreen forest dataset from the WG seems to strongly corroborate a 2L-SINM at 19 

this particular sampling scale. At the same time, Ramesh et al. (2010b) have found that some 20 

environmental variables had a strong predictive power on the plots’ floristic composition. 21 

This implies that while the data seem to agree with the neutral model, violations from neutral 22 

assumptions might not hinder a sound estimation of θ̂  as a phenomenological descriptor of 23 

the overall diversity of the region. Instead, estimating θ̂  may be a good basis to compare the 24 

overall diversity between biogeographic regions as Fisher’s α is known to be asymptotically 25 
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identical to θ (Hubbell 2001, 165). This approach could also be extended to other forest types 1 

and biogeographic regions in order to identify the extents of the different metacommunities as 2 

discussed above and measure their relative diversity. 3 

To pursue this idea further, we can use the distribution of the ˆ ( )interF k  values in order 4 

to identify the local communities whose top-down linkage to a common metacommunity may 5 

be unlikely. Conversely, it is also a simple approach which delineates a subset of samples that 6 

look “floristically homogeneous” with respect to the 2L-SINM. Such a group of field plots 7 

whose taxonomic composition complies with the 2L-SINM of a metacommunity could be 8 

used to spatially delimit or map forest types over a regional sampling design. While the 9 

elimination technique presented in this paper can be seen as a simple top-down clustering 10 

scheme, it produces results which bear a close resemblance to well known bottom-up 11 

ordination schemes such as hierarchical agglomerative clustering. For example, Chust et al. 12 

(2006) used spatially explicit information in relation to a field plot’s ecology such as its 13 

elevation, remotely sensed data and the geographical distance to predict the forest types for 14 

almost all of the PCW data used in this paper. They perform a hierarchical agglomerative 15 

clustering of the sample abundances (or occurrences) using a proportional-link linkage 16 

algorithm and further extrapolate each cluster’s spatially explicit characteristics using a 17 

multiple regression model thereby mapping a forest type. The most “distant” clusters found in 18 

their study (Chust et al. 2006, Appendix 2) correspond perfectly to some of the first few plots 19 

eliminated using our sequential elimination technique. Although, note that Chust et al. (2006, 20 

Figs. 1 and 4) exclude some of the plots used in this paper (numbered 38 and 39) and instead 21 

use other plots (numbered P1, P2, G1, G2 and SH) which were absent from the present (see 22 

Chave et al. 2004, Appendix B for a corrected account of the PCW field plot numbering). 23 

For the case of a single large local community sample, Jabot & Chave (2009), echoing 24 

Harte (2003), contend that species abundances contain a limited amount of useful information 25 
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and supplement it by the use of species phylogenetic information in order to resolve 1 

inconsistencies in the estimation of neutral parameters. Our results set in a more complex 2 

context raise the question whether species phylogenies are truly needed when multiple 3 

spatially separated field samples are available. Nevertheless, the Finter(k) statistic (eqn (11)) 4 

presented here can easily be developed into an efficient Bayesian framework (sensu Jabot & 5 

Chave 2009), which remains a very powerful method, for injecting additional information 6 

such as species phylogenies or even the demographic history of the communities (Beaumont 7 

& Rannala 2004). Moreover, recent developments in the field of theoretical population 8 

genetics make use of a comparable inter-sample similarity metric (Gaggiotti & Foll 2010) 9 

under the island model of Wright (1931), which is a classic model of population subdivision. 10 

Interestingly, note that the island model comes conceptually close to the mainland island 11 

model of MacArthur & Wilson (1967) for the case of an infinite number of islands, in which 12 

case it is known as the continent-island model (Wilkinson-Herbots 1998, 574) or an island-13 

mainland metapopulation (Rannala & Hartigan 1995) although there are subtle differences to 14 

be taken into account (in terms of demographic assumptions).  15 

Finally a major weakness of almost all neutral approaches is that it is an equilibrium 16 

theory which nevertheless has greatly facilitated its mathematical development. Though, truly 17 

dynamic neutral modes are desperately lacking in community ecology (but see Leigh et al. 18 

1993; Gilbert et al. 2006) and some initial steps have been taken in this direction 19 

(Vanpeteghem & Haegeman 2010), much needs to be done before we are able to infer the 20 

parameters of a dynamic model from field data. However, the main improvement presented in 21 

our paper is a simple and computationally efficient approach for estimating the biodiversity 22 

parameter θ (in the case of a multiple sample 2L-SINM framework) which is in many ways 23 

complementary to the estimation of the multiple sample Ik parameter (Munoz et al. 2008). 24 

 25 
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Figure 2 1 
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Figure 3 1 
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Figure 4 1 
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Figure legends 1 

 2 

Figure 1 The hierarchical coupling of scale oriented processes in spatially implicit neutral models (SINM). 3 

Processes such as speciation and extinction of species exist in the metacommunity and the relatively faster 4 

demographic processes take place at the local community level. For Hubbell’s (2001) two level model (2L-5 

SINM) an ideal panmictic metacommunity sample can be considered to be the source pool of multiple local 6 

communities. Without loss of generality, we can assume that the pooled species composition of the dispersal-7 

limited local community samples is itself a immigration-limited metacommunity sample (the 3L-SINM) 8 

corresponding to some sub-region of the same which gives rise to a three level hierarchical model (Beeravolu et 9 

al. 2009). The value of the parameter m then acts as the degree of isolation from the metacommunity. 10 

 11 

Figure 2 The distribution of the relative bias and the coefficient of deviation values of θ̂  (the estimated 12 

biodiversity parameter) for a sampling protocol containing 5 simulated plots each and for five different 13 

theoretical values of θ found in the literature. The solid black line is the best fit normal curve and emphasizes the 14 

increasing symmetry of the distribution of the relative bias with increasing θ. 15 

 16 

Figure 3 The distribution of the relative bias and the coefficient of deviation values of θ̂  (the estimated 17 

biodiversity parameter) for a sampling protocol containing 50 simulated plots each and for five different 18 

theoretical values of θ found in the literature. The solid black line is the best fit normal curve and emphasizes the 19 

increasing symmetry of the distribution of the relative bias with increasing θ. 20 

 21 

Figure 4 Estimating ̂θ  from field data using eqn (13) and following a sequential elimination scheme (see main 22 

text) in order to identify the network of plots composing the ideal 2L-SINM metacommunity. The sample 23 

elimination criterion is determined by the maximum decrease in the coefficient of deviation due to the absence of 24 

a particular plot. Here we sequentially eliminated 35 samples which appeared sufficient to highlight the 25 

asymptotic pattern which indicated the stable θ̂  estimate for a network of plots. 26 
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