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Abstract

A central issue in neural recording is that of distinguishing the
activities of many neurons. Here, we develop a framework, based
on Fisher information, to quantify how separable a neuron’s activity
is from the activities of nearby neurons. We (1) apply this frame-
work to model information flow and spatial distinguishability for
several electrical and optical neural recording methods, (2) provide
analytic expressions for information content, and (3) demonstrate
potential applications of the approach. This method generalizes to
many recording devices that resolve objects in space and thus may
be useful in the design of next-generation scalable neural recording
systems.

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 21, 2014. ; https://doi.org/10.1101/002923doi: bioRxiv preprint 

mailto:cyb@northwestern.edu
mailto:j-glaser@u.northwestern.edu
https://doi.org/10.1101/002923


Contents

1 Introduction 2

2 Framework 3
2.1 Localization and Resolution . . . . . . . . . . . . . . . . . . 3
2.2 Fisher Information: Single Neuron, Single Sample . . . . . . 6
2.3 Fisher Information: Multiple Neurons, Multiple Samples . . 6
2.4 Point Spread Functions and Signal Intensity Distributions . 7

3 Applications 9
3.1 Analytic Assumptions . . . . . . . . . . . . . . . . . . . . . 10
3.2 Simulation Assumptions . . . . . . . . . . . . . . . . . . . . 10
3.3 Single-source Resolution of Technologies . . . . . . . . . . . 11
3.4 Electrical Sensing . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Optical Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.1 General Information . . . . . . . . . . . . . . . . . . 13
3.5.2 Wide-field Fluorescence Microscopy . . . . . . . . . 13
3.5.3 Two-photon Microscopy . . . . . . . . . . . . . . . . 16

3.6 Differential Resolution versus Single-source Resolution . . . 19
3.7 Technology Comparisons . . . . . . . . . . . . . . . . . . . . 20
3.8 Sensor Placement . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Discussion 25

5 Additional Methods 27
5.1 Noise Calculations . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Applications: Electrode Grid Analysis . . . . . . . . . . . . 27

6 Acknowledgements 28

7 References 29

8 Supplementary Information 34
8.1 Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Fisher Information Derivation . . . . . . . . . . . . . . . . . 36

1 Introduction

A concerted effort is underway to develop technologies for recording simul-
taneously from a large fraction of neurons in a brain [1,2]. For a technology
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to reach the goal of large-scale recording, it must gather sufficient informa-
tion from each neuron to determine its activity. This suggests that neural
recording methodologies should be evaluated and compared on information
theoretic grounds, yet no widely applicable framework has been presented
that would quantify the amount of information captured by large-scale neu-
ral recording architectures.

One common method of identifying neurons in recorded data is through
their locations: if the origins of two signals are sufficiently far apart, then
they are likely to have come from different neurons. One can formulate
this criterion mathematically through the concept of Fisher information,
which measures how much information a random variable (e.g. a signal
on a detector) contains about a parameter of interest (e.g. the location
of origin of that signal). We can only conclude that two neural activity
measurements arose from different locations, and thus distinguish the two
neurons, if the detected signal contains sufficient Fisher information.

Here we use Fisher information to determine the spatial separability of neu-
ral signals. We apply this framework to models of neural recording tech-
niques, describe how the Fisher information scales with respect to recording
geometries and other parameters, and demonstrate how this framework can
be utilized to optimize experimental design.

2 Framework

2.1 Localization and Resolution

A foundational concern in neural recording is localization, the ability to
accurately estimate the location of origin of neural activity. Localization is
a primary method of determining the identity of an active neuron.

The problem of establishing neural locations can be split into two separate
regimes. One regime is when an active neuron has no active neighbors (Fig-
ure 1A). In this state, we are chiefly concerned with the ability to attribute
the signal to the correct neuron (single-source resolution [3]). This can be
done by accurately localizing one activity at a given time (Figure 1B&C).
The other regime is when two neighboring neurons are simultaneously ac-
tive (Figure 1D). In this state, we are chiefly concerned with the ability to
differentiate the two neurons, i.e. are there two clearly distinguished or one
blurred neuron (differential resolution [3]). This can be done by simultane-
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ously localizing the activities of both neurons accurately (Figure 1E&F).1

Here we treat both scenarios: first by calculating the Fisher information
carried by a single observation about a single neuron’s activity, and then
by expanding this framework to treat multiple parameters using the matrix
form of Fisher information. We address localization in the theoretical limit
where the point spread function (PSF) is known, in order to study the
limiting effects of neuronal and sensor noise on localization precision.2

Regardless of the number of neurons and sensors we are treating, Fisher
information gives us a metric with which to evaluate recording. Spatial
information, the amount of information regarding the location of a source
(i.e., a quantitative measure of localization ability), can be used to deter-
mine whether it is possible to correctly attribute an activity to its source
(or multiple activities to multiple sources). In order to know the identity of
a source, we must be confident about the location of origin of the activity
with a positional error less than δ, where δ is the distance from one neu-
ron to another (Figure 1B&E). In terms of Fisher information, if we have
sufficient information to locate the source of activity with a precision δ, we
can assign that activity to a single neuron that occupies that location.

1While we have been discussing differentiating neurons, the framework itself differen-
tiates between point sources. In this paper, we make the assumption that separate point
sources belong to separate neurons. In reality, it is possible that there could be separate
signals from the cell body and dendrites that are perceived as different sources. These
can be united using additional information (e.g. anatomical imaging or simultaneous
activity).

2There exists a family of deconvolution techniques that estimate the PSF and use it to
obtain a more accurate representation of the original signal (e.g. [4–7]). In theory, with
sufficient samples and knowledge of the PSF, one could obtain a perfect representation
of a sparse signal in the absence of noise. This is not the case in practice, as signals are
not only modified reversibly by PSFs, but are modified irreversibly by noise on neurons
and detectors (e.g. [8,9]). In the presence of noise and other aberrations, it thus becomes
difficult to isolate individual sources using deconvolution techniques, even when the PSF
is known. Thus, it is interesting to determine the isolated effects of noise on recording
methods.
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Figure 1: Localization and Resolution. (A) In many behavioral
states, neural systems have sparse activity, in which neighboring neurons
(red and blue) are not active at the same time. In this scenario of single-
source resolution, one neuron must be localized at a given time. Panels B
and C look at this scenario. (B) Two neighboring neurons are shown a
distance δ away from each other. Dotted lines indicate regions where we are
confident about the source of a signal, i.e. we have a sufficient amount of
information regarding that signal’s location. (C) The signals from the two
neurons are recorded by the sensor at different times and do not interfere
with each other. When a neuron cannot be localized effectively, i.e. there
is not sufficient Fisher information, it is because the signal from that neu-
ron was not strong enough to overcome noise. (D) Sometimes, neighboring
neurons are simultaneously active. In this scenario of differential resolution,
both neurons must be localized at a given time. Panels E and F look at this
scenario. (E) Same as B, except two sensors are necessary for differential
resolution. (F) When both sensors record similar signals, i.e. when there is
large mutual information regarding the two neurons’ activities, it is difficult
to resolve the neurons.
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2.2 Fisher Information: Single Neuron, Single Sample

We first treat the simplified situation where a single neuron must be local-
ized at a given time, using a single sample (one sensor at one time). This
scenario yields simple, intuitive analytic expressions for how the precision
of localization scales with a neuron’s location and other experimental pa-
rameters. Moreover, activity in neural systems is often sparse [10–14]; thus
this simplified scenario may be practical in many cases.

This problem can be approached using Fisher information, I(θ), a mea-
sure of the information a random variable X, with distribution f(X; θ)
parameterized by θ, contains about the parameter θ [15]:

I(θ) = E

[(
∂

∂θ
log f(X; θ)

)2
∣∣∣∣∣ θ
]

=

∫ (
∂

∂θ
log f(x; θ)

)2

f(x; θ) dx (1)

In the context of spatial information in neural recordings, Fisher informa-
tion quantifies how much the distribution of recorded sensor values f(X;d)
tells us about the location of a signal’s origin with respect to the sensor, d
(Figure 2D) (here we use boldface to indicate that the location is a vector
quantity).

The variance of an unbiased estimator of a parameter is lower bounded by
the Cramer-Rao bound (CRB) [16]:

Var
[
θ̂
]
≥ 1

I (θ)
(2)

In the context of neural recording, we can use Fisher information to de-
termine how precisely we can estimate the location of activity, given its
influence on the sensor output. Note that, while we describe the ability
to distinguish neurons solely using spatial information, additional sources
of information can be used, e.g., temporal information in optical [17] and
electrical recordings [18] (see Discussion).

2.3 Fisher Information: Multiple Neurons, Multiple
Samples

To treat differential resolution (2 active neurons), it is necessary to use
multiple samples. In optical techniques, multiple pixels are necessary to
localize simultaneously active neurons, and in electrical recordings, multiple
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electrodes or time-points are required (e.g. a waveform). When we want to
know how much information a signal contains about the sources of multiple
activities (now θ is a vector with multiple elements), we must construct a
Fisher information matrix with elements:

(I(θ))ij = E

[(
∂

∂θi
log f(X;θ)

)(
∂

∂θj
log f(X;θ)

)∣∣∣∣θ] (3)

The elements of this matrix represent the information contained about a
pair of sources (elements of the vector θ). Note that if sensors have indepen-
dent noise – an assumption we use for our differential resolution examples
– the information matrices can be summed: [I(θ)]total = [I(θ)]sensor1 +
[I(θ)]sensor2 .

The elements of this matrix can be divided into on-diagonal and off-diagonal
elements, both of which have practical interpretations. The on-diagonal
elements are very similar to the terms for single-unit localization. They de-
scribe how much information the ensemble of sensors has about each source.
The off-diagonal terms, however, do not have a parallel representation in
the single-unit formulation. They can be thought of as crosstalk, or how
much the estimation of a source of interest is affected by other sources.3

As with Fisher information, the CRB extends to multiple parameter scenar-
ios: the variance of an unbiased estimator of a parameter θi (how precisely
a single parameter can be estimated) is:

Var
[
θ̂i

]
≥
[
I(θ)

−1
]
ii

(4)

2.4 Point Spread Functions and Signal Intensity Dis-
tributions

To determine the spatial Fisher information, we must know the distribution
of signals on a sensor given the location of the activity, f(X;d). The
signal measured by many recording systems is well approximated as a linear
function of the signals from each neuron in a population [19, 20], i.e. the
total sensor signal is the sum of the individual neural signals weighted by
the magnitude of their individual effects on the sensor (Figure 2A&B). We
thus here only consider linear interactions; however, it should be noted
that the Fisher information framework is also compatible with nonlinear

3From a physics perspective, the off-diagonal term (I(θ))ij describes the coherence
between the signals from sources i and j. The diagonals are the incoherent terms.
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interactions (e.g. sensor saturation). For N neurons and M sensors in a
system, in the absence of noise, the signal on any particular sensor can
therefore be described as:

s = Wx (5a)

where s is the vector of signals on sensors [s1, · · · , sM ], and x is the vector
of signals from neural activities, [I1, · · · , IN ]T , e.g. the fluorescent signal
produced due to neural activity in optical techniques or the voltage signal
in electrical techniques. W is the matrix of PSFs:

W =

 w(d1,1) · · · w(d1,N )
...

. . .
...

w(dM,1) · · · w(dM,N )

 (5b)

where the PSF, w(di,j), is the scaling of the activity of neuron j on the
output value of sensor i, and is dependent on the location of the activity
relative to the sensor (di,j) and other parameters of a recording modality
(e.g. light scattering). The contribution of the activity of neuron j to the
signal on sensor i is thus Ijw(di,j).

In the presence of neural and sensor noise, the signal on a given sensor,
si, is no longer a constant, but characterized by fi(X), the distribution
of signal intensities on a sensor. Here, we assume that the noise can be
approximated by a zero-mean Gaussian with variance σ2

noise, so that:

fi(X;d) =N
(
si, σ

2
noise

)
=N

∑
j

Ijw(di,j), σ
2
noise

 (6a)

where N (µ, σ2) signifies a normal distribution (Figure 2C). Focusing on a
particular neuron with index k, (6a) can be rewritten as:

fi(X;d) = N

Ikw(di,k) +
∑
j 6=k

Ijw(di,j)

 , σ2
noise

 (6b)

This allows us to calculate the spatial Fisher information in signal si for
the activity of neuron k.

It is important to note that, as long as they can be analytically dscribed,
all types of noise (of which there are many; see Supplementary Information
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for further discussion) can be incorporated into this framework. This flex-
ibility in noise sources makes this framework especially relevant for neural
recording.

Figure 2: Fisher Information. (A) A signal on sensor i from a neuron
j at a particular location has a mean intensity, defined by a recording
method’s point spread function and the intensity of the signal from the
active neuron. (B) The mean total signal on a sensor, µtotal, is the sum of
the signals from every neuron. (C) The distribution of intensities recorded
on a sensor is a function of the total mean signal, µtotal, and the variance of
that signal, σ2

noise, which can result from many different noise sources. (D)
Fisher information can be derived from the distribution of signal intensity
values on a sensor.

3 Applications

Here, we demonstrate the utility of the Fisher information framework for
the understanding and advancement of neural recording technologies. We
first calculate the spatial Fisher information of both simple and complex
recording modalities in the simplified case of a single neuron and single
sensor, which reveals insightful scaling properties of these technologies. We
next examine a scenario with multiple neurons and multiple sensors in order
to determine the extent to which crosstalk between sensors limits localiza-
tion ability. We finally demonstrate more complex uses of this framework,
comparing technologies and optimizing sensor design.
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3.1 Analytic Assumptions

We assume that all activity from the neuron of interest, including the noise,
is part of the signal of interest. Thus, the total noise is a function of the
sensor noise plus the noise of all neurons except for the neuron of interest.
The noise will depend on the types of noise and the correlation between
noise sources, and we make specific assumptions for our simulations (see
below). The assumption that the neuron of interest does not contribute
to the noise allows us to provide a simple expression for the spatial Fisher
information about activity k in a given direction dx (see Supplementary
Information for derivation):

I
(
dxi,k
)

=
Ik

2

σ2
noise

(
∂w(di,k)

∂dx

)2

(7)

3.2 Simulation Assumptions

For our simulations, we make further assumptions. We emphasize that the
following assumptions do not apply to the analytic expressions regarding
the scaling of localization ability. In regards to neural activities, we assume
that every active neuron has the same activity I0, while non-active neurons
have no activity, that the neuron of interest, k, is active at the moment we
sample, and that other neurons are active at a uniform rate. We assume
noise sources from neurons are independent, so that:

σ2
noise =

∑
j 6=k

σ2
j (8)

There are many sources of noise, both on neurons and sensors, that could
be included, and these are discussed in detail in the Supplementary Infor-
mation. For our applications demonstration, we consider signal dependent
noise that can arise from neurons and/or sensors. Specifically, for analytic
simplicity, we only consider noise that has a standard deviation propor-
tional to the mean signal: σ2

j ∝ I20 (w(di,j))
2
. Under these simplifying

assumptions, the magnitudes of the fluorescence (optical) and waveform
voltage (electrical) have no influence on the final information theory calcu-
lations. We emphasize that these simulation assumptions are implemented
to simply demonstrate the use of this framework; more realistic outputs
could be found using more complex, realistic noise models.
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3.3 Single-source Resolution of Technologies

Here we calculate Fisher information of recording technologies using a sin-
gle neuron and single sensor to determine technologies’ scaling properties.
We look at three technologies: (1) electrical recording, a traditional neural
recording modality, (2) wide-field fluorescence microscopy, a traditional op-
tical approach, and (3) two-photon microscopy, a modern optical approach.
These examples are chosen for their relative simplicity and ability to illus-
trate the flexibility of a Fisher information approach to modeling neural
recording.

We calculate Fisher information in the most meaningful direction for the
techniques we consider: radial for electrical recording (due to spherical
symmetry), and lateral for the optical techniques (due to cylindrical sym-
metry). For electrical recording, the origin is at the center of measurement
(at the electrode). For optical recording, the origin is at the center of the
lens. For any technology, the aim is for there to be, across all sensors, suf-
ficient information about every location in the brain in order to identify a
neuron firing in that location.

Thus for an individual sensor, it can be better to have sufficient (enough to
identify a neuron, as in Figure 1) information spread over a large area than
excessive information about a small area. This suggests that experimental
designs could be modified to get sufficient information for the required
task. For example, an optical technology may have extra information at low
depths, but insufficient information at large depths. In this case, the PSF
could be modulated (e.g. [21]) to decrease low-depth information (making
those images blurrier), while increasing high-depth information.

3.4 Electrical Sensing

The electrical potential from an isolated firing neuron decays approximately
exponentially with increasing distance [22, 23], at least at short distances.
Here, we model a simple electrical system: an isotropic electrode with spher-
ical symmetry. In this isotropic approximation, the PSF has an exponential
decay with radial distance from the electrode tip (Table 1; Figure 3B).

For electrical recording, spatial Fisher information (derived from the above
PSF) decreases exponentially with increasing distance from the electrode
(Table 1, Figure 3C&D). Given this behavior and the properties of electrical
signals in the brain, electrical recordings provide relatively weak informa-
tion over a relatively wide area.
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Figure 3: Electrical Recording. An overview of the modeling and
Fisher information analysis of electrical recording. (A) Schematic: An
electrode records electrical signals directly from nearby neurons. The black
box indicates the space represented in panels B and C. (B) The spatial
PSF for electrical recording, valued in arbitrary units, for an electrode
located at (0,0). (C) The radial Fisher information contained about signals
from different locations within a volume surrounding the electrode in panel
B. (D) The Fisher information for a point with a given distance from
the electrode in panel B. The grey dashed line indicates the minimum
Fisher information needed for a CRB standard deviation of 10µm. This
10µm standard deviation corresponds to a 95% accuracy of determining
the correct active neuron for neurons whose centers are 40µm apart, and
assuming a Gaussian estimation profile.

12

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 21, 2014. ; https://doi.org/10.1101/002923doi: bioRxiv preprint 

https://doi.org/10.1101/002923


3.5 Optical Sensing

3.5.1 General Information

Optical recording of neural activity generally relies on fluorescent dyes that
are sensitive to activity. In order to measure this signal, a neuron must be il-
luminated with light in the dye’s excitation spectrum. Light is then emitted
by the dye at a distinct, longer (lower energy) wavelength, which is picked
up by a photodetector. Optical signal transmission is subject to absorption,
scattering, and diffraction, which degrade the emitted signals with distance.
Absorption of light effectively cause an exponential decrease in intensity of
detected photons as light travels through a medium [24,25]. Scattering can
affect light in multiple ways; high-angle scattering diverts photons from the
detector and produces an effect similar to absorption, while low-angle scat-
tering causes blurring of the image on the detector. This blurring increases
approximately linearly with depth into the tissue [26]. Finally, diffraction
results when light passes through an aperture, creating the finite-width
Airy disk [27]. In our optical PSFs, we assume scattering and diffraction
result in Gaussian blurring [26, 28]. Our PSFs assume imaging through a
single homogeneous medium; in practice, tissue inhomogeneity and refrac-
tive index mismatch can produce additional aberrations in the absorption,
scattering, and diffraction domains that we do not model here.

In a typical optical setup, a lens focuses a set of photons from one point in
space onto a corresponding point behind the lens. This phenomenon can be
used either to focus incident light onto a desired location for illumination,
or to focus emitted light from the focal plane onto a photodetector for
imaging. Photons from outside the focal plane will be blurred, and this
blurring increases linearly as distance from a focus point increases [29, 30].
We also assume defocusing results in Gaussian blurring [29,30].

3.5.2 Wide-field Fluorescence Microscopy

Neural activity in a focused optical system is generally sensed using fluores-
cent dyes, which require some excitatory light. In the canonical optical ex-
ample of wide-field microscopy, an entire volume is illuminated (Figure 4A).
The PSF for this technology takes the above effects of absorption, scatter-
ing, diffraction, and defocusing into account; we assume total illumination
so that the PSF here models the spread of the emission light (Figure 4B,
Table 1).

For optical recording with a simple lens, Fisher information is concentrated
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on a ring around the axis of the lens within each focal plane (Figure 4C).
This stems from the fact that slight deviations from the imaging axis do
not change the signal intensity, and thus there is no location information
contained in the signal intensity at those locations. For large depth, the
ability to distinguish locations decreases exponentially due to photon loss
caused by scattering and absorption (Table 1). For medium depth ranges,
scattering blurs the image, even on the focal plane. The decrease in localiza-
tion ability from this effect follows a fourth order polynomial.4 Defocusing
produces a similar information loss outside of the focal plane. Thus optical
recordings provide a large amount of information on the focal plane and
this information, largely due to scattering, rapidly decreases as the distance
from the lens increases (Figure 4D).

4A curious implication here is that the standard deviation of position estimation is
proportional to the fourth power of the standard deviation of possible locations, rather
than being simply linearly proportional as one might expect. This is a result of using
signal intensity as a proxy for location: information about location is proportionate to
the square of how much signal intensity changes as location changes (i.e. I ∝ (w′)2). It
is also a function of our Gaussian noise assumption. Given a 2-D distribution of possible
locations for a signal’s source, the change in illumination between different points in that
distribution scales with the spread of that distribution to the fourth.
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Figure 4: Wide-field Fluorescence Optical Recording. An overview
of the modeling and Fisher information analysis of wide-field fluorescence
optical recording. (A) Schematic: The whole recording volume is illumi-
nated; dye in active neurons fluoresces and emits light; the emitted light
is focused by a lens onto a photosensor. Here, we analyze one point on
that photosensor. The black box indicates the space represented in B and
C, with zero depth being located at the lens. (B) The spatial PSF for
wide-field fluorescence optical recording, valued in arbitrary units, for a
lens centered at (0,0) with a focal plane at 100µm. (C) The lateral Fisher
information contained about signals from different locations within a vol-
ume sensed by the wide-field fluorescence optical system shown in B. (D)
The maximum Fisher information for a point with a given depth from the
sensor for systems with focal planes at different depths. The grey dashed
line indicates the minimum Fisher information needed for a CRB standard
deviation of 10µm.
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3.5.3 Two-photon Microscopy

In two-photon microscopy, long-wavelength incident light (i.e. composed
of low-energy photons) is focused onto a single point of interest to excite
fluorophores in that area. In order for the fluorophore to emit light, two
low-energy photons must be absorbed nearly simultaneously; the likelihood
of this event is proportional to the square of the intensity of incident light
at a point. Effectively, this concentrates the area of sufficient illumination
to a volume nearby the focal point of the incident beam (while increasing
the illumination power requirements) [31]. Like with wide-field fluorescence
microscopy, the PSF is a function of defocusing, absorption, and scattering
(Figure 5B, Table 1). We assume total photon capture so that the PSF
here models the spread of the excitation light.

For two-photon microscopy, Fisher information is also concentrated in a ring
around the beam axis, and it is more tightly concentrated than in wide-field
fluorescence microscopy (Figure 5C). This is due to the reduced scattering
of longer wavelengths of incident light, as well as decreased fluorescent
excitation of laterally-displaced neurons. The ability to estimate a neuron’s
location still scales with the standard deviation to the 4th power (Table 1).
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Figure 5: Two-photon Optical Recording. An overview of the mod-
eling and Fisher information analysis of 2-photon optical recording. (A)
Schematic: incident light is focused onto a particular location in a volume;
dye in neurons illuminated by the incident light fluoresces and emits light;
the emitted light is sensed by a large single photosensor. The black box
indicates the space represented in B and C, with zero depth being located
at the lens and increasing depth indicating increasing distance into the
brain. (B) The spatial PSF for incident light relative to its source in 2-
photon optical recording. It is valued in arbitrary units for a lens centered
at (0,0) with a focal plane at 100µm. (C) The lateral Fisher information
contained about signals from different locations within a volume sensed by
the 2-photon optical system shown in panel B. (D) The maximum Fisher
information for a point with a given depth from the light source for sys-
tems with focal planes at different depths. The grey dashed line indicates
the minimum Fisher information needed for a CRB standard deviation of
10µm.
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Parameter Value
Cel 28µm [22,23]
Dlens 300 µm (within current dimensions)
λ (wide-field) 633 nm (visible light)
λ (2-photon) 800 nm
γ (wide-field) 0.15 [26,32]
Cop (wide-field) 100 µm (with 515 nm light) [25]
γ (2-photon) 0.002 (with 725 nm light) [33]
Cop (2-photon) 200 µm (with 909 nm light) [25]

Table 2: Simulation Parameter Values

3.6 Differential Resolution versus Single-source Reso-
lution

We now extend the Fisher information framework to the case of multiple
sources and multiple sensors. Previously, when considering a single source,
localization ability was only limited by noise. With multiple sources, reso-
lution ability is additionally limited by crosstalk between sensors and con-
founding sources. We ask how the ability to localize neurons differs between
the previously discussed sparse firing scenario, and the scenario in which
multiple neurons are simultaneously active. That is, how will the previously
derived expressions be hindered due to crosstalk? In addition, we look at
the benefits imparted on localization by additional sensors.

Here we consider a case where there are two sensors, each of which is lo-
cated below a neuron (Figure 1E).5 This setup is analogous to most optical
setups, where a single pixel corresponds to a small area that the pixel is
supposed to image. We first look at Fisher information contained about
each source by the two-sensor ensemble, when there is no crosstalk (noise is
the only limit). This is equivalent to looking at the Fisher information that
the two sensors contain about a single source. As expected, as sources move
further away from sensors, the CRB for the two-sensor case scales similarly
to the previously seen single-sensor case (Figure 6A). The primary differ-
ence is that we are using two sensors instead of one and assuming additive
information. Thus, there is slightly more information from the two-sensor
setup than the one-sensor setup, resulting in slightly tighter CRBs for the

5Sources in this formulation are laterally offset slightly from a corresponding sen-
sor. Here, the offset is 5 µm. This is done in response to sensors containing no Fisher
information about a source directly above it, as has been discussed above.
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two-sensor ensemble.6

Finally, we specifically look at the effect of crosstalk on the ability to es-
timate neurons’ locations (Figure 6C). We define crosstalk as the ratio
of the signal received from the confounding source to the signal received
from the primary source (i.e. the ratio of off-diagonal to diagonal ele-
ments in the Fisher information matrix). The system is relatively robust
to small amounts of crosstalk: the CRB increases only 10% for a crosstalk
of 0.3. However, there are profound effects when there are large amounts
of crosstalk: for a crosstalk of 0.9, the CRB increases by over 400%. It is
important to note that excellent resolution is possible with high crosstalk,
and poor resolution is possible with low crosstalk. For instance, while there
may be high crosstalk at the focal plane, the large increase in the CRB still
yields acceptable resolution (Figure 6D). Conversely, while there may be
low crosstalk away from the focal plane, there is nonetheless poor resolution.

3.7 Technology Comparisons

In order to determine appropriate technologies for a given situation, it is
necessary to know which technology will maximize the information output,
and where information will be concentrated for a given technology. Here
we apply this Fisher information framework to a two-source, two-sensor
setup for both wide-field fluorescence and two-photon microscopy in or-
der to determine performance over depth (Figure 7). We find, perhaps
confirming intuition, that wide-field and two-photon fluorescence perform
similarly for shallow sections, but performance of wide-field fluorescence
microscopy degrades significantly at a depth of 500µm while two-photon
performs well at this depth. Interestingly, both methods contain a large
amount of information not only about signals near the focal point, but also
about sources nearby the lens. This implies that signals could be recovered
from out-of-focus samples given proper recording conditions. While this
demonstration yielded the expected results, this framework could be used
to compare existing technologies in novel situations, or to compare novel
technologies.

3.8 Sensor Placement

In order to successfully record activity from every neuron in a volume, we
must place sensors so that they extract sufficient information about every

6It is important to note that these are not discontinuities, as crosstalk never equals
or exceeds the desired signals (e.g. see Fig. 7, which shows a greater range).
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Figure 6: Localization with Multiple Sources. For all panels, we
simulate two sensors 40µm apart and two sources 30µm apart centered
between the sensors using a wide-field fluorescence microscopy setup with
a focal length of 100µm. Both sources are located in the same plane.
We look at how CRBs on the estimation of both sources vary as the two
sources change depth with respect to the sensors (note that the CRBs for
each source are equal due to the symmetric setup). (A) A comparison of
CRBs on a location estimate without crosstalk using one sensor vs. two
sensors assuming additive Fisher information. (B) A comparison of CRBs
on a location estimate by two sensors when signals are allowed to interfere
with each other (crosstalk) vs. a hypothetical situation with no interference
(no crosstalk). (C) The effect of crosstalk (here defined as the ratio of the
signal received from the confounding source to the signal received from
the primary source), on the increase in the CRB regarding estimation of
neuronal locations. (D) The amount of crosstalk in panel B as a function
of the neurons’ depths from the sensor.
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Figure 7: Optical Technology Comparison at Multiple Focal
Depths. CRB on the location of a single source in a two-sensor, two-
source system with crosstalk. The sensors are 40µm apart and the sources
are 30 µm apart situated between the sensors. The depth of the sources is
varied by an equal amount and the CRB on each of the sources is calcu-
lated at each depth (the CRB of each source is equivalent due to the sym-
metric setup). This analysis is performed for wide-field fluorescence and
two-photon optical systems with focal depths of (A) 100 µm, (B) 200 µm,
and (C) 500 µm. Insets provide detail about behavior of optical systems at
locations near the desired focal depth.
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neural location in that volume. That is, the tiling of the Fisher information
from every sensor needs to cover the entire volume. Mathematically, the
Fisher information contained about each point in a volume must exceed
some threshold for localization. With this framework, it is possible to ask
questions about the necessary experimental parameters of neural recording
technologies.

Here, we simulate several possible arrangements of electrical sensors and
evaluate the Fisher information that these systems provide about different
locations in a volume. Specifically, we look at four electrode arrangements:
(1) columns of electrodes where electrodes are densely packed within a col-
umn, and these columns are arranged in a grid [34] (Column electrodes); (2)
randomly placed electrodes (Random electrodes); (3) electrodes evenly dis-
tributed in a plane (Planar electrodes); and (4) electrodes evenly distributed
in an equilateral grid (Grid electrodes) (Figure 8A). Here, we assume that
noise is independent between sensors, i.e. noise is all on the sensor. Under
this assumption, each electrode takes an independent sample of a signal;
information about the location of the source of that signal is then addi-
tive across sensors. Fisher information here is thus the information the
entire ensemble of electrodes provides about a point. For simplicity of this
demonstration, we use the single-source resolution formulation of these sce-
narios, which corresponds to the common situation of sparse neural firing.
Crosstalk between sources on sensors would necessarily reduce the amount
of information contained about individual sources and would be geometry-
dependent. The distribution of Fisher information within a volume varies
based on electrode placement (Figure 8B), with Fisher information being
highly concentrated in areas with high electrode density.

Just as we want to know where systems concentrate Fisher information,
we want to know how often we will have sufficient spatial Fisher informa-
tion. To do this, we look at the distribution of Fisher information within
a volume (Figure 8C). In this simplified simulation, columnar electrodes
have a distribution that sufficiently estimates most locations: a small frac-
tion of points lie in between electrodes and their location cannot be esti-
mated well, while the significant fraction that lies close to a column can.
Random electrodes have sufficient information about all locations in the
simulated volume. Planar electrodes have a log-constant distribution; they
carry very little information about most locations in a volume, but carry a
large amount of information about a small fraction of locations. The use of
Grid electrodes has comparable performance to Random electrodes in that
it carries sufficient information about all locations in a volume. Due to the
regular nature of Grid electrodes, there is the added benefit of a guaranteed
lower bound for information carried about locations in a volume. The use
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of this Fisher information framework promises to inform sensor placement
decisions.

Figure 8: Electrode Placement and Fisher Information. Simulation
of ∼ 3.5× 103 electrodes in a 1 mm × 1 mm × 1 mm cube of brain tissue.
Electrodes were arranged in one of four patterns: a 6 × 6 grid of columns
of electrodes with 100 electrodes evenly distributed in each column (top
row), random placement (second row), electrodes uniformly distributed on
a plane at 500µm depth (third row), and uniformly distributed in a grid
throughout the volume (bottom row). Total Fisher information about a
point consists of the sum of information contained about that point in
each sensor. This analysis considers information about radial location.
(A) Distribution of electrodes in the volume for each pattern. (B) Total
Fisher information contained about 103 uniformly distributed points in the
volume. Each point is displayed at its location in the volume, and its color
indicates the amount of Fisher information. Fisher information is plotted
with a floor of 10× 10−5 µm−2. (C) Distribution of Fisher information
contained about a random sample of 104 points from the volume. Vertical
black lines indicate Fisher information corresponding to a 10µm CRB on
standard deviation. See Table 2 for parameter values.
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4 Discussion

Here we have developed a framework to quantitatively think about the
challenges of large-scale neural recording and determine the necessary ex-
perimental parameters for potential recording modalities. This extends
previous work applying Fisher information to individual imaging techniques
(e.g. [9, 21, 35–41]) by considering a PSF that models recording in neural
tissue, and then using the CRB to establish signal separability rather than
spatial resolution. We have demonstrated the utility of this framework by
characterizing the scaling properties of common recording techniques, and
then showing how experimental design can be influenced by information
considerations.

We made a large number of simplifications when demonstrating the use of
the Fisher information framework. Our modeling of (1) neural activities and
noise and (2) the details of the recording methods is significantly simplified.
(3) Many recording methods allow for ways of multiplexing – of using each
sensor to get multiple pieces of information – which we do not consider. (4)
This framework is solely focused on distinguishing neurons using spatial
information, while other information sources may be used. However, these
approximations were useful in demonstrating a unifying view over recording
methodologies in a single paper. Applying this framework with a smaller
set of simplifying assumptions would offer more precise insights. We will
discuss such potential developments for each of the four aforementioned
simplifications.

First, we asked how we could use recording channels to identify the location
of a fixed, known, activity. In practice these activities fluctuate over time,
and can differ based on spike type (e.g. simple vs. complex in Purkinje
cells). Interestingly, it would be possible to use Fisher information to differ-
entiate spike types given a single source recording. Moreover, the various
noise sources were approximated by a simple function that ignores many
potential sources of noise (see Supplementary Information). A comprehen-
sive model of noise affecting neurons and sensors does not yet exist. Further
research in this area will yield more informative results.

Second, we asked how we could use simplified models of recording systems
to estimate the locations of neurons. However, the models of the recording
channels are likely overly simplified. For example, for optical recordings we
assumed scattering through homogenous tissue, and for electrical record-
ings we ignored the filtering properties of electrodes. There exists a rich
literature of modeling optical and electrical systems that could allow better
models of recording modalities (e.g. [25, 42]); incorporating these models
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into the framework may alleviate some of the concerns over oversimplifica-
tion, and may even provide a framework for validating those models.

Third, while we have assumed that sensors only have access to an instan-
taneous signal amplitude, almost all recording methods have sensors that
provide different information over time, a kind of multiplexing. Thus, ad-
ditional information can be gained by combining information across time.
Multiplexing, both from temporally distinct measurements and other meth-
ods, can be readily included in the Fisher information framework by intro-
ducing virtual recording channels.

Fourth, signals from different neurons need not solely be separated using
spatial information. In fact, this may be necessary for certain recording
situations, e.g. where the dendrites of one neuron produce a signal within
the CRB of the cell body of another neuron. In order to determine the neu-
ral, rather than spatial, sources of these signals, extra information would
be needed. There are several methods to encode additional information.
For example, if each neuron could produce optical activity at a different,
identifiable, frequency, then it would be possible to record from all neu-
rons without knowing the locations of the neurons (similar to [43]). Similar
considerations exist for electrical waveforms of spikes and many other tech-
niques. For example, molecular recording devices, which store neural signals
in macromolecules such as DNA [44], could identify neurons through the
barcoding of molecular DNA [45]. Nonetheless, spatial information is one
of the common ways of separating neural activities within a channel and is
effective at doing so.

The framework that we have introduced here is not limited in application
to the recording methods described. For instance, there are many modern
optical techniques being used for large-scale recording [46,47]. Additionally,
both ultrasound and MRI have been proposed as potential recording media
for large-scale neural recording [2, 48]. With a proper PSF describing how
signals from different positions in the brain reach a sensor (some discussion
in [47,49–53]), this framework could easily be applied to determine bounds
on signal separability for those techniques. Likewise, this framework could
be used to analyze methods that have not yet been described, and thus
promises to be a useful tool in the advancement of neural recording tech-
nologies.

Fisher information, in the context of PSFs that define how neurons affect
recorded channels, allows a unifying view of currently existing recording
methods. It promises a way to optimize existing technologies and estimate
potentials of proposed technologies. We believe that a Fisher information
framework can be a useful tool for the emerging field of scalable recording
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techniques.

5 Additional Methods

5.1 Noise Calculations

In our Applications simulations, we make several assumptions about noise.
We assume noise sources are uncorrelated (i.e. the noise from each neuron
is independent and independently distributed). The sensor signal variance
arises from signal dependent noise, with a standard deviation proportional
to the mean signal. The signal dependent noise can be on all background
neurons and/or on the sensor. As the mean activity is I0, the standard
deviation of the activity is α · I0, where α is a constant. The activity that
reaches the sensor i (the signal) from a given neuron j then has a variance of

σ2
j = α·(I0 · w(di,j))

2
. As the noise sources are independent, their variances

can be added, so σ2
noise =

∑
j 6=k

σ2
j . We assume that neurons are uniformly

distributed across the brain with density ρspace and that all neurons have
the same probability of firing at a given time, ρfire.

σ2
noise = αsensρfireρspace

∫
V

I20w
2dV + αneurρfireρspace

∫
V

I20w
2dV

= αρfireρspace

∫
V

I20w
2dV

(9)

In our simulations, we set α = 0.1 (action potentials have SNRs ranging
from 5-25 [54]), ρfire = 0.01 (assuming neurons on average fire at 5 Hz [55]
and action potentials last ≈ 2 ms), and ρspace = 67 000 mm−3 (dividing
the number of neurons in the human brain, ≈ 8× 1010 [56] by its volume,
≈ 1200 cm3 [57]).

5.2 Applications: Electrode Grid Analysis

Electrode locations were assigned to nodes on a 1µm grid spanning a 1 mm×
1 mm× 1 mm cube using the following procedures:

Columnar : Column locations were spaced evenly, 200µm apart, on a 6× 6
grid in the x-y plane. 101 electrodes were distributed evenly along each
column, 10 µm apart.
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Random: Locations on the grid were drawn from a uniform random distri-
bution with replacement.

Planar : Electrodes were placed on a uniform 61× 61 grid in the x-y plane,
corresponding to a grid spacing of 17µm, with a depth of 500µm.

Grid : Electrodes were placed on a uniform 15×15×15 grid in the volume,
corresponding to a grid spacing of 71µm.

These procedures give locations for 3636, 3636, 3721, and 3375 electrodes
respectively.

For each arrangement of electrodes, we determine the total Fisher infor-
mation that the ensemble of points contains about some point, assuming
independence of noise between sensors:

I (x) =
n∑
t=1

exp
(
−2rt
Cel

)
σ2
noiseC

2
el

(10)

Where x is the point we calculate the Fisher information about, n is the
number of electrodes, and rt is the Euclidian distance between x and the
t-th electrode.
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8 Supplementary Information

8.1 Noise Sources

The Fisher information framework allows for arbitrary noise sources, so
long as they are able to be modeled. However, to demonstrate potential
applications, we used a very simplified noise model that only considered
signal dependent noise where the standard deviation was proportional to
the mean.

There are multiple potentially relevant sources of noise that could readily
be included in our model. (1) Each sensor has a constant level of noise sim-
ply due to thermal effects. (2) Many sensors have an additional variance
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that is proportional to the signal, e.g. due to low numbers of photons (shot
noise). (3) Many sensors have an additional variance that is proportional
to the square of the signals, e.g. reference fluctuations. (4) Each neuron
may produce constant noise, e.g. background fluorescence of dyes. (5) Each
neuron may produce variance that linearly depends on its signal strength,
e.g. fluorophore activations. (6) Each neuron may produce variance that
quadratically depends on its activation, e.g. action potentials that propa-
gate back into varying parts of the dendritic tree.7 Plus, these noise sources
may be independent across neurons or correlated. We have some knowledge
about the exact sizes of these signals [2], but most of these numbers are
hard to know. They may be reasonable to measure in future experiments.

Taking these signals together, we obtain the following noise level on a sensor
i (given a recording of N firing neurons indexed by j):

σ2
noise = σ2

sens︸ ︷︷ ︸
constant sensor noise

+ N · σ2
neur︸ ︷︷ ︸

constant neuronnoise

+ α1

N∑
j=1

I0
2wij

2

︸ ︷︷ ︸
ind sensor σ∝µSDN

+ α2

N∑
j=1

I0
2wij

2

︸ ︷︷ ︸
ind neuronσ∝µSDN

+ α3

N∑
j=1

I0wij︸ ︷︷ ︸
ind sensor σ2∝µSDN

+ α4

N∑
j=1

I0wij︸ ︷︷ ︸
ind neuronσ2∝µSDN

+ α5

 N∑
j=1

I0wij

2

︸ ︷︷ ︸
corr neuronσ∝µSDN

+ α6

 N∑
j=1

√
I0wij

2

︸ ︷︷ ︸
corr neuronσ2∝µSDN

(11)

where ind and corr refer to independent and correlated noise sources, and
SDN refers to signal dependent noise.

Assuming, as we do in the main text, that neurons are uniformly distributed
and have a uniform firing rate across the entire volume:

7In a simplistic model, when a neuron fires, the action potential spreads into some
variable proportion of the dendritic tree. If the recorded signal is dependent on the
proportion of dendritic branches the action potential propagates into, then the stan-
dard deviation of the recorded signal is proportionate to the mean signal entering the
dendrites.
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σ2
noise = σ2

sens︸ ︷︷ ︸
constant sensor noise

+ ρfireρspaceV · σ2
neur︸ ︷︷ ︸

constant neuronnoise

+ α1ρfireρspace

∫
I0

2w2dV︸ ︷︷ ︸
ind sensor σ∝µSDN

+α2ρfireρspace

∫
I0

2w2dV︸ ︷︷ ︸
ind neuronσ∝µSDN

+ α3ρfireρspace

∫
I0wdV︸ ︷︷ ︸

ind sensor σ2∝µSDN

+α4ρfireρspace

∫
I0wdV︸ ︷︷ ︸

ind neuronσ2∝µSDN

+ α5ρfireρspace

(∫
I0wdV

)2

︸ ︷︷ ︸
corr neuron σ∝µSDN

+ α6ρfireρspace

(∫ √
I0wdV

)2

︸ ︷︷ ︸
corr neuron σ2∝µSDN

(12)

Both constant and shot noise terms can be minimized in their effect by
optimizing the experimental design, e.g. through good dyes and strong
illumination (but see [2]).

In addition, in the main text we assume that the noise is Gaussian, which
has also been assumed in previous statistical formulations [9, 38]. This
assumption has been shown to be valid for thermal noise and shot noise in
some conditions [58,59].

8.2 Fisher Information Derivation

We have a distribution fi(X;d) = N

((
Ikw(di,k) +

∑
j 6=k

Ijw(di,j)

)
, σ2
noise

)
(See (6b)) and are interested in finding its Fisher information with respect
to a given direction dx. For simplicity of notation, we let B =

∑
j 6=k

Ijw(di,j).
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I
(
dxi,k
)

=E

[(
∂

∂dx
ln(fi(X;d))

)2
]

=E

[(
1

fi(X;d)

∂

∂dx
fi(X;d)

)2
]

=E


 1

1√
2πσ2

noise

exp
(
−(X−(Ikw(di,k)+B))2

2σ2
noise

) ·
1√

2πσ2
noise

exp

(
−(X − (Ikw(di,k) +B))

2

2σ2
noise

)

·− (X − (Ikw(di,k) + di,k))

σ2
noise

· Ik
∂w(di,k)

∂dx

)2
]

=E

[(
− (X − (Ikw(di,k) +B))

σ2
noise

· Ik
∂w(di,k)

∂dx

)2
]

=E

[
Ik

2

σ4
noise

(X − (Ikw(di,k) +B))
2

(
∂w(di,k)

∂dx

)2
]

=
Ik

2

σ4
noise

(
∂w(di,k)

∂dx

)2

E
[
(X − (Ikw(di,k) +B))

2
]

=
Ik

2

σ2
noise

(
∂w(di,k)

∂dx

)2

(13)

This results in (7). The above derivation will hold for any distribution with
zero-mean Gaussian noise.
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