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All modern approaches to molecular phylogenetics require a quantitative model
for how genes evolve. Unfortunately, existing evolutionary models do not re-
alistically represent the site-heterogeneous selection that governs actual se-
quence change. Attempts to remedy this problem have involved augmenting
these models with a burgeoning number of free parameters. Here I demon-
strate an alternative: experimental determination of a parameter-free evolu-
tionary model via mutagenesis, functional selection, and deep sequencing. Us-
ing this strategy, I create an evolutionary model for influenza nucleoprotein
that describes the gene phylogeny far better than existing models with dozens
or even hundreds of free parameters. High-throughput experimental strate-
gies such as the one employed here provide fundamentally new information

that has the potential to transform the sensitivity of phylogenetic analyses.
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The phylogenetic analysis of gene sequences is one of the most widely used computational
procedures in biology. All modern phylogenetic algorithms require an evolutionary model that
specifies the rate at which each site substitutes from one identity to another. These evolutionary
models can be used to calculate the statistical likelihood of the sequences given a particular
phylogenetic tree (/). Phylogenetic relationships are typically inferred by finding the tree that
maximizes this likelihood (2) or by combining the likelihoods with a prior to compute posterior
probabilities (3).

Actual sequence evolution is governed by the rates at which mutations arise and the sub-
sequent selection that acts upon them (4, 5). Unfortunately, neither of these aspects of the
evolutionary process are traditionally known a priori. The standard approach in molecular
phylogenetics is therefore to assume that sites evolve independently and identically, and then
construct an evolutionary model that contains free parameters designed to represent features
of mutation and selection (6, 7, 8, 9). This approach suffers from two major problems. First,
although adding parameters enhances a model’s fit to data, the parameter values must be es-
timated from the same sequences that are being analyzed phylogenetically — and so complex
models can overfit the data (/0). Second, even complex models do not contain enough param-
eters to realistically represent selection, which is highly idiosyncratic to specific sites within a
protein. Attempts to predict selection from protein structure have had limited success (11, 12),
probably because even sophisticated computations cannot consistently predict the impact of
mutations (/3). Approximating selection via additional site-specific parameters can improve
phylogenetic fit (14, 15, 16), but further exacerbates the proliferation of parameters that already
plagues simpler models.

Here 1 demonstrate a radically different approach for constructing evolutionary models:
experimental measurement. This approach requires quantifying both the rates of mutations and
the probabilities that mutations fix after they occur. Using nucleoprotein (NP) from influenza A
virus as a test case, I show that it is now possible to experimentally quantify these factors with

sufficient accuracy to create a parameter-free evolutionary model that fits NP phylogenies far
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better than existing parameter-rich models.

Mutation rates were experimentally quantified under the assumption that they are uniform
across sites. To separate mutation from selection, I utilized influenza viruses that package GFP
in the PB1 segment (/7). Because the GFP is not under functional selection, substitutions in
this gene accumulate at the mutation rate. I passaged 24 replicate populations of GFP viruses
by limiting dilution in tissue culture, at each passage serially diluting the virus to the lowest
concentration capable of infecting target cells (/8). Because each limiting dilution bottlenecks
the population to one or a few infectious virions, mutations fix rapidly. After 25 rounds of
passage, the GFP gene was Sanger sequenced for each replicate to identify 24 substitutions
(table S1, table S2), for an overall rate of 5.6 x 10~° mutations per nucleotide per tissue-culture
generation. The rates for different types of mutations are in Table 1, and possess expected
features such as an elevation of transitions over transversions.

Quantification of selection is more challenging. Even under the assumption that selection
is independent among sites, it is necessary to examine all ~ 10* amino-acid mutations to NP.
This can now be done using “deep mutational scanning,” a strategy of mutagenesis, selection,
and deep-sequencing developed by Fowler and coworkers (/9) that has been applied to several
genes (19, 20, 21, 22, 23). Because many amino-acid mutations are not accessible by single-
nucleotide changes, I used a PCR-based strategy to construct codon-mutant libraries that con-
tained multi-nucleotide (i.e. GGC — ACT) as well as single-nucleotide (i.e. GGC — AGC) mu-
tations. I constructed two mutant libraries of NP from the human H3N2 strain A/Aichi/2/1968
(table S3), and two from a variant of this NP with a single amino-acid substitution (N334H) that
enhances protein stability (24, 25). Each library contained > 10° unique plasmid clones, with
the number of codon mutations per clone following a Poisson distribution with a mean of 2.7
(fig. S1). Most of the ~ 10* unique amino-acid mutations therefore occur in multiple clones,
both individually and in combination with other mutations.

To assess effects of the mutations on viral replication, the plasmid mutant libraries were used

to create pools of mutant influenza viruses by reverse genetics (26). The viruses were passaged
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twice in tissue culture at low multiplicity of infection to enforce a linkage between genotype
and phenotype. The NP gene was reverse-transcribed and PCR-amplified from viral RNA after
each passage, and similar PCR amplicons were generated from the plasmid mutant libraries
and controls designed to quantify errors associated with sequencing, reverse transcription, and
viral passage (Fig. 1A). This process was performed independently for all four mutant libraries
to complete replicate A. The entire viral rescue, passaging, and sequencing process was then
repeated for all four libraries in replicate B.

Mutation frequencies were quantified by Illumina sequencing, using overlapping paired-end
reads to reduce errors (fig. S2). Each sample produced ~ 107 paired reads that could be aligned
to NP, providing an average of ~ 5 x 10° calls per codon (fig. S3). Sequencing of unmu-
tated NP plasmid revealed a low rate of errors, which were almost exclusively single-nucleotide
changes (Fig. 1B, fig. S4A). The plasmid mutant libraries contained a high frequency of sin-
gle and multi-nucleotide codon mutations. Mutation frequencies for RNA or viruses produced
from unmutated NP plasmid were only slightly above the sequencing error rate, indicating that
reverse-transcription and viral replication introduced few mutations relative to the targeted mu-
tagenesis in the plasmid libraries. Mutation frequencies were reduced in the mutant viruses
relative to the plasmids used to create these viruses, particularly for nonsynonymous and stop-
codon mutations — consistent with selection purging deleterious mutations.

Nearly all multi-nucleotide codon mutations were found numerous times in the plasmid
mutant libraries (Fig. 1C, fig. S4B). More than half of all and > 80% of synonymous multi-
nucleotide codon mutations were found multiple times in the mutant viruses. Because even
synonymous mutations are sometimes deleterious to influenza (27) and so will be purged by
selection, this latter number provides a lower bound for the completeness with which codon
mutations were sampled by the mutant viruses created by reverse genetics. Because most amino
acids are encoded by multiple codons, the fraction of amino-acid mutations sampled is higher.

Qualitatively, it is obvious that changes in mutation frequencies between the plasmid mutant

libraries and the resulting mutant viruses reflect selection. But it is less obvious how to quanti-
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tatively analyze this information. Selection acts on the full genomes of all viruses in the popula-
tion. In contrast, the experiments only measure site-independent mutation frequencies averaged
over the population. Assume that each site r has an inherent preference , , for amino-acid a,
with Y 7, , = 1. The motivation for envisioning site-heterogenous but site-independent amino-
acid pieferences comes from experiments suggesting that the dominant constraint on mutations
that fix during NP evolution relates to protein stability (24), and that mutational effects on sta-

bility tend to be conserved in a site-independent manner (25). The expected frequency f, , of

mutant codon x at site 7 in the mutant viruses is related to the preference 7, 4, for its encoded

Mo X T A(z)
zy: Moy X T A(y)

is mutagenized to codon x in the plasmid mutant library, ¢, , is the frequency the site is erro-

amino-acid A (z) by f,, = €0 + pro + where i, , 1s the frequency that site r
neously identified as x during sequencing, p, , is the frequency the site is mutated to x during
reverse transcription, y is summed over all codons, and the probability that a site experiences
multiple mutations or errors in the same clone is taken to be negligibly small. The observed
codon counts are multinomially distributed around these expected frequencies, so by placing
a symmetric Dirichlet-distribution prior over 7, , and jointly estimating the error and mutation
rates from the appropriate samples in Fig. 1A, it is possible to infer the posterior mean for all
preferences by MCMC (supporting online text).

The amino-acid preferences inferred from the first and second viral passages within each
replicate are extremely similar (Fig. 2A,B), indicating that most selection occurs during initial
viral creation and passage, and that technical variation (preparation of samples, stochasticity in
sequencing, etc) has little impact. The preferences inferred from the two experimental replicates
are substantially but less perfectly correlated (Fig. 2C) — probably because the mutant viruses
created by reverse genetics independently in each replicate are different incomplete samples
of the > 10° clones in the plasmid mutant libraries. Nonetheless, the substantial correlation
between replicates shows that the sampling is sufficient to clearly reveal inherent preferences.
Final preferences were inferred by combining the data from the first passage of both replicates

(Fig. 2D, file S1). These preferences are consistent with existing knowledge about NP function
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and stability. For example, at the conserved residues in NP’s RNA binding interface (28), the
amino acids found in natural sequences tend to be the ones with the highest preferences (table
S4). Similarly, for mutations that have been experimentally characterized as having large effects
on NP protein stability (24, 25), the stabilizing amino acid has the higher preference (table S5).

The preferences can be combined with the measured mutation rates in a parameter-free site-
specific but site-independent evolutionary model. Let the rate of substitution P, ;,, = Qg X F 4y
from codon z to y at site r be the product of the rate (), of this mutation with the site-specific
probability F, ., that the mutation fixes once it occurs. The mutation rate (), is given by Table
1 if x and y differ by a single-nucleotide mutation, and is zero otherwise. Here I define the

probability of fixation in terms of the preferences as

P {1 if A(x) = A(y) or T, awy) > TrA()
ray — § TrA(y) .
Tod(a) otherwise.

This definition envisions mutations to higher preference amino acids always being tolerated,
but those to lower preference amino acids only being tolerated in a fraction of genetic back-
grounds (for justification and an alternative definition based on selection coefficients (5), see
supplementary online text).

The P, ,, values define an experimentally determined evolutionary model with a stationary
state giving the expected amino-acid frequencies at equilibrium. These evolutionary equilibrium
frequencies (fig. S5, file S2) are different than the amino-acid preferences, since they also
depend on the mutation rates and genetic code. For example, if arginine and lysine have equal
preferences at a site, arginine will be more evolutionarily abundant since it has more codons.

The experimentally determined evolutionary model can be used to compute phylogenetic
likelihoods, thereby enabling its comparison to existing models. I used codonPhyML (29) to
infer maximum-likelihood trees (Fig. 3, fig. S6) for NP sequences from human influenza using
the Goldman-Yang (GY94) (6) and the Kosiol et al. (KOSIO7) (7) codon substitution models. In
the simplest form, GY94 contains 11 free parameters (9 equilibrium frequencies plus transition-

transversion and synonymous-nonsynonymous ratios), while KOSI07 contains 62 parameters
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(60 frequencies plus transition-transversion and synonymous-nonsynonymous ratios). More
complex variants add parameters allowing variation in substitution rate (8) or synonymous-
nonsynonymous ratio among sites or lineages (9). For all these models, HYPHY (30) was used
to calculate the likelihood after optimizing branch lengths for the tree topologies inferred by
codonPhyML.

Comparison of these likelihoods strikingly validates the superiority of the experimentally
determined model (Table 2, table S6, table S7). Adding free parameters generally improves a
model’s fit to data, and this is true within GY94 and KOSIO7. But the parameter-free experi-
mentally determined evolutionary model describes the sequence phylogeny with a likelihood
far greater than even the most highly parameterized GY94 and KOSIO7 variants. Comparison
using Aikake information content (AIC) to penalize parameters (/0) even more emphatically
highlights the superiority of the experimentally determined model. There is a clear correlation
between the quality and volume of experimental data and the phylogenetic fit: models from
individual experimental replicates give lower likelihoods than both replicates combined, and
the technically superior replicate A (Fig. 1C versus fig. S4) gives a better likelihood than
replicate B. The superiority of the experimentally determined model is due to measurement of
site-specific amino-acid preferences: randomizing preferences among sites gives likelihoods far
worse than any other model. A model that interprets the preferences in terms of selection coef-
ficients (5) also outperforms GY94 and KOSI07, but by a smaller margin (supplementary online
text, table S6, table S7).

These results establish the superiority of the experimentally determined model for NP —
but what is the generality of the approach? At first blush, it might seem that the experimental
data acquired here is unlikely to ever become available for most situations of interest. How-
ever, it is worth remembering that the very gene sequences that are the subjects of molecular
phylogenetics were once rare pieces of data — now such sequences are so abundant that they
easily overwhelm modern computers. The experimental ease of the deep mutational scanning

approach used here is on a comparable trajectory: similar approaches have already been applied
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to several proteins (/9,20,21,22,23), and there continue to be rapid improvements in techniques
for mutagenesis (317, 32) and sequencing (33, 34, 35). It is therefore especially encouraging that
the phylogenetic fit of the NP evolutionary model increases with the quality and volume of
experimental data from which it is derived. The increasing availability of such data has the
potential to transform phylogenetic analyses by greatly increasing the accuracy of evolution-
ary models, while at the same time replacing a plethora of free parameters with experimentally

measured quantities that can be given clear biological and evolutionary interpretations.


https://doi.org/10.1101/002899
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/002899; this version posted February 20, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. J. Felsenstein, Systematic Zoology 22, 240 (1973).

J. Felsenstein, J. Mol. Evol. 17, 368 (1981).
J. P. Huelsenbeck, B. Larget, R. E. Miller, F. Ronquist, Systematic Biology 51, 673 (2002).

J. L. Thorne, S. C. Choi, J. Yu, P. G. Higgs, H. Kishino, Mol. Biol. Evol. 24, 1667 (2007).

. A. L. Halpern, W. J. Bruno, Mol. Biol. Evol. 15, 910 (1998).

N. Goldman, Z. Yang, Mol. Biol. Evol. 11, 725 (1994).

. C. Kosiol, I. Holmes, N. Goldman, Mol. Biol. Evol. 24, 1464 (2007).

. Z.Yang, J. Mol. Evol. 39, 306 (1994).

Z. Yang, R. Nielsen, N. Goldman, A.-M. K. Pedersen, Genetics 155, 431 (2000).

D. Posada, T. R. Buckley, Systematic Biology 53, 793 (2004).

N. Rodrigue, C. L. Kleinman, H. Philippe, N. Lartillot, Mol. Biol. Evol. 26, 1663 (2009).
C. L. Kleinman, N. Rodrigue, N. Lartillot, H. Philippe, Mol. Biol. Evol. 27, 1546 (2010).
V. Potapov, M. Cohen, G. Schreiber, Prot. Eng. Des. Sel. 22, 553 (2009).

N. Lartillot, H. Philippe, Mol. Biol. Evol. 21, 1095 (2004).

S. Q. Le, N. Lartillot, O. Gascuel, Phil. Trans. R. Soc. B 363, 3965 (2008).

C.-H. Wu, M. A. Suchard, A. J. Drummond, Mol. Biol. Evol. 30, 669 (2013).

J. D. Bloom, L. I. Gong, D. Baltimore, Science 328, 1272 (2010).

Materials and methods are available as supplementary material on Science online.


https://doi.org/10.1101/002899
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/002899; this version posted February 20, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

19. D. M. Fowler, et al., Nat. Methods 7, 741 (2010).

20. D. Melamed, D. L. Young, C. E. Gamble, C. R. Miller, S. Fields, RNA 19, 1537 (2013).
21. M. W. Traxlmayr, et al., J. Mol. Biol. (2012).

22. L. M. Starita, et al., Proc. Natl. Acad. Sci. USA 110, E1263 (2013).

23. B. P. Roscoe, K. M. Thayer, K. B. Zeldovich, D. Fushman, D. N. Bolon, J. Mol. Biol.
(2013).

24. L. 1. Gong, M. A. Suchard, J. D. Bloom, eLife 2, e00631 (2013).
25. O. Ashenberg, L. I. Gong, J. D. Bloom, Proc. Natl. Acad. Sci. USA 110, 21071 (2013).

26. E. Hoffmann, G. Neumann, Y. Kawaoka, G. Hobom, R. G. Webster, Proc. Natl. Acad. Sci.
USA 97, 6108 (2000).

27. G. A. Marsh, R. Rabadan, A. J. Levine, P. Palese, J. Virology 82, 2295 (2008).

28. Q. Ye, R. M. Krug, Y. J. Tao, Nature 444, 1078 (2006).

29. M. Gil, M. S. Zanetti, S. Zoller, M. Anisimova, Mol. Biol. Evol. 30, 1270 (2013).

30. S. L. Pond, S. D. Frost, S. V. Muse, Bioinformatics 21, 676 (2005).

31. E. Firnberg, M. Ostermeier, PLoS One 7, €52031 (2012).

32. P. C. Jain, R. Varadarajan, Analytical Biochemistry (2013).

33. J.B. Hiatt, R. P. Patwardhan, E. H. Turner, C. Lee, J. Shendure, Nat. Methods 7, 119 (2010).
34. M. W. Schmitt, et al., Proc. Natl. Acad. Sci. USA 109, 14508 (2012).

35. D. 1. Lou, et al., Proc. Natl. Acad. Sci. USA 110, 19872 (2013).

10


https://doi.org/10.1101/002899
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/002899; this version posted February 20, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Acknowledgments

Thanks to D. Fowler, J. Kitzman, A. Adey, O. Ashenberg, and T. Bedford for helpful discus-
sions. This work was supported by grant ROIGM102198 from the NIGMS of the National
Institutes of Health. Sequencing data are archived in the SRA at accession SRP036064. Links

to computer code are provided in the Supporting Online Material.

11


https://doi.org/10.1101/002899
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/002899; this version posted February 20, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

mutation type rate
A — G, T — C (transition) | 2.4 x 107°
G — A, C — T (transition) | 2.3 x 107
A — C, T — G (transversion) | 9.0 x 1076
C — A, G — T (transversion) | 9.4 x 1076
A — T, T — A (transversion) | 3.0 x 1076
G — C, C — G (transversion) | 1.9 x 1076

Table 1: Influenza mutation rates. Numbers represent the probability a site that has the parent

identity will mutate to the specified nucleotide in a single tissue-culture generation, and are
calculated from table S1 and table S2 after adding one pseudocount to each mutation type.
Mutations are in pairs because an A— G can derive from this mutation on the sequenced strand
or a' T — C on the complementary strand.
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parameters
(optimized +
model log likelihood empirical) AIC
experimental, combined replicates -12338.9 00+0) 24677.8
experimental, replicate A -12372.8 00+0) 24745.7
experimental, replicate B -12392.0 00+0) 24783.9
GY94, branch-specific w, multiple rates -12769.1 556 (547 +9) | 26650.1
GY94, multiple w, multiple rates -12853.9 13(4+9) 25733.8
KOSIO7, branch-specific w, multiple rates -12891.7 607 (547 + 60) | 26997.3
GY94, multiple w, one rate -12935.9 12(3+9) 25895.8
KOSIO7, multiple w, multiple rates -12999.9 64 (4 + 60) 26127.7
GY94, one w, multiple rates -13069.8 12(3+9) 26163.5
KOSIO7, multiple w, one rate -13154.8 63 (3 + 60) 26435.5
KOSIO07, one w, multiple rates -13191.5 63 (3 + 60) 26508.9
GY94, one w, one rate -13205.0 11 2+9) 26431.9
KOSIO7, one w, one rate -13404.0 62 (2 + 60) 26932.0
randomized experimental, combined replicates -14209.4 00+0) 28418.8
randomized experimental, replicate A -14243.7 00+0) 28487.4
randomized experimental, replicate B -14259.1 00+0) 28518.2

Table 2: Likelihoods computed using various evolutionary models after optimizing the branch
lengths for the tree in Fig. 3. Experimentally determined models vastly outperform GY94 or
KOSIO7 despite having no free parameters. Randomizing the experimentally determined amino-
acid preferences among sites makes the models far worse. All variants of GY94 and KOSIO7
contain empirical equilibrium frequencies plus a transition-transversion ratio and synonymous-
nonsynonymous ratio (w) optimized by likelihood. Some variants allow multiple (four discrete
gamma categories) rates or w values, or a different w for each branch.
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Fig. 1: Measurement of mutational effects. (A) Experimental design, with sequenced samples
in yellow. Blue indicates sources of mutation and selection; red indicates sources of errors.
(B) Per-codon mutation frequencies for the four libraries in replicate A. Mutations due to se-
quencing, reverse-transcription, and viral replication are rare, and are mostly single nucleotide.
Mutations are reduced in mutvirus relative to mutDNA due to selection against stop-codon and
nonsynonymous mutations. At right are frequencies in the pooled plasmid mutant libraries
estimated from Sanger sequencing (fig. S1), which is not affected by Illumina sequencing er-
rors. (C) Number of times multi-nucleotide codon mutations (which are rarely generated by
errors) are identified in the combined libraries of replicate A. Nearly all mutations are sam-
pled in mutDNA. Most synonymous mutations are sampled in mutvirus — the frequency of all
mutations is lower, probably due to selection. Comparable data for replicate B are in fig. S4.
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Fig. 2: Amino-acid preferences. (A), (B) Preferences inferred from passage 1 and 2 are
similar within each replicate, indicating that most selection occurs during initial viral creation
and passage, and that technical variation is small. (C) Preferences from the two independent
replicates are also correlated, but less perfectly. The increased variation is presumably due
to stochasticity during the independent viral creation from plasmids for each replicate. (D)
Preferences for all sites in NP (the N-terminal Met was not mutagenized) inferred from passage
1 of the combined replicates. Letters have heights proportional to the preference for that amino
acid, and are colored by hydrophobicity. Relative solvent accessibility and secondary structure
are overlaid for residues in crystal structure. Correlation plots show Pearson’s R and P-value.
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A/Brevig Mission/1/1918 (HIN1)

A/Albany/1/1958 (H2N2)

A/Aichi/2/1968 (H3N2)

A/Lyon/815/1993 (H3N2)

0.1

Fig. 3: Phylogenetic tree of NPs from human influenza descended from a close relative of the
1918 virus. Maximum-likelihood tree constructed using GY94 with up to three sequences per
year from each subtype. Black - HIN1 from 1918 lineage; green - seasonal HIN1; red - H2N2;
blue - H3N2.
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Availability of data and computer code

e The sequencing data described in this manuscript are available at the SRA under accession
SRP036064 at http://www.ncbi.nlm.nih.gov/sra/?term=SRP036064.

e A detailed description of the computational process used to analyze the sequencing data
and infer the amino-acid preferencesisathttp://jbloom.github.io/mapmuts/
example_2013Analysis_Influenza_NP_Aichi68.html. The source code
itself is at https://github.com/jbloom/mapmuts. NOTE: the link to the de-
scription is accessible now; access to the source code itself will be made publicly available
upon publication of the paper. If you are a reviewer and would like to see the source code,
please contact the editor to relay the request for access to the author.

e A detailed description of the computational process used for the phylogenetic analyses is
availableathttp://Jjbloom.github.io/phyloExpCM/example_2013Analysis_
Influenza_NP_Human_ 1918 Descended.html. The source code itself is at
https://github.com/jbloom/phyloExpCM. NOTE: the link to the description
is accessible now; access to the source code itself will be made publicly available upon
publication of the paper. If you are a reviewer and would like to see the source code,
please contact the editor to relay the request for access to the author.
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Experimental measurement of mutation rates

The mutational rates of the influenza polymerase were measured by repeated limiting-dilution
passage of replicate viral populations. A challenge in quantifying mutational rates is that the
accumulation of substitutions is due to a combination of the inherent mutational process and the
selection that acts on mutations after they occur. To avoid the confounding effects of selection, I
utilized a previously described (/7) system for packaging GFP in the PB1 gene. The GFP gene
is not under functional selection as it is not needed for viral growth.

I'initially generated GFP-carrying viruses with all genes derived from A/WSN/1933 (HIN1)
by reverse genetics as described previously (/7). These viruses were repeatedly passaged at
limiting dilution in MDCK-SIAT1-CMV-PBI cells (/7) using what will be referred to as low
serum media (Opti-MEM 1 with 0.5% heat-inactivated fetal bovine serum, 0.3% BSA, 100
U/ml penicillin, 100 pg/ml streptomycin, and 100 pg/ml calcium chloride) — a moderate serum
concentration was retained and no trypsin was added because viruses with the WSN HA and
NA are trypsin independent (36). These passages were performed for 27 replicate populations.
For each passage, a 100 ul volume containing the equivalent of 2 ul of virus collection was
added to the first row of a 96-well plate. The virus was then serially diluted 1:5 down the plate
such that at the conclusion of the dilutions, each well contained 80 pl of virus dilution, and
the final row contained the equivalent of (0.8 x 2 ul) /57 ~ 2 x 107> ul of the original virus
collection. MDCK-SIAT1-CMV-PBI1 cells were then added to each well in a 50 pl volume
containing 2.5 x 10? cells. The plates were grown for approximately 80 hours, and wells were
examined for cytopathic effect indicative of viral growth. Most commonly the last well with
clear cytopathic effect was in row E or F (corresponding to an infection volume of between
(0.8 x 2pul) /5* =~ 3 x 1073 and (0.8 x 2 ul) /5° =~ 5 x 10~* pl, although this varied somewhat
among the replicates and passages. The last well with cytopathic effect was collected and used
as the parent population for the next round of limiting-dilution passage.

The goal of the limiting-dilution passages was to repeatedly bottleneck the population so
mutations would rapidly go to fixation. After 25 limiting-dilution passages, 10 of the 27 vi-
ral populations no longer caused any visible GFP expression in the cells in which they caused
cytopathic effect, indicating fixation of a mutation that ablated GFP fluorescence. The 17 re-
maining populations all caused fluorescence in infected cells, although in some cases the in-
tensity was visibly reduced — these populations therefore must have retained at least a partially
functional GFP. Total RNA was purified from each viral population, the PB1 segment was
reverse-transcribed using the primers CATGATCGTCTCGTATTAGTAGAAACAAGGCATTTTTT
CATGAAGGACAAGC and CATGATCGTCTCAGGGAGCGAAAGCAGGCAAACCATTTGATTGG, and
the reverse-transcribed cDNA was amplified by conventional PCR using the same primers. For
22 of the 27 replicate viral populations, this process amplified an insert with the length ex-
pected for the full GFP-carrying PB1 segment. For 2 of the replicates, this amplified inserts
between 0.4 and 0.5 kb shorter than the expected length, suggesting an internal deletion in part
of the segment. For 3 replicates, this failed to amplify any insert, suggesting total loss of the
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GFP-carrying PB1 segment, a very large internal deletion, or rearrangement that rendered the
reverse-transcription primers ineffective. For the 24 replicates from which an insert could be
amplified, the GFP coding region of the PCR product was Sanger sequenced to determine the
consensus sequence. The results are in table S1.

Overall, the 24 replicate viral populations accumulated 24 nucleotide substitutions in the
720-nucleotide GFP over the 25 passages (table S2). This corresponds to a mutation rate of
5.6 x 10~° mutations per nucleotide per tissue-culture generation — very close to the estimate
of 7.6 x 10~° mutations per nucleotide per tissue-culture generation reported by Parvin, Palese,
and coworkers (37). There is a strong bias for transition mutations over transversions.

The data in table S2 can be used to calculate the rate of mutation from nucleotide m to
nucleotide n, given that the parent nucleotide is already m. Let m, to denote the complement
of nucleotide m (so for example A, is T). An observed change of m to n on the template strand
can arise from either a mutation of m to n on this strand or a mutation of m, to n. on the
complementary strand during viral replication — that is, A — G is indistinguishable from T
— C, since a change of A — G on the template strand could also be induced by a T — C
change on the complementary strand. Therefore, it is only possible to estimate the combined
rate R,,—n + R —n.. Assuming that the same mutational processes operate on the template
and complementary strand, then the rate at which these two changes will appear on the template
strand are equal, so R, = Ry.—n.-

To estimate R,,,, from table S2, it is necessary to normalize by the nucleotide composition
of the GFP gene. The numbers of each of the four types of nucleotides in this gene are: Ny =
175, Ny = 103, No = 241, and Ng = 201. Given that the counts in table S2 come after 25
passages of 24 replicates:

R _R o 1 % Nm—>n+ch—>nC+C
T e e T 04 % 25 % 2 Ny + Ny,

(1

where C is a pseudocount that is added to the observed counts to avoid estimating rates of
zero and N,,_,, is the number of observed mutations from m to n in table S2. The values
of R,,_,, estimated from Equation 1 give the probability that a given nucleotide that is al-
ready m will mutate to n in a single tissue-culture generation. Using a value of C = 1 (a
pseudocount of one) gives the rates shown in Table 1. Note that the measured mutation rates
are very close to being reversible, since R, + R —n. = Rpom + Ry.—m,. for all nu-
cleotides. For the evolutionary models described below, I enforce reversibility by defining the
rates to be the average of the two reversible mutations: R, ,, + R, —n. = Rnosm + Rnosm. =
(Rm—m + Rmc—mc + Room + Rnc—>mc) /2-
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Construction of NP codon-mutant libraries

The goal was to construct a mutant library with an average of two to three random codon mu-
tations per gene. Most techniques for creating mutant libraries of full-length genes, such as
error-prone PCR (38) and chemical mutagenesis (39), introduce mutations at the nucleotide
level, meaning that codon substitutions involving multiple nucleotide changes occur at a neg-
ligible rate. There are established methods for mutating specific sites at the codon level with
synthetic oligonucleotides that contain triplets of randomized NNN nucleotides (40). However,
these oligo-based codon mutagenesis techniques are typically only suitable for mutating a small
number of sites. Recently, several groups have developed strategies for introducing codon mu-
tations along the lengths of entire genes (31, 32, J. Kitzman and J. Shendure - personal com-
munication). Most of these strategies are designed to create exactly one codon mutation per
gene. For the purpose of my experiments, it was actually desirable to introduce a distribution
of around one to four codon mutations per gene to examine the average effects of mutations
in a variety of closely related genetic backgrounds. Therefore, I devised a codon-mutagenesis
protocol specifically for this purpose.

This technique involved iterative rounds of low-cycle PCR with pools of mutagenic syn-
thetic oligonucleotides that each contain a randomized NNN triplet at a specific codon site. Two
replicate libraries each of the wildtype and N334H variants of the Aichi/1968 NP were prepared
in full biological duplicate, beginning each with independent preps of the plasmid template. To
avoid cross-contamination, all purification steps used an independent gel for each sample, with
the relevant equipment thoroughly washed to remove residual DNA.

First, for each codon except for that encoding the initiating methionine in the 498-residue
NP gene (table S3), I designed an oligonucleotide that contained a randomized NNN nucleotide
triplet preceded by the 16 nucleotides upstream of that codon in the NP gene and followed by
the 16 nucleotides downstream of that codon in the NP gene. I ordered these oligonucleotides
in 96-well plate format from Integrated DNA Technologies, and combined them in equimolar
quantities to create the forward-mutagenesis primer pool. I also designed and ordered the re-
verse complement of each of these oligonucleotides, and combined them in equimolar quan-
tities to create the reverse-mutagenesis pool. The primers for the N334H variants differed
only for those that overlapped the N334H codon. I also designed end primers that annealed
to the termini of the NP sequence and contained sites appropriate for BsmBI cloning into the
influenza reverse-genetics plasmid pHW?2000 (26). These primers are 5’-BsmBI-Aichi68-NP
(catgatcgtctcagggagcaaaagcagggtagataatcactcacaqg) and 3’-BsmBI-Aichi68-
NP (catgatcgtctcgtattagtagaaacaagggtatttttettta).

I set up PCR reactions that contained 1 ul of 10 ng/ul template pHWAIichi68-NP plas-
mid (24), 25 ul of 2X KOD Hot Start Master Mix (product number 71842, EMD Millipore), 1.5
ul each of 10 uM solutions of the end primers 5’-BsmBI-Aichi68-NP and 3’-BsmBI-Aichi68-
NP, and 21 pl of water. I used the following PCR program (referred to as the amplicon PCR
program in the remainder of this paper):
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95 °C for 2 minutes

95°C for 20 seconds

70°C for 1 second

50°C for 30 seconds cooling to 50°C at 0.5°C per second.
70°C for 40 seconds

Repeat steps 2 through 5 for 24 additional cycles

Hold 4°C

Nk wh =

The PCR products were purified over agarose gels using ZymoClean columns (product number
D4002, Zymo Research) and used as templates for the initial codon mutagenesis fragment PCR.
Two fragment PCR reactions were run for each template. The forward-fragment reactions
contained 15 ul of 2X KOD Hot Start Master Mix, 2 ul of the forward mutagenesis primer pool
at a total oligonucleotide concentration of 4.5 M, 2 pul of 4.5 uM 3’-BsmBI-Aichi68-NP, 4 pl
of 3 ng/ul of the aforementioned gel-purified linear PCR product template, and 7 pl of water.
The reverse-fragment reactions were identical except that the reverse mutagenesis pool was
substituted for the forward mutagenesis pool, and that 5’-BsmBI-Aichi68-NP was substituted
for 3’-BsmBI-Aichi68-NP. The PCR program for these fragment reactions was identical to the
amplicon PCR program except that it utilized a total of 7 rather than 25 thermal cycles.

The products from the fragment PCR reactions were diluted 1:4 in water. These dilutions
were then used for the joining PCR reactions, which contained 15 ul of 2X KOD Hot Start
Master Mix, 4 ul of the 1:4 dilution of the forward-fragment reaction, 4 pl of the 1:4 dilution of
the reverse-fragment reaction, 2 ul of 4.5 uM 5°-BsmBI-Aichi68-NP, 2 ul of 4.5 uM 3°-BsmBI-
Aichi68-NP, and 3 ul of water. The PCR program for these joining reactions was identical to
the amplicon PCR program except that it utilized a total of 20 rather than 25 thermal cycles.
The products from these joining PCRs were purified over agarose gels.

The purified products of the first joining PCR reactions were used as templates for a sec-
ond round of fragment reactions followed by joining PCRs. These second-round products
were used as templates for a third round. The third-round products were purified over agarose
gels, digested with BsmBI (product number RO580L, New England Biolabs), and ligated into
a dephosphorylated (Antarctic Phosphatase, product number M0289L, New England Biolabs)
BsmBI digest of pHW2000 (26) using T4 DNA ligase. The ligations were purified using Zy-
moClean columns, electroporated into ElectroMAX DH10B T1 phage-resistant competent cells
(product number 12033-015, Invitrogen) and plated on LB plates supplemented with 100 pg/ml
of ampicillin. These transformations yielded between 400,000 and 800,000 unique transfor-
mants per plate, as judged by plating a 1:4,000 dilution of the transformations on a second set
of plates. Transformation of a parallel no-insert control ligation yielded approximately 50-fold
fewer colonies, indicating that self ligation of pHW?2000 only accounts for a small fraction of the
transformants. For each library, I performed three transformations, grew the plates overnight,
and then scraped the colonies into liquid LB supplemented with ampicillin and mini-prepped
several hours later to yield the plasmid mutant libraries. These libraries each contained in excess
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of 10° unique transformants, most of which will be unique codon mutants of the NP gene.

I sequenced the NP gene for 30 individual clones drawn from the four mutant libraries. As
shown in fig. S1, the number of mutations per clone was approximately Poisson distributed and
the mutations occurred uniformly along the primary sequence. If all codon mutations are made
with equal probability, 9/63 of the mutations should be single-nucleotide changes, 27/63 should
be two-nucleotide changes, and 27/63 should be three-nucleotide changes. This is approxi-
mately what was observed in the Sanger-sequenced clones. The nucleotide composition of the
mutated codons was roughly uniform, and there was no tendency for clustering of multiple mu-
tations in primary sequence. The full results of the Sanger sequencing and analysis are ht tps :
//github.com/jbloom/SangerMutantLibraryAnalysis/tree/v0.1. The re-
sults of this Sanger sequencing are compatible with the mutation frequencies obtained from
deep sequencing the mutDNA samples after subtracting off the sequencing error rate estimated
from the DNA samples (Fig. 1B), especially considering that the statistics from the Sanger
sequencing are subject to sampling error due to the limited number of clones analyzed.
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Viral growth and passage

As described in the main text, two independent replicates of viral growth and passage were
performed (replicate A and replicate B). The experimental procedures were mostly identical
between replicates, but there were a few small differences. In the actual experimental chronol-
ogy, replicate B was performed first, and the modifications in replicate A were designed to
improve the sampling of the mutant plasmids by the created mutant viruses. These modifi-
cations may be the reason why replicate A slightly outperforms replicate B by two objective
measures: the viruses more completely sample the codon mutations (Fig. 1 versus fig. S4),
and the evolutionary model derived solely from replicate A gives a higher likelihood than the
evolutionary model derived solely from replicate B (Table 2, table S6, table S7).

For replicate B, I used reverse genetics to rescue viruses carrying the Aichi/1968 NP or one
of its derivatives, PB2 and PA from the A/Nanchang/933/1995 (H3N2), a PB1 gene segment
encoding GFP, and HA / NA /M /NS from A/WSN/1933 (HIN1) strain. With the exception of
the variants of NP used, these viruses are identical to those described in (24), and were rescued
by reverse genetics in 293T-CMV-Nan95-PB1 and MDCK-SIAT1-CMV-Nan95-PB1 cells as
described in that reference. The previous section describes four NP codon-mutant libraries, two
of the wildtype Aichi/1968 gene (WT-1 and WT-2) and two of the N334H variant (N334H-1
and N334H-2). I grew mutant viruses from all four mutant libraries, and four paired unmutated
viruses from independent preps of the parent plasmids. A major goal was to maintain diversity
during viral creation by reverse genetics — the experiment would obviously be undermined if
most of the rescued viruses derived from a small number of transfected plasmids. I therefore
performed the reverse genetics in 15 cm tissue-culture dishes to maximize the number of trans-
fected cells. Specifically, 15 cm dishes were seeded with 107 293T-CMV-Nan95-PB1 cells in
D10 media (DMEM with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 100
U/ml penicillin, and 100 pg/ml streptomycin). At 20 hours post-seeding, the dishes were trans-
fected with 2.8 pg of each of the eight reverse-genetics plasmids. At 20 hours post-transfection,
about 20% of the cells expressed GFP (indicating transcription by the viral polymerase of the
GFP encoded by pHH-PB1flank-eGFP), suggesting that many unique cells were transfected.
At 20 hours post-transfection, the media was changed to the low serum media described above.
At 78 hours post-transfection, the viral supernatants were collected, clarified by centrifugation
at 2000xg for 5 minutes, and stored at 4°C. The viruses were titered by flow cytometry as de-
scribed previously (24) — titers were between 1 x 10 and 4 x 102 infectious particles per ul. A
control lacking the NP gene yielded no infectious virus as expected.

The virus was then passaged in MDCK-SIAT1-CMV-Nan95-PB1 cells. These cells were
seeded into 15 c¢m dishes, and when they had reached a density of 107 per plate they were
infected with 10° infectious particles (MOI of 0.1) of the transfectant viruses in low serum
media. After 18 hours, 30-50% of the cells were green as judged by microscopy, indicating viral
spread. At 40 hours post-transfection, 100% of the cells were green and many showed clear
signs of cytopathic effect. At this time the viral supernatants were again collected, clarified,
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and stored at 4°C. NP cDNA isolated from these viruses was the source the deep-sequencing
samples virus-pl and mutvirus-p1 in Fig. 1A. The virus was then passaged a second time
exactly as before (again using an MOI of 0.1). NP cDNA from these twice-passaged viruses
constituted the source for the samples virus-p2 and mutvirus-p2 in Fig. 1A.

For replicate A, all viruses (both the four mutant viruses and the paired unmutated controls)
were re-grown independently from the same plasmids preps used for replicate B. The experi-
mental process was identical to that used for replicate B except for the following:

e Standard influenza viruses (rather than the GFP-carrying variants) were used, so plasmid
pHW-Nan95-PB1 (24) was substituted for pHH-PB 1flank-eGFP during reverse genetics,
and 293T and MDCK-SIAT1 cells were substituted for the PB1-expressing variants.

e Rather than creating the viruses by transfecting a single 15-cm dish, each of the eight
virus samples was created by transfecting two 12-well dishes, with the dishes seeded at
3 x 10° 293T and 5 x 10* MDCK-SIAT1 cells prior to transfection. The passaging was
then done in four 10 cm dishes for each sample, with the dishes seeded at 4 x 105 MDCK-
SIAT1 cells 12-14 hours prior to infection. The passaging was still done at an MOI of
0.1. These modifications were designed to increase diversity in the viral population.

e The viruses were titered by TCIDS50 rather than flow cytometry.
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Sample preparation and Illumina sequencing

For each sample, a PCR amplicon was created to serve as the template for [llumina sequencing.
The steps used to generate the PCR amplicon for each of the seven sample types (Fig. 1A) are
listed below. Once the PCR template was generated, for all samples the PCR amplicon was
created using the amplicon PCR program described above in 50 pl reactions consisting of 25 ul
of 2X KOD Hot Start Master Mix, 1.5 ul each of 10 uM of 5’-BsmBI-Aichi68-NP and 3’-BsmBI-
Aichi68-NP, the indicated template, and ultrapure water. A small amount of each PCR reaction
was run on an analytical agarose gel to confirm the desired band. The remainder was then run
on its own agarose gel without any ladder (to avoid contamination) after carefully cleaning the
gel rig and all related equipment. The amplicons were excised from the gels, purified over
ZymoClean columns, and analyzed using a NanoDrop to ensure that the absorbance at 260 nm
was at least 1.8 times that at 230 nm and 280 nm. The templates were as follows:

e DNA: The templates for these amplicons were 10 ng of the unmutated independent plas-
mid preps used to create the codon mutant libraries.

e mutDNA: The templates for these amplicons were 10 ng of the plasmid mutant libraries.

e RNA: This amplicon quantifies the net error rate of transcription and reverse transcrip-
tion. Because the viral RNA is initially transcribed from the reverse-genetics plasmids
by RNA polymerase I but the bidirectional reverse-genetics plasmids direct transcription
of RNA by both RNA polymerases I and II (26), the RNA templates for these ampli-
cons were transcribed from plasmids derived from pHH21 (47), which only directs tran-
scription by RNA polymerase 1. The unmutated WT and N334H NP genes were cloned
into this plasmid to create pHH-Aichi68-NP and pHH-Aichi68-NP-N334H. Independent
preparations of these plasmids were transfected into 293T cells, transfecting 2 g of plas-
mid into 5 x 10° cells in 6-well dishes. After 32 hours, total RNA was isolated using
Qiagen RNeasy columns and treated with the Ambion TURBO DNA-free kit (Applied
Biosystems AM1907) to remove residual plasmid DNA. This RNA was used as a tem-
plate for reverse transcription with AccuScript (Agilent 200820) using the primers 5’-
BsmBI-Aichi68-NP and 3’-BsmBI-Aichi68-NP. The resulting cDNA was quantified by
qPCR specific for NP (see below), which showed high levels of NP cDNA in the reverse-
transcription reactions but undetectable levels in control reactions lacking the reverse
transcriptase, indicating that residual plasmid DNA had been successfully removed. A
volume of cDNA that contained at least 2 x 10° NP ¢cDNA molecules (as quantified by
qPCR) was used as template for the amplicon PCR reaction. Control PCR reactions us-
ing equivalent volumes of template from the no reverse-transcriptase control reactions
yielded no product.

e virus-pl: This amplicon was derived from virus created from the unmutated plasmid and
collected at the end of the first passage. Clarified virus supernatant was ultracentrifuged
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at 64,000 x g for 1.5 hours at 4 °C, and the supernatant was decanted. Total RNA was then
isolated from the viral pellet using a Qiagen RNeasy kit. This RNA was used as a template
for reverse transcription with AccuScript using the primers 5’-BsmBI-Aichi68-NP and 3’-
BsmBI-Aichi68-NP. The resulting cDNA was quantified by qPCR, which showed high
levels of NP cDNA in the reverse-transcription reactions but undetectable levels in control
reactions lacking the reverse transcriptase. A volume of cDNA that contained at least 107
NP cDNA molecules (as quantified by gPCR) was used as template for the amplicon
PCR reaction. Control PCR reactions using equivalent volumes of template from the no
reverse-transcriptase control reactions yielded no product.

e virus-p2, mutvirus-p1, mutvirus-p2: These amplicons were created as for the virus-p1
amplicons, but used the appropriate virus as the initial template as outlined in Fig. 1A.

An important note: it was found that the use of relatively new RNeasy kits with S-mercaptoethanol
(areducing agent) freshly added per the manufacturer’s instructions was necessary to avoid what
appeared to be oxidative damage to purified RNA.

The overall experiment only makes sense if the sequenced NP genes derive from a large di-
versity of initial template molecules. Therefore, qPCR was used to quantify the molecules pro-
duced by reverse transcription to ensure that a sufficiently large number were used as PCR tem-
plates to create the amplicons. The qPCR primers were 5’-Aichi68-NP-for (gcaacagctggtctgactcaca)
and 3’-Aichi68-NP-rev (t ccatgccggtgcgaacaag). The qPCR reactions were performed
using the SYBR Green PCR Master Mix (Applied Biosystems 4309155) following the man-
ufacturer’s instructions. Linear NP PCR-ed from the pHWAichi68-NP plasmid was used as a
quantification standard — the use of a linear standard is important, since amplification efficien-
cies differ for linear and circular templates (42). The standard curves were linear with respect to
the amount of NP standard over the range from 102 to 10? NP molecules. These standard curves
were used to determine the absolute number of NP cDNA molecules after reverse transcription.
Note that the use of only 25 thermal cycles in the amplicon PCR program provides a second
check that there are a substantial number of template molecules, as this moderate number of
thermal cycles will not lead to sufficient product if there are only a few template molecules.

In order to allow the Illumina sequencing inserts to be read in both directions by paired-end
50 nt reads (fig. S2), it was necessary to us an [llumina library-prep protocol that created NP
inserts that were roughly 50 nt in length. This was done via a modification of the Illumina Nex-
tera protocol. First, concentrations of the PCR amplicons were determined using PicoGreen
(Invitrogen P7859). These amplicons were used as input to the [llumina Nextera DNA Sample
Preparation kit (Illumina FC-121-1031). The manufacturer’s protocol for the tagmentation step
was modified to use 5-fold less input DNA (10 ng rather than 50 ng) and two-fold more tagmen-
tation enzyme (10 pl rather than 5 pul), and the incubation at 55 °C was doubled from 5 minutes
to 10 minutes. Samples were barcoded using the Nextera Index Kit for 96-indices (Illumina FC-
121-1012). For index 1, the barcoding was: DNA with N701, RNA with N702, mutDNA with
N703, virus-p1 with N704, mutvirus-pl with N705, virus-p2 with N706, and mutvirus-p2
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with N707. After completion of the Nextera PCR, the samples were subjected to a ZymoClean
purification rather than the bead cleanup step specified in the Nextera protocol. The size distri-
bution of these purified PCR products was analyzed using an Agilent 200 TapeStation Instru-
ment. If the NP sequencing insert is exactly 50 nt in size, then the product of the Nextera PCR
should be 186 nt in length after accounting for the addition of the Nextera adaptors. The actual
size distribution was peaked close to this value. The ZymoClean-purified PCR products were
quantified using PicoGreen and combined in equal amounts into pools: a WT-1 pool of the seven
samples for that library, a WT-2 pool of the seven samples for that library, etc. These pools were
subjected to further size selection by running them on a 4% agarose gel versus a custom ladder
containing 171 and 196 nt bands created by PCR from a GFP template using the forward primer
gcacggggccgtcgecg and the reverse primers tggggcacaagctggagtacaac (for the
171 nt band) and gacttcaaggaggacggcaacatcc (for the 196 nt band). The gel slice for
the sample pools corresponding to sizes between 171 and 196 nt was excised, and purified using
a ZymoClean column. A separate clean gel was run for each pool to avoid cross-contamination.
Library QC and cluster optimization were performed using Agilent Technologies qPCR
NGS Library Quantification Kit (Agilent Technologies, Santa Clara, CA, USA). Libraries were
introduced onto the flow cell using an Illumina cBot (Illumina, Inc., San Diego, CA, USA) and a
TruSeq Rapid Duo cBot Sample Loading Kit. Cluster generation and deep sequencing was per-
formed on an Illumina HiSeq 2500 using an [llumina TruSeq Rapid PE Cluster Kit and TruSeq
Rapid SBS Kit. A paired-end, 50 nt read-length (PE50) sequencing strategy was performed
in rapid run mode. Image analysis and base calling were performed using Illumina’s Real
Time Analysis v1.17.20.0 software, followed by demultiplexing of indexed reads and genera-
tion of FASTQ files, using Illumina’s CASAVA v1.8.2 software (http://www.illumina.
com/software.ilmn). These FASTQ files were uploaded to the SRA under accession
SRP036064 (see http://www.ncbi.nlm.nih.gov/sra/?term=SRP036064).
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Read alignment and quantification of mutation frequencies

A custom Python software package was created to quantify the frequencies of mutations from
the Illumina sequencing. A detailed description of the algorithm is at http://jbloom.
github.io/mapmuts/example_2013Analysis_Influenza_ NP_Aichi68.html.
The source code is at https://github.com/ jbloom/mapmuts. Briefly:

1. Reads were discarded if either read in a pair failed the Illumina chastity filter, had a mean
Q-score less than 25, or had more than two ambiguous (N) nucleotides.

2. The remaining paired reads were aligned to each other, and retained only if they shared
at least 30 nt of overlap, disagreed at no more than one site, and matched the expected
terminal Illumina adaptors with no more than one mismatch.

3. The overlap of the paired reads was aligned to NP, disallowing alignments with gaps
or more than six nucleotide mismatches. A small fraction of alignments corresponded
exclusively to the noncoding termini of the viral RNA; the rest contained portions of the
NP coding sequence.

4. For every paired read that aligned with NP, the codon identity was called if both reads
concurred for all three nucleotides in the codon. If the reads disagreed or contained an
ambiguity in that codon, the identity was not called.

A summary of alignment statistics and read depth is in fig. S3; The mutation frequen-
cies are summarized in Fig. 1B and fig. S4. Full data can be accessed via http://jbloom.
github.io/mapmuts/example_2013Analysis_Influenza_ NP_Aichi68.html.
The apparent mutation frequency in the DNA samples quantifies the combination of the PCR
and sequencing errors that affects all samples. The apparent mutation frequencies are not much
higher in the RNA, virus-p1, and virus-p2 samples — indicating that reverse transcription and
viral replication introduce only a low frequency of additional errors. The sum of all of these
errors is much less than the targeted mutagenesis rate in the mutDNA samples, meaning that
selection can be clearly distinguished.

The completeness with which mutations were sampled is most easily discerned by exam-
ining the number of times that multi-nucleotide codon mutations are identified (this is more
straightforward than looking at single-nucleotide codon mutations, since the latter are con-
founded by sequencing errors). Fig. 1C and fig. S4 show that nearly all mutations were present
in the mutDNA samples. When examining the mutvirus samples, the analysis is confounded
by the fact that mutations could be absent because they were never packaged into viruses, or
because they were purged by selection. It is therefore informative to look at synonymous mu-
tations which are usually — but not always (27) — relatively neutral. This examination shows
that most synonymous mutations are sampled repeatedly by the mutant viruses, and that repli-
cate A seems to be superior to replicate B in this respect — perhaps because of the experimental
modifications designed to improve the viral diversity during reverse genetics for replicate A.
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Inference of the amino-acid preferences

The approach described here is based on the assumption that there is an inherent preference for
each amino acid at each site in the protein. This assumption is clearly not completely accurate,
as the effect of a mutation at one site can be influenced by the identities of other sites. However,
experimental work with NP (24) and other proteins (43,44, 45,46) suggests that at an evolution-
ary level, sites interact mostly through generic effects on stability and folding. Furthermore,
the effects of mutations on stability and folding tend to be conserved during evolution (25, 43).
So one justification for assuming site-specific but site-independent preferences is that selection
on a mutation is mostly determined by whether the protein can tolerate its effect on stability or
folding, so stabilizing amino acids will be tolerated in most genetic backgrounds while desta-
bilizing amino acids will only be tolerated in some backgrounds, as has been described experi-
mentally (24) and theoretically (47). A more pragmatic justification is that the work here builds
off this assumption to create evolutionary models that are much better than existing alternatives.

Assume that the preferences are entirely at the amino-acid level and are indifferent to the
specific codon (the study of preferences for synonymous codons is an interesting area for future
work). Denote the preference of site r for amino-acid a as 7, ,, where

S Ta =1 @)

Define 7, , /™, » as the expected ratio of amino-acid a to o’ after viral growth if both are initially
introduced into the mutant library at equal frequency. Mutations that enhance viral growth will
have larger values of , ,, while mutations that hamper growth will have lower values of 7, ,.
However, 7, , /7, .- cannot be simply interpreted as the fitness effect of mutating site r from a to
a’: because most clones have multiple mutations, this ratio summarizes the effect of a mutation
in a variety of related genetic backgrounds. A mutation can therefore have a ratio greater than
one due to its inherent effect on viral growth or its effect on the tolerance for other mutations
(or both). This analysis does not separate these factors, but experimental work (24) has shown
that it is fairly common for one mutation to NP to alter the tolerance to a subsequent one.

The most naive approach is to set 7, , proportional to the frequency of amino-acid a in
mutvirus-p1 divided by its frequency in mutDNA, and then apply the normalization in Equa-
tion 2. However, such an approach is problematic for several reasons. First, it fails to account
for errors (PCR, reverse-transcription) that inflate the observed frequencies of some mutations.
Second, estimating ratios by dividing finite counts is notoriously statistically biased (48, 49).
For example, in the limiting case where a mutation is counted once in mutvirus-p1 and not at
all in mutDNA, the ratio is infinity — yet in practice such low counts give little confidence that
enough variants have been assayed to estimate the true effect of the mutation.

To circumvent these problems, I used an approach that explicitly accounts for the sampling
statistics. The approach begins with prior estimates that the 7, , values are all equal, and that the
error and mutation rates for each site are equal to the library averages. Multinomial likelihood
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functions give the probability of observing a set of counts given the 7, , values and the various
error and mutation rates. The posterior mean of the 7, , values is estimated by MCMC.

Use the counts in DNA to quantify errors due to PCR and sequencing. Use the counts in
RNA to quantify errors due to reverse transcription. Assume that transcription of the viral genes
from the reverse-genetics plasmids and subsequent replication of these genes by the influenza
polymerase introduces a negligible number of new mutations. The second of these assumptions
is supported by the fact that the mutation frequency in virus-pl is close to that in RNA (Fig.
1B and fig. S4A). The first of these assumptions is supported by the fact that stop codons are
no more frequent in RNA than in virus-p1 (Fig. 1B and fig. S4A) — deleterious stop codons
arising during transcription will be purged during viral growth, while those arising from reverse-
transcription and sequencing errors will not.

At each site r, there are n¢oqon codons, indexed by i = 1,2, ... ncoqon- Let wt () denote the
wildtype codon at site . Let N°~* be the total number of sequencing reads at site  in DNA,
and let n,* be the number of these reads that report codon i at site r, so that ) n¥* = NPNA,

Ty
Similarly, let N™PN4 N4 and N be the total number of reads at site rand let oA,
nfffg“*, and n;f‘,‘;”"“s be the total number of these reads that report codon ¢ at site r in mutDNA,
RNA, and mutvirus-p1, respectively.
First consider the rate at which site r is erroneously read as some incorrect identity due
to PCR or sequencing errors. Such errors are the only source of non-wildtype reads in the

sequencing of DNA. For all i # wt (), define ¢,.; as the rate at which site 7 is erroneously read

as codon ¢ in DNA. Define €, () = 1 — Y € to be the rate at which site  is correctly
i#wt(r)

read as its wildtype identity of wt () in DNA. Then¢,; = E [n,,]?le /NPNA| where E denotes

the expectation value. Define & = (€1, ..., €ngoqon) and P2 = (nPY*, ... n2N2 ) as

DNA
T,

Pr (@NZ | NPNA, ?) — Mult <n$NX; NP¥A ?) 3)

vectors of the €,; and n).}* values, so the likelihood of observing n™* given e_f and NN is

where Mult denotes the multinomial distribution.

Next consider the rate at which site 7 is erroneously copied during reverse transcription.
These reverse-transcription errors combine with the PCR / sequencing errors defined by € to
create non-wildtype reads in RNA. For all ¢ # wt (r), define p,; as the rate at which site

is miscopied to ¢ during reverse transcription. Define p,wi(y = 1 — > py; as the rate at
1#wt(r)
which site r is correctly reverse transcribed. Ignore as negligibly rare the possibility that a site

is subject to both a reverse-transcription and sequencing / PCR error within the same clone (a
reasonable assumption as both €, ; and p,; are very small for i # wt (r)). Then €.; + p,; —
Oint(r) = B [nEY* /NENA] where 6; () is the Kronecker delta (equal to one if i = wt (r) and

Y2
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zero otherwise). The likelihood of observing nf}NX given E?, e, and NFYA s
_>
Pr (@NK | NRNA B er> Mult ( ENK. NRNa gF |5t 5T> . )
= . .
where 9, = ((51,Wt(r), o 0ng, don7Wt(T)) is a vector that is all zeros except for the element wt (7).

Next consider the rate at which site r is mutated to some other codon in the plasmid mutant
library. These mutations combine with the PCR / sequencing errors defined by €, to create non-
wildtype reads in mutDNA. For all i # wt (r), define p,; as the rate at which site r is mutated

to codon 7 in the mutant library. Define ji, () = 1 — > iy as the rate at which site 7 is not
i#wt(r)
mutated. Ignore as negligibly rare the possibility that a site is subject to both a mutation and a

sequencing / PCR error within the same clone. Then ji, ; +€,; —0; wi(r) = E [ mutDNA [V "‘““DNA}

mutDNZ — —

The likelihood of observing n! given yi,, €,, and NP is
%
Pr (n?mtDNz ’ N;rlutDNA’ e €r> Mult ( mutDNz NmutDNA) o+ 6_,? - 5T> ) (5)

Finally, consider the effect of the preferences of each site r for different amino acids, as de-
noted by the m, , values. Selection due to these preferences is manifested in mutvirus. This se-
lection acts on the mutations in the mutant library (1,.;), although the actual counts in mutvirus
are also affected by the sequencing / PCR errors (¢, ;) and reverse-transcription errors (p;.;).
Again ignore as negligibly rare the possibility that a site is subject to more than one of these
sources of mutatlon and error within a single clone. Let A (i) denote the amino acid encoded

by codon 7. Let 7, 7 be the vector of , , values. Define the vector-valued function 7 as

? (ﬁ)) = (7.‘-7“7/4(1)7 Tt 77TT»A(nc0don)) ) (6)

so that this function returns a n..qon-€lement vector constructed from 7, m,. Because the selec-
tion in mutvirus due to the preferences m,. 4(; occurs after the mutagenesis 4, ; but before the
reverse-transcription errors p,.; and the sequencing / PCR errors €, ;, then E [ mutvirus [ [\ m‘“”“s} =

-1 7
€ri + Prii + Y X Tr AG) X Mri — 2 X 5i,wt(r) where Tr = (Z 7T-r,A(i):ur,i) = <? (7?)7“) ’ m)

(where - denotes the dot product) is a normalization factor that accounts for the fact that changes
in the frequency of one variant due to selection will influence the observed frequency of other

variants. The likelihood of observing n;"**"** given ,LZ}, e_Z, E?, 7r_>r, and ™™ is therefore

Sy sy — . , C(m)om —
mutvirus mutvirus. mutvirus r /-‘LT

Ly €y Pry Tpy NP ) = Mult [ nyueviees; Nouvies e+ o+ — 20,

)T

(7T,«) o

(7)

Pr ( mutvirus

where o is the Hademard (entry-wise) product.
Specity priors over e, E? /Ti and 7, in the form of Dirichlet distributions (denoted here by
Dir). For the priors over the mutation rates m, I choose Dirichlet-distribution parameters such
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that the mean of the prior expectation for the mutation rate at each site r and codon i is equal to
the average value for all sites, estimated as the frequency in mutDNA minus the frequency in
DNA (Fig. 1B and fig. S4), denoted by 7. So the prior is

Pr (m) = Dir (m7 Tcodon * Oy * m) (8)
where @ is the n¢od0n-element vector with elements o, i = 7& + 0 wi(r) (1 — Neodonft) and o,
is the scalar concentration parameter.

For the priors over ¢,; and p,;, the Dirichlet-distribution parameters again represent the
average value for all sites, but now also depend on the number of nucleotide changes in the
codon mutation since sequencing / PCR and reverse-transcription errors are far more likely to
lead to single-nucleotide codon changes than multiple-nucleotide codon changes (Fig. 1B and
fig. S4). Let M (wt (r),7) be the number of nucleotide changes in the mutation from codon
wt (r) to codon 7. For example, M (GCA,ACA) = 1 and M (GCA,ATA) = 2. Let €, €&, and €3
be the average error rates for one-, two-, and three-nucleotide codon mutations, respectively —
these are estimated as the frequencies in DNA. So the prior is

Pr <€_r>> = Dir (€—r>7 Ncodon * O¢ Oé_e;) (9)

where (f} is the neodon-element vector with elements o, ; = €xq(wi(r),;) Where 6g = 1 — 9 X
€1 — 27 X €5 — 27 X €3, and where o, is the scalar concentration parameter.

Similarly, let p1, p2, and p3 be the average reverse-transcription error rates for one-, two-,
and three-nucleotide codon mutations, respectively — these are estimated as the frequencies in
RNA minus those in DNA. So the prior is

Pl” (ﬁ;) = DII‘ (ﬁv Ncodon Jp : m) (10)

where om is the ncoqon-element vector with elements o, ; = Pat(wi(r)) Where pg = 1 —9 x
p1 — 27 X py — 27 X p3, and where o, is the scalar concentration parameter.

Specity a symmetric Dirichlet-distribution prior over 7, (note that any other prior, such as
one that favored wildtype, would implicitly favor certain identities based empirically on the
wildtype sequence, and so would not be in the spirit of the parameter-free derivation of the m, ,
values employed here). Specifically, use a prior of

Pr () = Dir (? Oy ?) (11)

— . ) ) .
where 1 is the n,,-element vector that is all ones, and o is the scalar concentration parameter.
It is now possible to writ expressions for the likelihoods and posterior probabilities. Let

AN \
_ DNA tDNA , RNA tvirus DNA tDNA RNA tvi
N, = (nbNA pmutDNA pRNA fpmutviras | \TDNA & \TmutDNA & \TRNA & \rmutvires & denote the full set of

counts for site . The likelihood of N, given values for the preferences and mutation / error
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rates is

PeN, | &) = Pr(nl | N @) x Pr (| NP7 x

r

Pr (n:)utDNz | N;nutDNA, 6—T>’ /71“) >
—
mutvirus mutvirus - = = =
Pr (nr ¢ Newies Sem o 7r,,> (12)

where the likelihoods that compose Equation 12 are defined by Equations 3, 4, 5, and 7. The
posterior probability of a specific value for the preferences and mutation / error rates is

Pr (7, €, oo iy | N;) = CoxPr(N, |7, & 57 1) X (13)
Pr (&) x Pr(pr) x Pr(p;) x Pr () (14)

where C). is a normalization constant that does not need to be explicitly calculated in the MCMC
approach used here. The posterior over the preferences 7, can be calculated by integrating over

Equation 13 to give

Pr(7 | ;) = / / / Pr(R, 2, 51 | N, deldpldi, (15)

where the integration is performed by MCMC. The posterior is summarized by its mean,
<ﬁ>=/ﬁxPr(ﬁ|{Nr’“|1§k§7€})dﬁ. (16)

In practice, each replicate consists of four libraries (WT-1, WT-2, N334H-1, and N334H-2) —
the posterior mean preferences inferred for each library within a replicate are averaged to give
the estimated preferences for that replicate. The preferences within each replicate are highly
correlated regardless of whether mutvirus-p1l or mutvirus-p2 is used as the mutvirus data
set (Fig. 2A,B). This correlation between passages is consistent with the interpretation of the
preferences as the fraction of genetic backgrounds that tolerate a mutation (if it was a selection
coefficient, there should be further enrichment upon further passage). The preferences averaged
over both replicates serve as the “best” estimate, and are displayed in Fig. 2D. This figure was
created using the WebLogo 3 program (50, 51).

Fig. 2D also shows relative solvent accessibility (RSA) and secondary structure for residues
present in chain C of NP crystal structure PDB 2IQH (28). The total accessible surface area
(ASA) and the secondary structure for each residue in this monomer alone was calculated using
DSSP (52, 53). The RSAs are the total ASA divided by the maximum ASA defined in (54).
The secondary structure codes returned by DSSP were grouped into three classes: helix (DSSP
codes G, H, or I), strand (DSSP codes B or E), and loop (any other DSSP code).

A full description of the algorithm used to infer the preferences along with complete data can
be accessed at http://Jjbloom.github.io/mapmuts/example_2013Analysis_
Influenza_NP_Aichi68.html.
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The experimentally determined evolutionary model

The foregoing sections described measurement of two quantities: the inherent preference m, ,
for amino-acid a at site r, and the rates R,,_,,, of mutations from one nucleotide to another.
Assuming that premature stop codons are lethal, evolution can traverse 61 codons at each site.
If mutations occur a single nucleotide at a time, the rate of mutation from codon z to codon y is

0 if z and vy differ by more than one nucleotide
Quy = Y Y (17)

R,,—., if z differs from y by a single nucleotide change m to n.

where the rates for a mutation and its reversal are enforced to be equal as described in the section
on mutation rates.

Let F, ., denote the probability that a mutation of site r from x to y goes to fixation, and let
A (z) to denote the amino acid encoded by x. Then the rate of substitution P, ;, from x to y is

P, - Quy %fA(lL") = A(y) (18)
’ Quy X Frpyy if A(z) # A(y).

Intuitively, it is obvious that the 7, , values provide information about the fixation probabil-
ities [ ,,. For instance, it seems reasonable to expect that a mutation from z to y at site r
will be more likely to fix (relatively larger value of F, ,,) if amino-acid A (y) is preferred to
A () at this this site (if 7, 4(y) > 7, 4(z)) and less likely to fix if 7, 4¢y) < 7, a(2). However, the
exact relationship between 7, , and F; ;, is unclear. A rigorous derivation would require knowl-
edge of unknown and probably unmeasurable population-genetics parameters for the both the
deep-sequencing experiment and the naturally evolving population. So instead, I provide two
heuristic relationships between m, , and F, ,,. Both relationships satisfy detailed balance (re-
versibility), such that m, 4(;) X Fyzy = T a(y) X Frye, meaning that F,. ., defines a Markov
process with 7, , as its stationary state when all amino-acid interchanges are equally probable.

It is helpful to first consider what the 7, , values actually represent. Most NP variants in
the libraries contain multiple mutations (an average of about three per gene). The m, , values
therefore represent the relative preferences for amino acids at a site averaged over the nearby
mutational neighborhood of the parent protein — they do not simply represent the effect of
each mutation in the parent. (Note that experimental work does support the idea of conserved
site preferences of this sort (25)). Therefore, one interpretation is that 7, , is proportional to
the fraction of genetic backgrounds in which a mutation is tolerated. In this interpretation, a
mutation from z to y is always tolerated if 7, 4(,) > 7, 4(x), but is only sometimes tolerated if
Tr A(z) < Tr,A(y)- In this scenario, there is strong selection during initial viral growth on whether
the mutation is tolerated in the particular genetic background in which it occurs, and there
should be little further enrichment or depletion during subsequent viral passages. In contrast,
if the m, , values are related to selection coefficients, the enrichment / depletion of beneficial
/ deleterious mutations should increase upon further viral passage. Fig. 1A,B shows that the
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enrichment of mutations after two viral passages is very similar to the enrichment after one
viral passage. These data are therefore loosely consistent with interpreting the 7, , values as
proportional to the fraction of genetic backgrounds in which mutations are tolerated. Note that
this interpretation can be related to the the selection-threshold evolutionary dynamics described
in (47). The equation that describes this scenario is

1 if A(z) =A(y) orm, > T Az
Fray =\ Traw other(wzse v Y - (19
Tr, A(z) '

An alternative interpretation is that £, ,, reflects the selection coefficient for the mutation
from A (z) to A (y). Mathematically formalizing this interpretation requires relating the .,
values to selection coefficients to determine F. ,,. One relationship was suggested by Halpern
and Bruno (5). Specifically, if the 7, , values represent the expected amino-acid equilibrium fre-
quencies in a hypothetical evolving population in which all amino-acid interchanges are equally
likely, and assuming (probably unrealistically) that this hypothetical population and the actual
population in which NP evolves are in the weak-mutation limit and have identical constant
effective population sizes, then Halpern and Bruno (5) derive

1 if A(x) = A(y) or mr @) = Tr.aw)
Tr, A(y)
Fr:r x In Az . 20
xy % otherwise. .
Tr, A(y)

Once F; ;, has been defined by either Equation 19 or 20, it is possible to compute the codon
substitution probabilities P, ;, using Equation 18. The additional definition of P, ;. as

P’r,a:ac = _ZPr,myu (21)
y#T

makes it possible to construct a 61 x 61 matrix
Pr = [Pr,xy] (22)

that gives the codon substitution rates for site r. If the frequencies of the individual codons at
site r at time zero are given by the 61-element vector p, o (normalized such that its entries sum
to one), then the frequencies at some future time ¢ are given by

Pr,t = Pr,0 €Xp (UtPr) (23)

where w is a scaling constant that defines the rate of sequence change for the particular units used
for t. For reasonable values of 2, ,,, and 7, ,, P, + I is an irreducible and acyclic stochastic
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matrix (where I is the identity matrix). The Perron-Frobenius theorems therefore guarantee that
for each site r, there is a unique stationary distribution p, . satisfying the eigenvector equation

Pr,co = Pr, (Pr + I) . (24)

These expected evolutionary equilibrium frequencies p; o, are not identical to the preferences
T, because of infuence of the genetic code and the mutation rates. The evolutionary equilib-
rium frequencies defined by using Equation 19 for F; ,, are plotted in fig. S5.

The P, ., values define a parameter-free codon substitution model that can be used in phylo-
genetic algorithms as described in the next section. With the choices for F;. ,,, and (), described
above, this substitution model is reversible.
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Phylogenetic analyses

A detailed description of the phylogenetic analyses is availableat http: //jbloom.github.
io/phyloExpCM/example_2013Analysis_Influenza_NP_Human_1918_Descended.
html. The source code is at https://github.com/jbloom/phyloExpCM.

A set of NP coding sequences was assembled for human influenza lineages descended from
a close relative the 1918 virus (HIN1 from 1918 to 1957, H2N2 from 1957 to 1968, H3N2
from 1968 to 2013, and seasonal HIN1 from 1977 to 2008). All full-length NP sequences
from the Influenza Virus Resource (55) were downloaded, and up to three unique sequences
per year from each of the four lineages described above were retained. These sequences were
aligned using EMBOSS needle (56). Outlier sequences that correspond to heavily lab-adapted
strains, lab recombinants, mis-annotated sequences, or zoonotic transfers (for example, a small
number of human H3N2 strains are from zoonotic swine variant H3N2 rather than the main
human H3N?2 lineage) were removed. This was done by first removing known outliers in the
influenza databases (57), and then using an analysis with RAXML (58) and Path-O-Gen (http:
//tree.bio.ed.ac.uk/software/pathogen/) to remove remaining sequences that
were extreme outliers from the molecular clock. The final alignment after removing outliers
consisted of 274 unique NP sequences.

Maximum-likelihood phylogenetic trees were constructed using codonPhyML (29). Two
substitution models were used. The first was GY94 (6) using CF3x4 equilibrium frequen-
cies (59), a single transition-transversion ratio optimized by maximum likelihood, and a synonymous-
nonsynonymous ratio drawn from four discrete gamma-distributed categories with mean and
shape parameter optimized by maximum likelihood (9). The second was KOSI07 (7) using the F
method for the equilibrium frequencies, optimizing the relative transversion-transition ratio by
maximum likelihood, and letting the relative synonymous-nonsynonymous ratio again be drawn
from four gamma-distributed categories with mean and shape parameter optimized by maxi-
mum likelihood. The trees produced by codonPhyML are unrooted. These trees were rooted
using Path-O-Gen (http://tree.bio.ed.ac.uk/software/pathogen/), and visu-
alized with FigTree (http://tree.bio.ed.ac.uk/software/figtree/) to create
the images in Fig. 3 and fig. S6. The tree topologies are extremely similar for both models.

The evolutionary models were compared by using them to optimize the branch lengths of the
fixed tree topologies in Fig. 3 and fig. S6 so as to maximize the likelihood using HYPHY (30) for
sites 2 to 498 (site 1 was not included, since the N-terminal methionine is conserved and was not
mutated in the plasmid mutant libraries). The results are shown in Table 2, table S6, and table
S7. Regardless of which tree topology was used, the experimentally determined evolutionary
models outperformed all variants of GY94 and KOSIO7. The experimentally determined evolu-
tionary models performed best when using the preferences determined from the combined data
from both replicates and using Equation 19 to compute the fixation probabilities. Using the data
from just one replicate also outperforms GY94 and KOSI07, although the likelihoods are slightly
worse. In terms of the completeness with which mutations are sampled in the mutant viruses,
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replicate A is superior to replicate B as discussed above — and the former replicate gives higher
likelihoods. If the fixation probabilities are instead determined using the method of Halpern and
Bruno (5) as in Equation 20, the experimentally determined models still outperform GY94 and
KOSIO7 — but the likelihoods are substantially worse. To check that the experimentally deter-
mined models really do utilize the site-specific preferences information, the preferences were
randomized among sites and likelihoods were computed. These randomized models perform
vastly worse than any of the alternatives.

The variants of GY94 and KOSIO7 that were used for the HYPHY analyses are listed in the
tables of likelihoods. The parameters were counted as follows: the simplest variants contained
equilibrium frequency parameters that were empirically estimated from the sequences under
analysis: there are 9 such parameters for GY94 using CF3x4 (6, 59) and 60 such parameters
for KOSIO7 using F (7). In addition, all variants of the models contain a transition-transversion
ratio optimized by likelihood, and at least a single synonymous-nonsynonymous ratio optimized
by likelihood. For more complex variants, one or more of the following is also done:

e The overall substitution rate is drawn from a gamma distribution with four discrete cate-
gories to add one shape parameter (8).

e The nonsynonymous-synonymous ratio is drawn from a gamma distribution with four
discrete categories to add one shape parameter (9).

e A different nonsynonymous-synonymous ratio is estimated for each branch (60) to add
547 parameters.
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mutations

Clone 1
Clone 2
Clone 3
Clone 4
Clone 5
Clone 6
Clone 7
Clone 8
Clone 9
Clone 10
Clone 11
Clone 12
Clone 13
Clone 14
Clone 15
Clone 16
Clone 17
Clone 18
Clone 19
Clone 20
Clone 21
Clone 22
Clone 23
Clone 24

G62T (G21V), T693C (synonymous), del153-522 (indel)
None

C29T (T10I)

None

None

G429A (synonymous), C447T (synonymous)
None

None

C646A (R216S)

G471T (K157N), G703A (D235N)

T111C (synonymous), T718G (*240E)

T25C (FI9L), T26C (F9S)

C45T (synonymous), C549T (synonymous)
T319C (Y107H), C372T (synonymous), C539T (A180V)
A488C (K163T)

G274T (G920)

None

None

None

G527A (S176N), A676G (T226A)

G4A (V2I)

T266C (M89T)

None

C30T (synonymous), del45-590 (indel)

Supplementary table S1: Mutations identified by sequencing the 720 nucleotide GFP gene
packaged in the PB1 segment after 25 limiting-dilution passages for 24 independent replicates.
The numbering is sequential beginning with the first nucleotide of the GFP start codon. For
nonsynonymous mutations, the induced amino-acid change is indicated in parentheses.
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mutation type | number of occurrences

total substitutions | 24
transversions | 6

transitions | 18
nonsynonymous | 15

synonymous

stop codons

indels

T—G

T—C

T—A

G—T

G—~C

G—A

C—>T

C—>aG

C—A

A—T

A—G

A—C

oo

—_—— O = O NP, OWO =N

Supplementary table S2: Counts for different types of mutations after the 25 limiting-dilution
passages. The numbers are calculated from table S1. Given that GFP is 720 nucleotides long,
the data suggest a viral mutation rate of 5.6 x 10~° mutations per nucleotide per tissue-culture
generation.
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agcaaaagcagggtagataatcactcacagagtgacatcgaaatcATGGCGTCCCAAGGC
ACCAAACGGTCTTATGAACAGATGGAAACTGATGGGGAACGCCAGAATGCAACTGAGATC
AGAGCATCCGTCGGGAAGATGATTGATGGAATTGGACGATTCTACATCCAAATGTGCACT
GAACTTAAACTCAGTGATTATGAGGGGCGACTGATCCAGAACAGCTTAACAATAGAGAGA
ATGGTGCTCTCTGCTTTTGACGAAAGAAGGAATAAATATCTGGAAGAACATCCCAGCGCG
GGGAAGGATCCTAAGAAAACTGGAGGACCCATATACAAGAGAGTAGATAGAAAGTGGATG
AGGGAACTCGTCCTTTATGACAAAGAAGAAATAAGGCGAATCTGGCGCCAAGCCAATAAT
GGTGATGATGCAACAGCTGGTCTGACTCACATGATGATCTGGCATTCCAATTTGAATGAT
ACAACATACCAGAGGACAAGAGCTCTTGTTCGCACCGGCATGGATCCCAGGATGTGCTCT
CTGATGCAGGGTTCGACTCTCCCTAGGAGGTCTGGAGCTGCAGGCGCTGCAGTCAAAGGA
GTTGGGACAATGGTGATGGAGTTGATAAGGATGATCAAACGTGGGATCAATGATCGGAAC
TTCTGGAGAGGTGAAAATGGACGAAAAACAAGGAGTGCTTACGAGAGAATGTGCAACATT
CTCAAAGGAAAATTTCAAACAGCTGCACAAAGGGCAATGATGGATCAAGTGAGAGAAAGT
CGGAACCCAGGAAATGCTGAGATCGAAGATCTCATCTTTCTGGCACGGTCTGCACTCATA
TTGAGAGGGTCAGTTGCTCACAAATCTTGTCTGCCCGCCTGTGTGTATGGACCTGCCGTA
GCCAGTGGCTACGACTTCGAAAAAGAGGGATACTCTTTAGTGGGAATAGACCCTTTCAAA
CTGCTTCAAAACAGCCAAGTATACAGCCTAATCAGACCGAACGAGAATCCAGCACACAAG
AGTCAGCTGGTGTGGATGGCATGCAATTCTGCTGCATTTGAAGATCTAAGAGTATTAAGC
TTCATCAGAGGGACCAAAGTATCCCCAAGGGGGAAACTTTCCACTAGAGGAGTACAAATT
GCTTCAAATGAAAACATGGATGCTATGGAATCAAGTACTCTTGAACTGAGAAGCAGGTAC
TGGGCCATAAGAACCAGAAGTGGAGGAAACACTAATCAACAGAGGGCCTCTGCAGGTCAA
ATCAGTGTGCAACCTGCATTTTCTGTGCAAAGAAACCTCCCATTTGACAAACCAACCATC
ATGGCAGCATTCACTGGGAATACAGAGGGAAGAACATCAGACATGAGGGCAGAAATTATA
AGGATGATGGAAGGTGCAAAACCAGAAGAAATGTCCTTCCAGGGGCGGGGAGTCTTCGAG
CTCTCGGACGAAAGGGCAGCGAACCCGATCGTGCCCTCTTTTGACATGAGTAATGAAGGA
TCTTATTTCTTCGGAGACAATGCAGAGGAGTACGACAATTAAagaaaaatacccttgttt
ctact

Supplementary table S3: The viral RNA sequence for the wildtype A/Aichi/2/1968 (H3N2)
nucleoprotein as taken from Bloom lab plasmid pHWAIichi68-NP. Shown is the reverse-
complement of the full-length negative-sense viral RNA (so that the coding sequence is written
in the positive orientation). The coding sequence is in capital letters, while the noncoding
termini are in lower case letters. The viral RNA sequence for the N334H A/Aichi2/1968 nucle-
oprotein (plasmid pHWAIichi68-NP-N334H) is identical except that codon 334 is mutated from
AAT to CAT.
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residue | frequencies in | experimentally measured expected equilibrium
natural amino-acid preferences evolutionary frequencies
sequences from experiments
65 R (0.83), K R (0.40), K (0.10), N (0.06) R (0.58), S (0.07)
(0.17)
150 R (1.00) R (0.46), K (0.06), P (0.05), L | R (0.63), L (0.07)
(0.05)
152 R (1.00) R (0.52), K (0.07), Q (0.07) R (0.71)
156 R (1.00) R (0.52), Q (0.06) R (0.69), S (0.06)
174 R (1.00) R (0.58), N (0.06), T (0.05) R (0.75)
175 R (1.00) R (0.46), K (0.16) R (0.66), K (0.08), S (0.05)
195 R (1.00) R (0.51) R (0.69)
199 R (1.00) R (0.44), M (0.08), Y (0.06), V | R (0.64), V (0.05)
(0.05)
213 R (1.00) R (0.51), N (0.06) R (0.69)
214 R (0.72), K K (0.24), H (0.09), R (0.09),Q | R (0.19), K (0.17), A (0.09), H
(0.28) (0.08), M (0.06), N (0.06), A (0.07), 1(0.06), L (0.06), Q
(0.06), 1 (0.06) (0.06)
221 R (1.00) R (0.46), E (0.07), K (0.07) R (0.66), L (0.05)
236 R (0.94), K K (0.32), R (0.30) R (0.51), K (0.18)
(0.06)
355 R (1.00) R (0.29), L (0.13), K (0.09) R (0.43), L (0.19)
357 K (0.56), Q K (0.38), E (0.09), N (0.07), Y | K(0.31), R (0.09), E (0.08), N
(0.44) (0.05) (0.06)
361 R (1.00) R (0.53), V (0.13) R (0.68), V (0.11)
391 R (1.00) R (0.59), K (0.09) R (0.77)
148 Y (1.00) Y (0.54), 1(0.06) Y (0.44),1(0.07), T (0.07), P
(0.06), S (0.06)

Supplementary table S4: For residues involved in NP’s RNA-binding groove, the preferences
and expected evolutionary equilibrium frequencies from the experiments correlate well with
the amino-acid frequencies in naturally occurring sequences. Shown are the 17 residues in the
NP RNA-binding groove in (28). The second column gives the frequencies of amino acids in
all 21,108 full-length NP sequences from influenza A (excluding bat lineages) in the Influenza
Virus Resource as of January-31-2014. The third column gives the experimentally measured
amino-acid preferences (Fig. 2D). The fourth column gives the expected evolutionary equi-
librium frequency of the amino acids based on the experimentally measured preferences and
mutational spectrum (fig. S5). Only residues with frequencies or preferences > 0.05 are listed.
In all cases, the most abundant amino acid in the natural sequences has the highest expected
evolutionary equilibrium frequency. In 15 of 17 cases, the most abundant amino acid in the nat-
ural sequences has the highest experimentally measured preference — in the other two cases, the
most abundant amino acid in the natural sequences is among those with the highest preference.
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residue | stability frequencies| experimentally expected equilibrium
measurement in natural | measured evolutionary
sequences | amino-acid frequencies from
preferences experiments
259 L2598 is L (0.98),S | L (0.23), S (0.04) L (0.36), S (0.06)
destabilizing (0.02)
(AT, = —3.9°C)
280 V280A is V (0.89), V (0.19), A (0.02) V (0.25), A (0.03)
destabilizing A (0.10)
(AT, = —3.5°C)
334 N334H is H (0.93), H (0.28), N (0.12) H (0.23), N (0.10)
stabilizing N (0.07)
(AT, = 4.5°C)
384 R384G is R (0.80), R (0.22), G (0.04) R (0.39), G (0.04)
destabilizing G (0.17)
(AT, = —4.8°C)

Supplementary table SS: For residues where mutations have previously been characterized as
having large effects on the stability of the A/Aichi/2/1968 NP, the more stable amino acid has a
higher preference and is also more frequent in actual NP sequences. The second column gives
the experimentally measured change in melting temperature (A7) induced by the mutation
to the A/Aichi/2/1968 NP as measured in (24) (note that these mutational effects on stability
are largely conserved in other NPs (25)). The third column gives the frequencies of the amino
acids in all 21,108 full-length NP sequences from influenza A (excluding bat lineages) in the
Influenza Virus Resource as of January-31-2014. The fourth column gives the experimentally
measured amino-acid preferences (Fig. 2D). The fifth column gives the expected evolutionary
equilibrium frequency of the amino acids based on the experimentally measured preferences
and mutational spectrum (fig. S5).
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parameters
(optimized +
model log likelihood empirical) AlIC
experimental, combined replicates -12338.9 000+0) 24677.8
experimental, replicate A -12372.8 00+0) 24745.7
experimental, replicate B -12392.0 00+0) 24783.9
Halpern & Bruno, combined replicates -12517.9 00+0) 25035.7
Halpern & Bruno, replicate A -12535.4 00+0) 25070.8
Halpern & Bruno, replicate B -12566.7 00+0) 25133.3
GY94, branch-specific w, multiple rates -12769.1 556 (547 +9) | 26650.1
GY94, multiple w, multiple rates -12853.9 13(4+9) 25733.8
KOSIO7, branch-specific w, multiple rates -12891.7 607 (547 + 60) | 26997.3
GY94, multiple w, one rate -12935.9 12(3+9) 25895.8
KOSIO7, multiple w, multiple rates -12999.9 64 (4 + 60) 26127.7
GY9%4, one w, multiple rates -13069.8 12(3+9) 26163.5
KOSIO07, multiple w, one rate -13154.8 63 (3 +60) 26435.5
KOSIO7, one w, multiple rates -13191.5 63 (3 + 60) 26508.9
GY94, one w, one rate -13205.0 11(2+9) 26431.9
KOSIO7, one w, one rate -13404.0 62 (2 + 60) 26932.0
randomized experimental, combined replicates -14209.4 000+0) 28418.8
randomized experimental, replicate A -14243.7 00+0) 28487.4
randomized experimental, replicate B -14259.1 00+0) 28518.2
randomized Halpern & Bruno, combined replicates -14533.3 00+0) 29066.5
randomized Halpern & Bruno, replicate B -14618.5 00+0) 29236.9
randomized Halpern & Bruno, replicate A -14649.9 00+0) 29299.9

Supplementary table S6: Likelihoods for the various evolutionary models for the tree topol-
ogy inferred with codonPhyML using GY94 (Fig. 3). This table differs from Table 2 in that it
also contains the results from using the experimentally determined evolutionary model defined

by the equation of Halpern and Bruno (Equation 20).
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parameters
(optimized +
model log likelihood empirical) AlIC
experimental, combined replicates -12334.6 000+0) 24669.2
experimental, replicate A -12368.5 00+0) 24737.1
experimental, replicate B -12387.7 00+0) 24775.4
Halpern & Bruno, combined replicates -12513.0 00+0) 25026.0
Halpern & Bruno, replicate A -12530.3 00+0) 25060.7
Halpern & Bruno, replicate B -12562.0 00+0) 25124.0
GY94, branch-specific w, multiple rates -12769.0 556 (547 +9) | 26650.0
GY94, multiple w, multiple rates -12850.8 13(4+9) 257217.5
KOSIO7, branch-specific w, multiple rates -12889.6 607 (547 + 60) | 26993.3
GY94, multiple w, one rate -12932.4 12(3+9) 25888.8
KOSIO7, multiple w, multiple rates -12995.2 64 (4 + 60) 26118.4
GY9%4, one w, multiple rates -13069.1 12(3+9) 26162.3
KOSIO07, multiple w, one rate -13148.2 63 (3 +60) 26422.5
KOSIO7, one w, multiple rates -13188.7 63 (3 + 60) 26503.5
GY94, one w, one rate -13204.7 11 (2+9) 26431.4
KOSIO7, one w, one rate -13401.0 62 (2 + 60) 26926.0
randomized experimental, combined replicates -14205.2 000+0) 28410.5
randomized experimental, replicate A -14239.3 00+0) 28478.7
randomized experimental, replicate B -14255.3 0O+0) 28510.6
randomized Halpern & Bruno, combined replicates -14528.4 00+0) 29056.8
randomized Halpern & Bruno, replicate B -14613.6 00+0) 29227.1
randomized Halpern & Bruno, replicate A -14645.0 00+0) 29290.0

Supplementary table S7: Likelihoods for the various evolutionary models for the tree topol-
ogy inferred with codonPhyML using KOSIO7 (fig. S6). This table differs from table S6 in that
it optimizes the likelihoods on the tree topology from fig. S6 rather than the tree topology from

Fig. 3.
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Supplementary fig. S1: Properties of the codon-mutant libraries as assessed by Sanger se-
quencing of 30 individual clones. The clones have an average of 2.7 codon mutations and
0.1 insertions / deletions per full-length NP coding sequence. (A) The number of mutations
per gene follows an approximately a Poisson distribution, as expected if mutations occur in-
dependently. (B) Mutations occur uniformly along the primary sequence of the gene. (C)
The number of nucleotide changes per codon mutation is roughly as expected if each codon
is randomly mutated to any of the other 63 codons, but there is a slight elevation of single-
nucleotide mutations. (D) The mutant codons have a uniform base composition. (E) In genes
with multiple mutations, there is no tendency for mutations to cluster in primary sequence.
Shown is the actual distribution of pairwise distances between mutations in all multiply mu-
tated clones, as compared to the distribution generated by 1,000 simulations where mutations
are placed randomly along the primary sequence of each multiple-mutant clone. The data
and code used to generate this figure are available at https://github.com/jbloom/
SangerMutantLibraryAnalysis/tree/v0.1.
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Supplementary fig. S2: Illumina sequencing accuracy was increased by using overlapping
paired-end reads. (A) The strategy is to shear the NP fragments to about 50 nucleotides in
length, and then sequence with overlapping paired-end reads. This provides double coverage,
and only codon identities for which both reads agree are called. (B) The actual length distri-
bution of alignable paired reads that had at least 30 nucleotides of overlap (lengths between 30
and 70 nucleotides) for a typical sample.
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Supplementary fig. S3: The number of alignable paired reads for each sample from (A)
replicate A and (B) replicate B. Most read pairs passed the various filters, could be overlapped,
and could have their overlap aligned to NP. (C) The read depth across the primary sequence
for a typical sample. The read depth was not entirely uniform probably due to biases in frag-
mentation locations. A full explanation of the computer code used to generate these figures
is available at http://jbloom.github.io/mapmuts/example_2013Analysis_

Influenza_NP_Aichi68.html.
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Supplementary fig. S4: Plots for replicate B comparable to those shown for replicate A in Fig.
1B,C. Note that comparison of panel B here with Fig. 1C indicates that replicate A did a better
job of sampling mutations in the mutant viruses than did replicate B. A full explanation of the
computer code used to generate these figures is available at http://jbloom.github.io/
mapmuts/example_2013Analysis_Influenza_ NP_Aichi68.html.
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Supplementary fig. S5: The expected frequencies of the amino acids at evolution-
ary equilibrium as calculated from Equation 24 using the experimentally determined evo-
lutionary model from passage 1 of the combined replicates and Equation 19. Note that
these expected frequencies are slightly different than the preferences in Fig. 2D due to
the structure of the genetic code and the mutational rates. For instance, when arginine
and lysine have equal preferences at a site, arginine will tend to have a higher evolution-
ary equilibrium frequency because it is encoded by more codons. The code used to gen-
erate this plot is available at http://jbloom.github.io/phyloExpCM/example_
2013Analysis_Influenza_ NP_Human_1918_Descended.html.
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0.1

Supplementary fig. S6: Phylogenetic tree comparable to that in Fig. 3 except constructed with
the KOSI07 model rather than the GY94 model. Note that the two trees are nearly identical,
presumably because the extremely dense sampling of sequences leads to little ambiguity in the
tree topology.
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Supplementary file S1: The file Preferences.xlsx is an Excel table of the inferred amino-
acid preferences at each site from the combined passage 1 data for the two replicates.
This file contains the numerical data plotted in Fig. 2D. For the computer code and raw
data used to generate this file, see http://jbloom.github.io/mapmuts/example_
2013Analysis_Influenza NP_Aichi68.html.

56


http://jbloom.github.io/mapmuts/example_2013Analysis_Influenza_NP_Aichi68.html
http://jbloom.github.io/mapmuts/example_2013Analysis_Influenza_NP_Aichi68.html
https://doi.org/10.1101/002899
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/002899; this version posted February 20, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Supplementary file S2: The file EvolutionaryEquilibriumFregs.xlsx is an Excel table of the
expected equilibrium frequencies of the amino acids during evolution given the mutational spec-
trum in Table 1, the amino-acid preferences in file S1, and using the interpretation where
these preferences are related to the fraction of the time that a given mutation is tolerated.
This file contains the numerical data plotted in fig. S5. For the computer code and raw data
used to generate this file, see http://jbloom.github.io/phyloExpCM/example_
2013Analysis_Influenza_NP_Human_1918_Descended.html.
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