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Abstract: In comparative high-throughput sequencing assays, a funda-
mental task is the analysis of count data, such as read counts per gene
in RNA-Seq data, for evidence of systematic changes across experimental
conditions. Small replicate numbers, discreteness, large dynamic range and
the presence of outliers require a suitable statistical approach. We present
DESeq2, a method for differential analysis of count data. DESeq2 uses
shrinkage estimation for dispersions and fold changes to improve stability
and interpretability of the estimates. This enables a more quantitative anal-
ysis focused on the strength rather than the mere presence of differential
expression and facilitates downstream tasks such as gene ranking and visu-
alization. DESeq2 is available as an R/Bioconductor package.

Background

The rapid adoption of high-throughput sequencing (HTS) technologies for ge-
nomic studies has resulted in a need for statistical methods to assess quantitative
differences between experiments. An important task here is the analysis of RNA-
Seq data with the aim of finding genes that are differentially expressed across
groups of samples. This task is general: methods for it are typically also applica-
ble for other comparative HTS assays, including ChIP-Seq, 4C, HiC, or counts of
observed taxa in metagenomic studies.

Besides the need to account for the specifics of count data, such as non-
Normality and a dependence of the variance on the mean, a core challenge is
the small number of samples of typical HTS experiments – often as few as two
or three replicates per condition. Inferential methods that treat each gene sepa-
rately suffer here from lack of power, due to the high uncertainty of within-group
variance estimates. In high-throughput assays, this can be overcome by pool-
ing information across genes; specifically, by exploiting assumptions about the
similarity of the variances of different genes measured in the same experiment [1].

Many methods for differential expression analysis of RNA-Seq data perform
such information sharing across genes for variance (or, equivalently, dispersion)
estimation. The edgeR method [2, 3] moderates the dispersion estimate for each
gene toward a common estimate across all genes, or toward a local estimate from
genes with similar expression strength, using a weighted conditional likelihood.
Our DESeq method [4] detects and corrects dispersion estimates which are too low
through modeling of the dependence of the dispersion on the average expression
strength over all samples. DSS [5] uses a Bayesian approach to provide an estimate
for the dispersion aimed at fully capturing the heterogeneity of dispersion across
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samples. BaySeq [6] and ShrinkBayes [7] estimate priors for a Bayesian model
over all genes, and then provide posterior probabilities or false discovery rates for
the case of differential expression.

The most common approach to comparative analysis of transcriptomics data
is to test the null hypothesis that the logarithmic fold change (LFC) between
treatment and control for a gene’s expression is exactly zero, i.e., that the gene is
not at all affected by the treatment. Often the goal of a differential analysis is a
list of genes passing multiple-test adjustment, ranked by p-value. However, small
changes, even if statistically highly significant, might not be the most interesting
candidates for further investigation. Ranking by fold-change, on the other hand,
is complicated by the noisiness of LFC estimates for genes with low counts. Fur-
thermore, the number of genes called significantly differentially expressed depends
as much on the sample size and other aspects of experimental design as it does
on the biology of the experiment – and well-powered experiments often generate
an overwhelmingly long list of “hits” [8]. We therefore developed a statistical
framework to facilitate gene ranking and visualization based on stable estimation
of effect sizes (LFCs), as well as testing of differential expression with respect to
user-defined thresholds of biological significance.

Here we present DESeq2, an update to the DESeq methodology [4]. DESeq2
integrates recent methodological advances with novel features to facilitate a more
quantitative analysis of comparative RNA-Seq data, including shrinkage of dis-
persion and fold change estimates. We demonstrate the advantages of DESeq2 ’s
new features by describing a number of applications possible with shrunken fold
changes and their estimates of standard error, including improved gene ranking
and visualization, hypothesis tests above and below a threshold, and the “regular-
ized logarithm” transformation for quality assessment and clustering of overdis-
persed count data. We furthermore compare DESeq2 ’s statistical power with
existing tools on real datasets, revealing that our methodology has high sensitiv-
ity and precision, while effectively controlling the false positive rate. DESeq2 is
available as an R/Bioconductor package [9] at http://www.bioconductor.org/.

Results and discussion

Model and normalization

The starting point of a DESeq2 analysis is a count matrix K with one row for
each gene i and one column for each sample j, the matrix entries Kij indicating
the number of sequencing reads that have been unambiguously mapped to a gene
in a sample. Note that although we refer in this paper to counts of reads in genes,
the methods presented here can be applied as well to other kinds of HTS count
data. For each gene, we fit a generalized linear model (GLM) [10] as follows.

We model read counts Kij as following a Negative Binomial distribution with
mean µij and dispersion αi. The mean is taken as a quantity qij , proportional
to the concentration of cDNA fragments from the gene in the sample, scaled by
a normalization factor sij , i.e., µij = sijqij . For many applications, the same
constant sj can be used for all genes in a sample, which then accounts for differ-
ences in sequencing depth between samples. To estimate these size factors, the
DESeq2 package offers the median-of-ratios method already used in DESeq [4].
However, it can be advantageous to calculate gene-specific normalization factors
sij to account for further sources of technical biases such as GC content, gene
length or the like, using published methods [11, 12], and these can be supplied as
well.

We use GLMs with logarithmic link, log2 qij =
∑
r xjrβir, with design matrix

elements xjr and coefficients βir. In the simplest case of a comparison between
two groups, such as treated and control samples, the design matrix elements
indicate whether a sample j is treated or not, and the GLM fit returns coefficients
indicating the base line expression of the gene for control samples and the log2
fold change between treatment and control. The use of linear models, however,
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Figure 1: Shrinkage estimation of dispersion. Plot of dispersion estimates
over the average expression strength for a 3 vs 4 sample comparison in the Bot-
tomly et al. [13] dataset: First, gene-wise maximum likelihood estimates (MLE)
are obtained using only the respective gene’s data (black dots). Then, a curve
(red) is fit to the MLEs to capture the overall trend of dispersion-mean depen-
dence. This fit is used as a prior mean for a second estimation round, which
results in the final maximum a posteriori (MAP) estimates of dispersion (arrow
heads). This can be understood as a shrinkage (along the blue arrows) of the noisy
gene-wise estimates towards the consensus represented by the red line. The black
points circled in blue are detected as dispersion outliers and not shrunk toward
the prior (shrinkage would follow the dotted line). For clarity, only a subset of
genes is shown, which is enriched for dispersion outliers.

provides the flexibility to also analyze more complex designs, as is often useful in
genomic studies [14].

Empirical Bayes shrinkage for dispersion estimation

Within-group variability, i.e., the variability between replicates, is modeled by
the dispersion parameter αi, which describes the variance of counts via VarKij =
µij +αiµ

2
ij . Accurate estimation of the dispersion parameter αi is critical for any

statistical inference of differential expression. For studies with large sample sizes
this is usually not a problem. For controlled experiments, however, sample sizes
tend to be smaller (experimental designs with as little as two or three replicates
are common and reasonable), resulting in highly variable dispersion estimates for
each gene. If used directly, these noisy estimates would compromise the accuracy
of differential expression testing.

One sensible solution is to share information across genes. In DESeq2, we
assume that genes of similar average expression strength have similar dispersion.
We here explain the concepts of our approach using as example a dataset by
Bottomly et al. [13] with RNA-Seq data of mice of two different strains. For the
mathematical details, see Methods.

We first treat each gene separately and estimate “gene-wise” dispersion esti-
mates (using maximum likelihood), which rely only on the data of each individual
gene (black dots in Figure 1). Next, we fit a curve to capture the dependence of
these estimates on average expression strength (red line in the figure). This pro-
vides an accurate estimate for the expected dispersion value for genes of a given
expression strength but cannot represent deviations of individual genes from this
overall trend. We then shrink the gene-wise dispersion estimates toward the values
predicted by the curve to obtain final dispersion values (blue arrow heads). We
use an empirical Bayes approach (Methods), which lets the strength of shrinkage
depend (i) on an estimate of how close true dispersion values tend to be to the
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fit and (ii) on the degrees of freedom: as the sample size increases, the shrinkage
decreases in strength, and eventually becomes negligible. Our approach therefore
accounts for gene-specific variation to the extent that the data provides this infor-
mation, while the fitted curve aids estimation and testing in less information-rich
settings. We note that our approach is similar to the one used by DSS [5].

Note that a number of genes with gene-wise dispersion estimates below the
curve have their final estimates raised substantially. The shrinkage procedure
thereby helps avoid potential false positives which can result from underestimates
of dispersion. If, on the other hand, an individual gene’s dispersion is far above
the distribution of the gene-wise dispersion estimates of other genes, then the
shrinkage would lead to a greatly reduced final estimate of dispersion. We rea-
soned that in many cases, the reason for extraordinarily high dispersion of a gene
is that it does not obey our modeling assumptions; some genes may show much
higher variability than others for biological reasons, even though they have the
same average expression levels. In these cases, inference based on the greatly
reduced, shrunken dispersion estimates could lead to undesirable false positive
calls. DESeq2 handles these cases by using the gene-wise estimate instead of the
shrunken estimate when the former is more than 2 residual standard deviations
above the curve.

Empirical Bayes shrinkage for fold-change estimation

A common difficulty in the analysis of HTS data is the strong variance of loga-
rithmic fold change estimates (LFCs) for genes with low read count. Figure 2A
demonstrates this issue using again the dataset by Bottomly et al. [13] with RNA-
Seq data from 10 and 11 samples from mice of two different strains. As visualized
by the MA-plot in the top left panel, weakly expressed genes seem to show much
stronger differences between the strains than strongly expressed genes. This phe-
nomenon, seen in most HTS datasets, is a direct consequence of the fact that
one is dealing with count data, in which ratios are inherently more noisy when
counts are low. This heteroskedasticity (variance of LFCs depending on mean
count) considerably complicates downstream analysis and data interpretation, as
it makes effect sizes difficult to compare across the dynamic range of the data.

We propose to shrink LFC estimates toward zero in a manner such that shrink-
age is stronger when the available information for a gene is low, which may be
because counts are low, dispersion is high, or there are few degrees of freedom.
We again employ an empirical Bayes procedure: we first perform ordinary GLM
fits to obtain maximum-likelihood estimates (MLE) for the LFCs and then fit a
zero-centered Normal distribution to the observed distribution of MLEs over all
genes. This distribution is used as a prior on LFCs in a second round of GLM fits,
and the maximum of the posterior estimates (MAP) are kept as final estimates of
the LFCs. Furthermore, standard errors for these estimates are reported, which is
derived from the posterior’s curvature at its maximum. (See Methods for details.)

The resulting MAP LFCs are now biased toward zero in a manner that removes
the problem of “exaggerated” LFCs for low counts. As Figure 2B shows, the
strongest LFCs are no longer exhibited by genes with weakest expression. Rather,
the estimates are more evenly spread around zero, and for very weakly expressed
genes (less than one read per sample on average), LFCs hardly deviate from zero,
reflecting that accurate LFC estimates are not possible here. The strength of
shrinkage does not depend simply on the mean count, but rather on the amount
of information (as indicated by the observed Fisher information, see Methods)
available for the fold change estimation. Two genes with equal expression strength
but different dispersions will experience different amount of shrinkage (Figure 2C-
D). The shrinkage of LFC estimates can be described as a “bias-variance trade-off”
[15]: for genes with little information for LFC estimation, a reduction of the strong
variance is “bought” at the cost of accepting a certain bias towards zero, and this
can result in an overall reduction in mean squared error, e.g., when comparing
to LFC estimates from a new dataset. Genes with high information for LFC
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Figure 2: Effect of shrinkage on logarithmic fold change estimates. Plots
of the (A) maximum likelihood estimate (MLE, i.e., no shrinkage) and (B) maxi-
mum a posteriori (MAP) estimate (i.e., with shrinkage) for the logarithmic fold
changes attributable to mouse strain, over the average expression strength for a
10 vs 11 sample comparison of the Bottomly et al. [13] dataset. Small triangles
at the top and bottom of the plots indicate points that would fall outside of the
plotting window. Two genes with similar mean count and MLE logarithmic fold
change are highlighted in green and blue. (C) The counts (normalized by size
factor sj) for these genes reveal low dispersion for the gene in green and high
dispersion for the gene in blue. (D) Density plots of the likelihoods (solid lines,
scaled to integrate to 1) and the posteriors (dashed lines) for the green and blue
gene and of the prior (solid black line): due to the higher dispersion of the blue
gene, its likelihood is wider and less peaked (indicating less information), and the
prior has more influence on its posterior than in the case of the green gene. The
stronger curvature of the green posterior at its maximum translates to a smaller
reported standard error for the MAP LFC estimate (horizontal error bar).

estimation will have, in our approach, LFCs with both low bias and low variance.
Furthermore, as the degrees of freedom increase, and the experiment provides
more information for LFC estimation, the shrunken estimates will converge to
the unshrunken estimates. We note that Bayesian efforts toward moderating fold
changes for RNA-Seq include hierarchical models [7] and the “generalized fold
change” using a posterior distribution of logarithmic fold changes [16].

The MAP LFCs offer a more reproducible quantification of transcriptional dif-
ferences than MLE LFCs. To demonstrate this, we split the Bottomly et al. sam-
ples equally into two groups, I and II, such that each group contains a balanced
split of the strains, simulating a scenario where an experiment (samples in group
I) is performed, analyzed and reported, and then independently replicated (sam-
ples in group II). Within each group, we estimated LFCs between the strains
and compared between group I and II, using the MLE LFCs (Figure 3A) and
using the MAP LFCs (Figure 3B). Because the shrinkage moves large LFCs that
are not well supported by the data toward zero, the agreement between the two
independent sample groups increases considerably.

This makes shrunken LFCs also very suitable for ranking genes, e.g. to prior-
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Figure 3: Stability of logarithmic fold changes. DESeq2 is run on equally
split halves of the data of Bottomly et al. [13], and the logarithmic fold changes
from the halves are plotted against each other, (A) showing MLEs, i.e., without
LFC shrinkage, (B) showing MAP estimates, i.e., with shrinkage. Points in the top
left and bottom right quadrant indicate genes with a change of sign of logarithmic
fold change. Red points indicate genes with adjusted p-value less than 0.1. The
legend displays the root mean squared error of the estimates in group I to those
in group II.

itize them for detailed follow-up experiments. For example, if we sort the genes
in the two sample groups of Figure 3 by unshrunken LFC estimates, and consider
the 100 genes with the strongest up- or down-regulation in group I, we find only
21 of these again among the top 100 up- or down-regulated genes in group II.
However, if we rank the genes by shrunken LFC estimates, the overlap improves
to 81 of 100 genes (Supplemental Figure S1).

A simpler, often used method is to add a fixed number (“pseudocount”) to
all counts before forming ratios. However, this requires the choice of a tuning
parameter and only helps with those high-uncertainty LFCs that are due to low
counts. The information-based approach of DESeq2 offers a more comprehensive
solution (Supplemental Figure S2).

Hypothesis tests for differential expression

After GLMs are fit for each gene, one may test for each model coefficient whether
it differs significantly from zero. To this end, DESeq2 reports standard error
for each LFC, estimated from the curvature of the coefficient’s posterior (dashed
lines in Figure 2D) at its maximum. For significance testing, DESeq2 uses Wald
tests: the shrunken estimate of LFC is divided by its standard error, resulting
in a z statistic which can be compared to a standard normal. (See Methods for
details.) The Wald test allows testing of individual coefficients, or contrasts of
coefficients, without the need to fit a reduced model as with the likelihood ratio
test, though the likelihood ratio test is also available as an option in DESeq2. The
Wald test p-values from the subset of genes that pass an independent filtering step,
described in the next section, are adjusted for multiple testing using the procedure
of Benjamini and Hochberg [17].

Automatic independent filtering

Due to the large number of tests performed in the analysis of RNA-Seq and other
genome-wide experiments, the p-values from the gene-wise tests are typically fur-
ther transformed by multiple testing adjustments. A popular objective is control
or estimation of the false discovery rate (FDR). Multiple testing adjustment is
associated with a loss of power, in the sense that the false discovery rate for a
set of genes is higher than the individual p-values of these genes. However, the
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Figure 4: Hypothesis testing involving non-zero thresholds. Shown are
MA-plots for a 10 vs 11 comparison using the Bottomly et al. [13] dataset, with
highlighted points indicating low adjusted p-values. The alternate hypotheses are
that logarithmic fold changes are (A) greater than 1 in absolute value or (B) less
than 1 in absolute value.

loss can be reduced if genes are omitted from the testing that have little or no
chance of being detected as differentially expressed, provided that the criterion
for omission is independent of the test statistic under the null [18]. DESeq2 uses
the average expression strength of each gene, across all samples provided, as its
filter criterion, and it omits all genes with mean normalized counts below a filter-
ing threshold from multiple testing adjustment. DESeq2 by default will choose
a threshold that maximizes the number of genes found at a user-specified target
FDR. In Figure 2A-B, genes with significant LFC at an FDR of 10% are depicted
in red.

Depending on the distribution of mean normalized counts for each gene, the
resulting increase in power can be substantial, sometimes rescuing a set of genes
with adjusted p-values below a given threshold in an experiment which otherwise
would have had no such genes passing multiple test adjustment.

Hypothesis tests with thresholds on effect size

Specifying minimum effect size.

Most approaches to testing for differential expression, including the default ap-
proach of DESeq2, test against the null hypothesis of zero logarithmic fold change.
Hence, once some genes are genuinely affected by the difference in experimental
treatment, this null hypothesis implies that the gene under consideration is per-
fectly decoupled from the affected genes. Due to the high interconnectedness of
cells’ regulatory networks, it seem reasonable to argue that a change in one gene’s
expression might indirectly influence nearly all other genes, although many of
them so indirectly and hence weakly that the change caused is small. Never-
theless, with sufficient sample size, even genes with a very small, but non-zero
logarithmic fold change will eventually be detected as differentially expressed. A
change should therefore be of sufficient magnitude to be considered biologically
significant. For small scale experiments, statistical significance is often a much
stricter requirement than biological significance, thereby relieving the researcher
from the need to decide on a threshold for biological significance.

For well-powered experiments, however, a statistical test against the conven-
tional null hypothesis of zero logarithmic fold change may report genes with sta-
tistically significant changes that are so weak in effect strength that they could be
considered irrelevant or distracting. A common procedure is to disregard genes
whose estimated logarithmic fold change βir is below some threshold, |βir| ≤ θ.
However, this approach loses the benefit of an easily interpretable false discovery
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rate, as the p-value and adjusted p-value still correspond to the test of zero log-
arithmic fold change. It is therefore desirable to include the threshold into the
statistical testing procedure directly, i.e., not to filter post-hoc on a reported fold-
change estimate, but rather to statistically evaluate whether there is sufficient
evidence that the logarithmic fold change is above the chosen threshold.

DESeq2 offers tests for composite null hypotheses of the form |βir| ≤ θ. (See
Methods for details.) Figure 4A demonstrates how such a thresholded test gives
rise to a curved decision boundary: to reach significance, the estimated LFC has
to exceed the specified threshold by an amount that depends on the available in-
formation. Such approaches to generate gene lists that satisfy both statistical and
biological significance criteria have been previously discussed for both microarray
and sequencing data [19, 20].

Specifying maximum effect size.

Sometimes, a researcher is interested in finding genes that are only very weakly
affected by the treatment or experimental condition. This amounts to a setting
similar to the one just discussed, but the roles of null and alternative hypotheses
are swapped. This is because, again, the question “which genes are not differen-
tially expressed?” is hard to answer definitively, while a more tractable question
is: “for which genes is there evidence that the effect of the treatment was only
weak?” Here, one needs to quantify the meaning of weak for the biological ques-
tion at hand by choosing a suitable threshold θ for the LFC. For such analyses,
DESeq2 offers a test of the composite null hypothesis |βir| ≥ θ, which will report
genes as significant for which there is evidence that their LFC is weaker than θ.
Figure 4B shows the outcome of such a test. For genes with very low read count,
even an estimate of zero LFC is not significant, as the large uncertainty of the
estimate does not allow us to exclude that the gene may in truth be more than
weakly affected by the experimental condition. Note the lack of LFC shrinkage:
To find genes with weak differential expression, DESeq2 requires that the LFC
shrinkage has been disabled. This is because the zero-centered prior used for
LFC shrinkage embodies a prior belief that LFCs tend to be small, and hence is
inappropriate here.

Detection of count outliers

Parametric methods for detecting differential expression can have gene-wise es-
timates of logarithmic fold change overly influenced by individual count outliers
that do not fit the distributional assumptions of the model [21]. An example of
such an outlier would be a gene with single-digit counts for all samples, except
one sample with a count in the thousands. As the aim of differential expression
analysis is typically to find consistently up- or down-regulated genes, it is useful
to consider diagnostics for detecting individual observations which overly influ-
ence the logarithmic fold change estimate and p-value for a gene. A standard
outlier diagnostic is Cook’s distance [22], which is defined within each gene for

each sample as the scaled distance that the coefficient vector, ~βi, of a linear or
generalized linear model would move if the sample were removed and the model
refit.

DESeq2 therefore flags, for each gene, those samples which have a Cook’s
distance greater than the 0.99 quantile of the F (p,m − p) distribution, where p
is the number of model parameters including the intercept, and m is the number
of samples. The use of the F distribution is motivated by the heuristic reasoning
that removing a single sample should not move the vector ~βi outside of a 99%
confidence region around ~βi fit using all the samples [22]. However, if there are
2 or fewer replicates for a condition, these samples do not contribute to outlier
detection, as there are insufficient replicates to determine outlier status.

How should one deal with flagged outliers? In an experiment with many
replicates, discarding the outlier and proceeding with the remaining data might
make most use of the available data. In a small experiment with few samples,
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Figure 5: Variance stabilization and clustering after transformation. Two
transformations are applied to the counts of the Hammer et al. [23] dataset: the
logarithm of normalized counts plus a pseudocount, i. e. f(Kij) = log2(Kij/sj +
1), and the rlog. The gene-wise standard deviation of transformed values is vari-
able across the range of the mean of counts using the logarithm (A), while rela-
tively stable using the rlog (B). A hierarchical clustering on Euclidean distances
and complete linkage using the rlog (D) transformed data clusters the samples into
the groups defined by treatment and time, while using the logarithm transformed
counts (C) produces a more ambiguous result.

however, the presence of an outlier may impair inference regarding the affected
gene, and merely ignoring the outlier may even be considered data cherry-picking –
and therefore, it may be more prudent to exclude the whole gene from downstream
analysis.

Hence, DESeq2 offers two possible responses to flagged outliers. By default,
outliers in conditions with 6 or fewer replicates cause the whole gene to be flagged
and removed from subsequent analysis, including p-value adjustment for multiple
testing. For conditions that contain 7 or more replicates, DESeq2 replaces the
outlier counts with an imputed value, namely the trimmed mean over all samples,
scaled by the size factor, and then re-estimates the dispersion, logarithmic fold
changes and p-values for these genes. As the outlier is replaced with the value
predicted by the null hypothesis of no differential expression, this is a more con-
servative choice than simply omitting the outlier. When there are many degrees
of freedom, the second approach avoids discarding genes which might contain true
differential expression.

Supplementary Figure S3 displays the outlier replacement procedure for a
single gene in a 7 by 7 comparison of the Bottomly et al. [13] dataset. While the
original fitted means are heavily influenced by a single sample with a large count,
the corrected logarithmic fold changes provide a better fit to the majority of the
samples.

Regularized logarithm transformation

The DESeq2 framework includes shrinkage of logarithmic fold changes for count
data informed by the variance-mean relationship across all genes. Along these
lines, we propose a “regularized logarithm” transformation (rlog), which behaves
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similarly to a log2 transformation for genes with high counts, while shrinking
together the values for different samples for genes with low counts. It therefore
avoids a commonly observed consequence of the standard logarithm transforma-
tion, which spreads apart data points for genes with low counts, where random
noise is likely to dominate any biologically meaningful signal. The rlog trans-
formation then helps to stabilize the variance of counts across samples, which
would otherwise strongly depend on the mean counts, facilitating visualization
and clustering of samples.

The rlog transformation is calculated by fitting for each gene a GLM with
a base-line expression and, for each sample, shrunken logarithmic fold changes
with respect to the base-line, using the same empirical Bayes procedure as be-
fore (Methods). Here, however, the sample covariate information is not used, in
order to treat all samples equally. The rlog transformation accounts for varia-
tion in sequencing depth across samples as it represents the logarithm of qij after
accounting for the size factors sij . This is in contrast to the variance stabiliz-
ing transformation (VST) introduced in DESeq [4]: while the VST for counts is
also effective at stabilizing variance, it does not directly take into account dif-
ferences in size factors, and in datasets with large variation in sequencing depth
(say, dynamic range of size factors > 4) we observed undesirable artifacts in the
performance of the VST. A disadvantage of the rlog transformation with respect
to the VST is, however, that the ranking of genes within a sample will change if
neighboring genes undergo shrinkage of different strength. As with the VST, for
typical RNA-Seq datasets (with asymptotic dispersion values less than 0.1), the
value of rlog(Kij) for large counts is approximately equal to log2(Kij). Both the
rlog transformation and the VST are provided in the DESeq2 package.

We demonstrate the use of the rlog transformation on the RNA-Seq dataset
of Hammer et al. [23], wherein RNA was sequenced from the dorsal root ganglion
of rats which had undergone spinal nerve ligation and controls, at 2 weeks and at
2 months after the ligation. The count matrix for this dataset was downloaded
from the ReCount online resource [24]. This dataset offers more subtle differ-
ences between different conditions than the Bottomly et al. [13] dataset. Figure 5
provides diagnostic plots of the normalized counts under the ordinary logarithm
plus one pseudocount and the rlog transformation, showing that the rlog both
stabilizes the variance through the range of the mean of counts and helps to
find meaningful patterns in the data. The rlog transformation is therefore more
appropriate than the usual logarithm for visualization and machine learning ap-
plications such as clustering or classification, where otherwise the high variance
of logarithm-transformed low counts might overly contribute to the Euclidean
distances between samples.

Gene-level analysis

DESeq2 performs analysis on counts of reads which can be uniquely assigned
to genes, while a number of other algorithms [25, 26] perform differential anal-
ysis on a probabilistic assignment of reads to transcripts. Not attempting to
deconvolve the total read count for a gene into a probabilistic assignment to tran-
scripts might result in false positives of differential expression from a change in
proportion of isoforms with different lengths, and even in a wrong sign of LFCs
if expression fold changes are small compared to differences in length of alter-
natively used isoforms. However, in our benchmark, discussed in the following
section, we found that disparate sign of LFC from count-based and probabilistic-
assignment-based methods was rare for genes found to be differential expressed
by either method (Supplemental Figure S4). Furthermore, if estimates for aver-
age transcript length are available for the conditions, these can be incorporated
into the DESeq2 framework as gene- and sample-specific normalization factors.
In addition, the statistical methodology developed here is extendable to perform
isoform-specific analysis, either through generalized linear modeling at the exon
level with a gene-specific mean [27] or through counting alternative splicing events
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through the use of splice graphs [28].

Benchmarks

Benchmark criteria

To compare the performance of DESeq2 to other state-of-the-art tools, we bench-
marked a number of algorithms. We chose to use real RNA-Seq data rather than
simulated data, because we feel that while simulation is useful to verify how well
an algorithm behaves with idealized, theoretical data, and can identify poten-
tial problems that already manifest themselves at that level, simulation does not
inform us how well the theory fits reality. However, with real RNA-Seq data
there is the complication of not knowing directly or fully the underlying truth.
Acknowledging this complication, we considered three performance metrics for
differential expression calling: false positive rate (ratio of false positives out of all
non-differentially-expressed genes, equal to one minus the specificity), sensitivity
(ratio of true positives out of all differentially expressed genes), and precision
(ratio of true positives out of genes called differentially expressed).

We can obtain meaningful estimates of specificity from looking at datasets
where we believe all genes fall under the null hypothesis of no differential expres-
sion [29]. Sensitivity and precision are more difficult to estimate, as they require
independent knowledge of those genes that are differentially expressed. To circum-
vent this problem, we used experimental reproducibility on independent samples
(but in the same dataset) as a proxy. We used a dataset with large numbers
of replicates in both of two groups, where we expect that truly differentially ex-
pressed genes exist. We repeatedly split this dataset into an evaluation set and
a larger verification set, and compared the calls from the evaluation set with the
calls from the verification set which were taken as “truth”. It is important to
keep in mind that the calls from the verification set are only an approximation
of the true differential state, and the approximation error has a systematic and
a stochastic component. The stochastic component vanishes with large enough
sample size for the verification set. For the systematic errors, our benchmark
assumes that these affect all algorithms equally and therefore do not change the
ranking of the algorithms.

The performance of DESeq2 was benchmarked against the following other
algorithms for differential expression at the gene-level: the Negative Binomial
based approaches DESeq (old) [4], edgeR [30], and DSS [5], the voom normal-
ization method followed by linear modeling using the limma package [31], the
SAMseq permutation method of the samr package [21], and the Cuffdiff 2 [25]
method of the Cufflinks suite. For version numbers of the software used, see Sup-
plementary Table S3. For all algorithms, the p-values from genes with non-zero
sum of read counts across samples were adjusted using the Benjamini-Hochberg
procedure [17].

False positive rate

To evaluate the false positive rate of the algorithms, we tested the amount of
differential expression calling by generating mock comparisons from a dataset
with many samples and no known condition dividing the individuals represented
by the samples. We downloaded the RNA-Seq data of Pickrell et al. [32] on
lymphoblastoid cell lines derived from unrelated Nigerian individuals. We chose a
set of 26 RNA-Seq samples of the same read length (46 base pairs) and of different
male individuals. We randomly drew without replacement 10 samples from the set
to perform a comparison of 5 against 5, and this process was repeated 30 times.
We estimated the false positive rate using a small critical value, as the genes
passing a strict p-value threshold are those likely to pass multiple test adjustment.
Namely, we estimated the probability to generate a p-value less than 0.01 as the
sum of p-values less than 0.01 divided by the total number of tests excluding genes
with zero sum of read counts across samples. The results over the 30 replications
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Figure 6: Benchmark of false positive calling. Shown are estimates of P(p-
value < 0.01) under the null hypothesis. The number of p-values less than 0.01
divided by the total number of tests, from randomly selected comparisons of 5 vs
5 samples from the Pickrell et al. [32] dataset, with no known condition dividing
the samples. Type-I error control requires that the tool does not substantially
exceed the nominal value of 0.01 (red line). 3 values cropped on the vertical axis
were 2 outliers for the voom algorithm and 1 for the SAMseq algorithm.

are summarized in Figure 6, indicating that all algorithms generally control the
number of false positives. DESeq (old) and Cuffdiff 2 appear overly conservative
in this analysis, not using up their type-I error “budget”.

Sensitivity

To obtain an impression of the sensitivity of the algorithms, we considered the
Bottomly et al. [13] dataset, which contains 10 and 11 replicates of two different,
genetically homogeneous mice strains. This allowed for a split of 3 vs 3 for the
evaluation set and 7 vs 8 for the verification set, which were balanced across the 3
experimental batches. Random splits were replicated 30 times. Batch information
was not provided to the DESeq (old), DESeq2, DSS, edgeR, and voom algorithms,
which can accomodate complex experimental designs, in order to have comparable
calls across all algorithms.

We rotated though each algorithm in order to determine the calls of the ver-
ification set. Against a given algorithm’s verification set calls, we tested the
evaluation set calls for every algorithm. We used this approach rather than a
consensus-based method, as we did not want to favor or disfavor any particular
algorithm or group of algorithms. Defining E as the set of genes with adjusted
p-value less than 0.1 in the evaluation set, and V as the set of genes with ad-
justed p-value less than 0.1 in the verification set, the sensitivity was estimated
as |E ∩ V |/|V |. Figure 7 displays the estimates of sensitivity for each algorithm-
algorithm pair, where the different panels designate which algorithm was chosen
for the verification set.

The ranking of algorithms is generally consistent regardless of which algorithm
is chosen to determine calls in the verification set. DESeq2 has comparable sensi-
tivity to edgeR and voom though less than DSS. The median sensitivity estimates
were typically between 0.2 and 0.4 for all algorithms. That all algorithms have
relatively low median sensitivity can be explained by the small sample size of
the evaluation set and the fact that increasing the sample size in the verification
set increases power. It is expected that the permutation-based SAMseq method
rarely produced adjusted p-value less than 0.1 in the evaluation set, because the
3 vs 3 comparison does not enable enough permutations.
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Figure 7: Sensitivity estimated from experimental reproducibility. Each
algorithm’s sensitivity in the evaluation set (boxplots) is evaluated using the calls
of each other algorithm in the verification set (panels with grey label). Sensitivity
is estimated as the ratio of genes with adjusted p-value < 0.1 in the evaluation set
(positives) within the set of genes with adjusted p-value < 0.1 in the verification
set (true).

Precision

Another important consideration from the perspective of an investigator is the
precision, or ratio of true positives in the set of genes which pass the adjusted
p-value threshold. This can also be reported as 1 − FDR, the false discovery
rate. Using the previously defined sets, E for evaluation set and V for verifica-
tion set, the precision was estimated as |E ∩ V |/|E|. The estimates of precision
are displayed in Figure 8, where we can see that DESeq2 often has the second
highest median precision, behind DESeq (old). We can also see that algorithms
which had higher median sensitivity, e.g., DSS, are generally associated here with
lower median precision. The rankings differed significantly when Cuffdiff 2 was
used to determine the verification set calls. This is likely due to the additional
steps Cuffdiff 2 performs to deconvolve changes in isoform-level abundance from
gene-level abundance, apparently at the cost of lowered precision when compared
against its own calls.

The absolute number of calls for the evaluation and verification sets can be
seen in Supplemental Figures S5 and S6, which mostly matches the order seen
in the sensitivity plot of Figure 7. Supplemental Figures S7 and S8 provide
heatmaps and clustering based on the Jaccard index of calls for one replicate of
the evaluation and verification sets, indicating a large overlap of calls across the
different algorithms.

In summary, the benchmarking tests showed that DESeq2 effectively con-
trolled type-I error, maintaining a median false positive rate below the chosen
critical value in a mock comparison of groups of samples randomly chosen from
a larger pool. In addition DESeq2 achieved a balance of both high sensitivity
and high precision when experimental reproducibility in a verification set was
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Figure 8: Precision estimated from experimental reproducibility. Each
algorithm’s precision in the evaluation set (boxplots) is evaluated using the calls
of each other algorithm in the verification set (panels with grey label). Precision
is estimated as the ratio of genes with adjusted p-value < 0.1 in the verification
set (true) within the set of genes with adjusted p-value < 0.1 in the evaluation
set (positives).

considered.

Conclusion

DESeq2 offers a comprehensive and general solution for gene-level analysis of
RNA-Seq data. The use of shrinkage estimators substantially improves the stabil-
ity and reproducibility of analysis results compared to maximum-likelihood based
solutions. The use of empirical Bayes priors provides automatic control of the
amount of shrinkage based on the amount of information for the estimated quan-
tity available in the data. This allows DESeq2 to offer consistant performance
over a large range of dataset types and makes it applicable for small studies with
few replicates as well as for large observational studies. DESeq2 ’s heuristics for
outlier detection help to recognize genes for which the modeling assumptions are
unsuitable and so avoids type-I errors caused by these. The embedding of these
strategies in the framework of generalized linear models enables the treatment of
both simple and complex designs.

A critical advance is the shrinkage estimator for fold changes, which offers a
sound and statistically well-founded solution to the practically relevant problem of
comparing fold change across the wide dynamic range of RNA-Seq experiments.
This is of value for many downstream analysis tasks, including the ranking of
genes for follow-up studies, visualization of changes in heat maps and analysis with
machine-learning or ordination techniques such as principal-component analysis
and clustering using Euclidean distance, which require homoskedastic input data.

DESeq2 hence offers to practitioners a wide set of features with state-of-the-
art inferential power. Its use cases are not limited to RNA-Seq data or other
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transcriptomics assays; rather, many kinds of high-throughput count data can
be used. Other areas for which DESeq or DESeq2 or have been used include
ChIP-Seq assays (e.g., the DiffBind package [33, 34]), barcode-based assays (e.g.,
[35]) and metagenomics data (e.g., [36]). Finally, the DESeq2 package is well
integrated in the Bioconductor infrastructure [9] and comes with extensive doc-
umentation, including a vignette that demonstrates a complete analysis step by
step and discusses advanced use cases.

Methods

A summary of the notation used in the following section is provided in Supple-
mental Table S1.

Model and normalization

The read count Kij for gene i in sample j is described with a generalized linear
model (GLM) of the Negative Binomial family with logarithmic link:

Kij ∼ NB(mean = µij ,dispersion = αi) (1)

µij = sijqij

log qij =
∑
r

xjrβir. (2)

For notational simplicity, the equations here use the natural logarithm as the link
function, though the DESeq2 software reports estimated model coefficients and
their estimated standard errors on the log2 scale.

By default, the normalization constants sij are considered constant within a
sample, sij = sj , and are estimated with the median-of-ratios method previously
described and used in DESeq [4] and DEXSeq [27]:

sj = median
i:KR

i 6=0

Kij

KR
i

with KR
i =

 m∏
j=1

Kij

1/m

.

Alternatively, the user can supply normalization constants sij calculated using
other methods (e.g., using cqn [11] or EDASeq [12]), which may differ from gene
to gene.

Expanded design matrices

For consistency with our software’s documentation, in the following text we will
use the terminology of the R statistical language. In linear modeling, a cate-
gorical variable or factor can take on two or more values or levels. In standard
design matrices, one of the values is chosen as a reference value or base level and
absorbed into the intercept. In standard GLMs, the choice of base level does not
influence the values of contrasts (LFCs). This, however, is no longer the case in
our approach using ridge-regression-like shrinkage on the coefficients (described
below), when factors with more than two levels are present in the design matrix,
because the base level will not undergo shrinkage while the other levels do.

To recover the desirable symmetry between all levels, DESeq2 uses expanded
design matrices which include an indicator variable for each level of each factor,
in addition to an intercept column (i.e., none of the levels is absorbed into the
intercept). While such a design matrix no longer has full rank, a unique solution
exists because the zero-centered prior distribution (see below) provides regular-
ization. For dispersion estimation and for estimating the width of the LFC prior,
standard design matrices are used.
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Contrasts

Contrasts between levels and standard errors of such contrasts can be calculated
as they would in the standard design matrix case, i.e., using:

βci = ~c t ~βi (3)

SE(βci ) =
√
~c tΣi~c, (4)

where ~c represents a numeric contrast, e.g., 1 and −1 specifying the numerator
and denominator of a simple two level contrast, and Σi = Cov(~βi), defined below.

Estimation of dispersions

We assume the dispersion parameter αi follows a log-Normal prior distribution
that is centered around a trend that depends on the gene’s mean normalized read
count:

logαi ∼ N(logαtr(µ̄i), σ
2
d). (5)

Here, αtr is a function of the gene’s mean normalized count, µ̄i = 1
m

∑
j(Kij/sij).

It describes the mean-dependent expectation of the prior. σd is the width of
the prior, a hyperparameter describing how much the individual genes’ true dis-
persions scatter around the trend. For the trend function, we use the same
parametrization as we used for DEXSeq [27], namely,

αtr(µ̄) =
a1
µ̄

+ α0. (6)

We get final dispersion estimates from this model in three steps, which imple-
ment a computationally fast approximation to a full empirical Bayes treatment.
We first use the count data for each gene separately to get preliminary gene-wise
dispersion estimates αgw

i by maximum likelihood estimation. Then, we fit the
dispersion trend αtr. Finally, we combine the likelihood with the trended prior
to get maximum a posteriori (MAP) values as final dispersion estimates. Details
for the three steps follow.

Gene-wise dispersion estimates. To get a gene-wise dispersion estimate for
a gene i, we start by fitting a Negative Binomial GLM without logarithmic fold
change prior for the design matrix X to the gene’s count data. This GLM uses
a rough method of moments estimate of dispersion, based on the within-group
variances and means. The initial GLM is necessary to obtain an initial set of
fitted values, µ̂0

ij . We then maximize the Cox-Reid adjusted likelihood of the

dispersion, conditioned on the fitted values µ̂0
ij from the initial fit, to obtain the

gene-wise estimate αgw
i , i.e.,

αgw
i = arg max

α
`CR(α; ~µ0

i·, ~Ki·)

with

`CR(α; ~µ, ~K) = `(α)− 1

2
log(det(XtWX)) (7)

`(α) =
∑
j

log fNB(Kj ;µj , α),

where fNB(k;µ, α) is the probability mass function of the Negative Binomial distri-
bution with mean µ and dispersion α, and the second term provides the Cox-Reid
bias adjustment [37]. This adjustment, first used in the context of dispersion
estimation for SAGE data [38] and then for HTS data [3] in edgeR, corrects for
the negative bias of dispersion estimates from using the maximum likelihood esti-
mates (MLE) for the fitted values µ̂0

ij (analogous to Bessel’s correction in the usual
sample variance formula; for details, see [39, Section 10.6]). It is formed from the
Fisher information for the fitted values, which is here calculated as det(XtWX),
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where W is the diagonal weight matrix from the standard iteratively re-weighted
least squares (IRLS) algorithm. As the GLM’s link function is g(µ) = log(µ) and
its variance function is V (µ;α) = µ + αµ2, the elements of the diagonal matrix
Wi are given by:

wjj =
1

g′(µj)2V (µj)
=

1

1/µj + α
.

The optimization in Equation (7) is performed on the scale of logα using
a backtracking line search with proposals accepted which satisfy Armijo condi-
tions [40].

Dispersion trend. A parametric curve of the form (6) is fit by regressing the
gene-wise dispersion estimates αgw

i onto the means of the normalized counts, µ̄i.
Under model (5), the distribution of the residuals of such a fit is a hierarchical

mixture of the log-Normal distribution postulated as prior and the sampling dis-
tribution of the dispersion estimator. For the latter, one may reasonably assume
a roughly χ2-like distribution. Assuming that the sampling variance dominates,
at least in the few-sample case, it seems prudent not to use ordinary least square
regression but rather gamma-family GLM regression. Furthermore, dispersion
outliers might skew the fit and hence, a scheme to exclude such outliers is war-
ranted.

The hyperparameters a1 and α0 of (6) are obtained by iteratively fitting a
gamma-family GLM. At each iteration, genes with ratio of dispersion to fitted
value outside the range [10−4, 15] are left out until the sum of squared logarithmic
fold changes of the new coefficients over the old coefficients is less than 10−6 (same
approach as in DEXSeq [27]).

Dispersion prior. As also observed by Wu et al. [5], a log-Normal prior fits the
observed dispersion distribution better for typical RNA-Seq than a conjugate prior
would. We solve the computational difficulty of working with a non-conjugate
prior using the following argument: the logarithmic residuals from the trend fit,
logαgw

i − logαtr(µ̄i), arise from two contributions, namely the scatter of the true
logarithmic dispersions around the trend, given by the prior with variance σ2

d,
and the sampling distribution of the logarithm of the dispersion estimator, with
variance σ2

lde. Due to its similarity to a variance estimator, it is reasonable to
expect the sampling distribution of a dispersion estimator to be approximately
a scaled χ2 distribution with m − p degrees of freedom, with m the number of
samples and p the number of coefficients. The variance of the logarithm of a
χ2-distributed random variable is given [41] by the trigamma function ψ1,

Var logX2 = ψ1(f/2) for X2 ∼ χ2
f .

Therefore, σ2
lde ≈ ψ1((m − p)/2), i.e., the sampling variance of the logarithm of

a variance or dispersion estimator is approximately constant across genes and
depends only on the degrees of freedom of the model.

Supplementary Table S2 compares this approximation for the variance of log-
arithmic dispersion estimates with the variance of logarithmic Cox-Reid adjusted
dispersion estimates for simulated Negative Binomial data, over a combination of
different sample sizes, number of parameters and dispersion values used to create
the simulated data. The approximation is close to the sample variance for various
typical values of m, p and α.

Therefore, the prior variance σ2
d is obtained by subtracting the expected sam-

pling variance from an estimate of the variance of the logarithmic residuals, s2lr:

σ2
d = min{s2lr − ψ1((m− p)/2), 0.25}.

The prior variance σ2
d is thresholded at a minimal value of 0.25 so that the dis-

persion estimates are not shrunk entirely to αtr(µ̄i) in the case that the variance
of the logarithmic residuals is less than the expected sampling variance.
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In order to avoid an inflation of σ2
d due to dispersion outliers (i.e., genes not

well captured by this prior; see below), we use a robust estimator for the standard
deviation slr of the logarithmic residuals,

slr = mad
i

(logαgw
i − logαtr(µ̄i)) , (8)

where mad stands for the median absolute deviation, multiplied as usual by the
scaling factor 1/Φ−1(3/4).

Three or less residuals degrees of freedom. When there are 3 or less resid-
ual degrees of freedom (number of samples minus number of parameters to es-
timate), the estimation of the prior variance σ2

d using the observed variance of
logarithmic residuals s2lr tends to underestimate σ2

d. In this case, we instead
estimate the prior variance through simulation. We match the distribution of
logarithmic residuals to a density of simulated logarithmic residuals. These are
the logarithm of χ2

m−p-distributed random variables added to N(0, σ2
d) random

variables to account for the spread due to the prior. The simulated distribution
is shifted by − log(m − p) to account for the scaling of the χ2 distribution. We
repeat the simulation over a grid of values for σ2

d, and select the value which min-
imizes the Kullback-Leibler divergence from the observed density of logarithmic
residuals to the simulated density.

Final dispersion estimate. We form a logarithmic posterior for the dispersion
from the Cox-Reid adjusted logarithmic likelihood (7) and the logarithmic prior
(5) and use its maximum (i.e., the maximum a posteriori, MAP, value) as final
estimate of the dispersion:

αMAP
i = arg max

α

(
`CR(α; ~µ0

i·, ~Ki·) + p(α)
)

p(α) =
− (logα− logαtr(µ̄i))

2

2σ2
d

. (9)

Again, a backtracking line search is used to perform the optimization.

Dispersion outliers. For some genes, the gene-wise estimate αgw
i can be so far

above the prior expectation αtr(µ̄i) that it would be unreasonable to assume that
the prior is suitable for the gene. If the dispersion estimate for such genes is down-
moderated toward the fitted trend, this might lead to false positives. Therefore,
we use the heuristic of considering a gene as a “dispersion outlier”, if the residual
from the trend fit is more than two standard deviations of logarithmic residuals,
slr (see Equation (8)), above the fit:

logαgw
i > logαtr(µ̄i) + 2slr.

Such genes are flagged and the gene-wise estimate αgw
i is not shrunk toward the

trended prior mean. Instead of the MAP value αMAP
i , we use the gene-wise

estimate αgw
i as a final dispersion value in the subsequent steps. In addition, the

iterative fitting procedure for the parametric dispersion trend described above
avoids that these dispersion outliers influence the prior mean.

Shrinkage estimation of logarithmic fold changes

To incorporate empirical Bayes shrinkage of logarithmic fold changes, we postulate
a zero-centered Normal prior for the coefficients βir of model (2) that represent
logarithmic fold changes (i.e., typically, all coefficients except for the intercept
βi0):

βir ∼ N(0, σ2
r). (10)
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As was observed with differential expression analysis using microarrays, genes
with low intensity values tend to suffer from a small signal to noise ratio. Alter-
native estimators can be found which are more stable than the standard calcu-
lation of fold change as the ratio of average observed values for each condition
[42, 43, 44]. DESeq2 ’s approach can be seen as an extension of these approaches
for stable estimation of gene expression fold changes to count data.

Empirical prior estimate. To obtain values for the empirical prior widths σr
for the model coefficients, we again approximate a full empirical Bayes approach,
as with the estimation of dispersion prior, though here we do not subtract the
expected sampling variance from the observed variance of maximum likelihood
estimates. The estimation of the logarithmic fold change prior width is calculated
as follows. We use the standard iteratively reweighted least squares (IRLS) algo-
rithm [10] for each gene’s model (1,2) to get maximum likelihood estimates for
the coefficients βMLE

ir . We then fit, for each column r of the design matrix (except
for the intercept) a zero-centered Normal to the empirical distribution of MLE
fold change estimates {βMLE

ir }r.
To make the fit robust against outliers with very high absolute LFC values,

we use quantile matching: the width σr is chosen such that the (1− p) empirical
quantile of the absolute value of the observed LFCs {

∣∣βMLE
ir

∣∣}r matches the (1−
p/2) theoretical quantile of the prior, N(0, σ2

r), where p is set by default to 0.05.
If we write the theoretical upper quantile of a Normal distribution as QN (1− p)
and the empirical upper quantile of the MLE LFCs as Q|βr|(1−p), then the prior
width is calculated as:

σr =
Q|βr|(1− p)
QN (1− p/2)

.

To ensure that the prior width σr will be independent of the choice of base
level, the estimates from the quantile matching procedure are averaged for each
factor over all possible contrasts of factor levels. When determining the empirical
upper quantile, extreme LFC values with

∣∣βMLE
ir

∣∣ > log(1024) are excluded.

Final estimate of log fold changes. The logarithmic posterior for the vector,
~βi, of model coefficients βir for gene i is the sum of the logarithmic likelihood of
the GLM (2) and the logarithm of the prior density (10), and its maximum yields
the final MAP coefficient estimates:

~βi = arg max
~β

∑
j

log fNB

(
Kij ;µj(~β), αi

)
+ p(~β)

 ,

where

µj(~β) = sije
∑

r xjrβr , p(~β) =
∑
r

−β2
r

2σ2
r

,

and αi is the final dispersion estimate for gene i, i.e., αi = αMAP
i , except for

dispersion outliers, where αi = αgw
i .

The term p(~β), i.e., the logarithm of the Normal prior, can be read as a ridge
penalty term, and therefore, we perform the optimization using the iteratively
reweighted ridge regression algorithm [45], also known as weighted updates [46].
Specifically, the updates for a given gene are of the form:

~β ← (XtWX + ~λI)−1XtW~z,

with λr = 1/σ2
r and

zj = log
µj
sj

+
Kj − µj
µj

,

where the current fitted values µj = sje
∑

r xjrβr are formed from the current

estimates ~β in each iteration.
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Fisher information. The effect of the zero-centered Normal prior can be un-
derstood as to shrink the MAP LFC estimates based on the amount of information
the experiment provides for this coefficient, and we briefly elaborate on this here.
Specifically, for a given gene i, the shrinkage for an LFC βir depends on the
observed Fisher information, given by

Im(β̂ir) = −
[
∂2

∂β2
ir

`(~βi; ~Ki, αi)

]
βir=β̂ir

,

where `(~βi; ~Ki, αi) is the logarithm of the likelihood, and partial derivatives are
taken with respect to LFC βir. For a Negative Binomial GLM, the observed
Fisher information, or peakedness of the logarithm of the profile likelihood, is
influenced by a number of factors including the degrees of freedom, the estimated
mean counts µij , and the gene’s dispersion estimate αi. The prior exerts its
influence on the MAP estimate when the density of the likelihood and the prior
are multiplied to calculate the posterior. Genes with low estimated mean values
µij or high dispersion estimates αi have flatter profile likelihoods, as do datasets
with few residual degrees of freedom, and therefore in these cases the zero-centered
prior pulls the MAP estimate from a high-uncertainty MLE closer toward zero.

Wald test

The Wald test compares the beta estimate βir divided by its estimated standard
error SE(βir) to a standard Normal distribution. The estimated standard errors
are taken from the diagonal of the estimated covariance matrix, Σi, for the co-
efficients, i.e., SE(βir) = Σi,rr. Contrasts of coefficients are tested similarly by
forming a Wald statistics using (3) and (4). We use the following formula for the
coefficient covariance matrix for a generalized linear model with Normal prior on
coefficients [45, 47]:

Σi = Cov(~βi) = (XtWX + ~λI)−1(XtWX)(XtWX + ~λI)−1.

The tail integrals of the standard Normal distribution are multiplied by 2 to
achieve a two-tailed test. The Wald test p-values from the subset of genes which
pass the independent filtering step are adjusted for multiple testing using the
procedure of Benjamini and Hochberg [17].

Composite null hypotheses

DESeq2 also offers to test composite null hypotheses of the form H0 : |βir| ≤ θ
in order to find genes whose LFC significantly exceeds a threshold θ > 0. The
composite null hypothesis is replaced by two simple null hypotheses: H0a : βir = θ
and H0b : βir = −θ. Two-tailed p-values are generated by integrating a Normal
distribution centered on θ with standard deviation SE(βir) from |βir| toward ∞.
The value of the integral is then multiplied by 2 and thresholded at 1. This
procedure controls type-I error even when βir = ±θ, and is equivalent to the
standard DESeq2 p-value when θ = 0.

Conversely, when searching for genes whose absolute LFC is significantly below
a threshold, i.e., when testing the null hypothesis H0 : |βir| ≥ θ, the p-value is
constructed as the maximum of two one-sided tests of the simple null hypotheses:
H0a : βir = θ and H0b : βir = −θ. The one-sided p-values are generated by
integrating a Normal distribution centered on θ with standard deviation SE(βir)
from βir toward −∞, and integrating a Normal distribution centered on −θ with
standard deviation SE(βir) from βir toward ∞.

Note that while a zero-centered prior on LFCs is consistent with testing the
null hypothesis of small LFCs, it should not be used when testing the null hypoth-
esis of large LFCs, because the prior would then favor the alternative hypothesis.
DESeq2 requires that no prior has been used when testing the null hypothesis of
large LFCs, so that the data alone must provide evidence against the null.
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Interactions

Two exceptions to the default DESeq2 LFC estimation steps are used in the
case of experimental designs with interaction terms. First, when any interaction
terms are included in the design, the LFC prior width for main effect terms is not
estimated from the data, but set to a wide value (σ2

r = 1000). This ensures that
shrinkage of main effect terms will not result in false positive calls of significance
for interactions. Second, when interaction terms are included and all factors have
two levels, then standard design matrices are used rather than expanded model
matrices, such that only a single term is used to test the null hypothesis that a
combination of two effects is merely additive in the logarithmic scale.

Regularized logarithm

The rlog transformation is calculated as follows. The experimental design matrix
X is substituted with a design matrix with an indicator variable for every sample
in addition to an intercept column. A model as described in Equations (1,2) is
fit with a zero-centered Normal prior on the non-intercept terms and using the
fitted dispersion values αtr(µ̄), which capture the overall variance-mean depen-
dence of the dataset. The true experimental design matrix X is then only used
in estimating the variance-mean trend over all genes. For the purpose of un-
supervised analyses, for instance sample quality assessment, it can be desirable
that the experimental design have no influence on the transformation, and hence
DESeq2 by default completely ignores the design matrix and re-estimates the dis-
persions treating all samples as replicates, i.e., blind dispersion estimation. The
rlog transformed values are the fitted values,

rlog(Kij) ≡ log2 qij = βi0 + βij ,

where βij is the shrunken LFC for the j-th sample. The variance of the prior is set
using a similar approach as taken with differential expression, by matching a zero-
centered Normal distribution to observed LFCs. First a matrix of logarithmic fold
changes is calculated by taking the logarithm (base 2) of the normalized counts
plus a pseudocount of 1

2 for each sample divided by the mean of normalized counts
plus a pseudocount of 1

2 . The pseudocount ensures that all genes will have finite
log ratio and therefore contribute to the calculation of the prior. This matrix of
LFCs then represents the common-scale logarithmic ratio of each sample to the
fitted value using only an intercept. The prior variance is found by matching the
95% quantile of a zero-centered Normal distribution to the 90% quantile of the
values in the logarithmic fold change matrix.

Cook’s distance for outlier detection

The maximum likelihood estimate of ~βi is used for calculating Cook’s distance.
Considering a gene i and sample j, Cook’s distance for generalized linear models
is given by [48]:

Dij =
R2
ij

τp

hjj
(1− hjj)2

,

where Rij is the Pearson residual of sample j, τ is an overdispersion parameter
(in the Negative Binomial GLM, τ is set to 1), p is the number of parameters
including the intercept, and hjj is the j-th diagonal element of the hat matrix H:

H = W 1/2X(XtWX)−1XtW 1/2.

Pearson residuals Rij are calculated as

Rij =
(Kij − µij)√

V (µij)
,

where µij is estimated by the Negative Binomial GLM without the logarithmic
fold change prior, and using the variance function V (µ) = µ+ αµ2. A method of
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moments estimate αrob
i which provides robustness against outliers is used here,

estimating the variance using the median absolute deviation:

αrob
i = max

(
s2i,rob − µ̄i

µ̄2
i

, 0

)
,

with

s2i,rob =

(
mad
j

(Kij/sij)

)2

where, again, the mad operator includes the usual scaling factor of 1/Φ−1(3/4).

R/Bioconductor package

DESeq2 is implemented as a package for the R statistical environment as available
as part of the Bioconductor project [9] at http://www.bioconductor.org. The
count matrix and metadata including the gene model and sample information
are stored in an S4 class derived from the SummarizedExperiment class of the
GenomicRanges package [49]. SummarizedExperiment objects containing count
matrices can be easily generated using the summarizeOverlaps function of the
GenomicAlignments package [50]. This workflow automatically stores the gene
model as metadata and additionally other information such as the genome and
gene set versions. Other methods to obtain count matrices include the htseq-count
script [51] and the Bioconductor packages easyRNASeq [52] and featureCount [53].

The DESeq2 package comes with a detailed vignette working through a num-
ber of example differential expression analyses on real datasets, and the use of the
rlog transformation for quality assessment and visualization. A single function,
DESeq, is used to run the default analysis, while lower-level functions are also
available for advanced users.

Reproducible code

Sweave vignettes for reproducing all figures and tables in this paper, including
data objects for the experiments mentioned, and code for aligning reads and
for benchmarking, can be found in a package DESeq2paper, available at http:

//www-huber.embl.de/DESeq2paper/.

List of abbreviations

FDR false discovery rate
GLM generalized linear model
HTS high-throughput sequencing
LFC logarithmic fold change
MAP maximum a posteriori
MLE maximum likelihood estimate
SE standard error
VST variance-stabilizing transformation
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Supplemental methods

Read alignment for the Bottomly et al. and Pickrell et al.
datasets

Reads were aligned using the TopHat2 aligner [54], and assigned to genes using the
summarizeOverlaps function of the GenomicRanges package [49]. The SRA fastq
files of the Pickrell et al. [32] dataset were aligned to the Homo Sapiens reference
sequence GRCh37 downloaded in March 2013 from Illumina iGenomes. Reads
were counted in the genes defined by the Ensembl GTF file, release 70, contained
in the Illumina iGenome. The SRA fastq files of the Bottomly et al. [13] dataset
were aligned to the Mus Musculus reference sequence NCBIM37 downloaded in
March 2013 from Illumina iGenomes. Reads were counted in the genes defined
by the Ensembl GTF file, release 66, contained in the Illumina iGenome.

Benchmarking code

The code used to run the count-based algorithms is contained in the file /inst/

script/runScripts.R in the DESeq2paper package (available at http://www-huber.
embl.de/DESeq2paper). The code which ran the algorithms over the random-
ized replicates is contained in the files /inst/script/pickrell/diffExpr.R (the
specificity analysis run on the Pickrell et al. [32] dataset) and and /inst/script/

bottomly/diffExpr.R (for the sensitivity and precision analysis run on the Bot-
tomly et al. [13] dataset). The Cuffdiff 2 commands are contained in the /inst/

script/pickrell/ and /inst/script/bottomly/ directories.
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Supplemental Tables

i ∈ {1, . . . , n} gene index

j ∈ {1, . . . ,m} sample index

r ∈ {0, . . . , p− 1} covariate index, with intercept r = 0

Kij counts of reads for gene i, sample j

µij fitted mean

αi gene-specific dispersion

sj sample-specific size factor

sij gene- and sample-specific size factor

qij proportional to true concentration of fragments

xjr elements of the design matrix X

βir the logarithmic fold change for gene i and covariate r

µ̄i mean of normalized counts of gene i

σ2
d prior variance for logarithmic dispersions

σ2
lde sampling variance of logarithmic dispersion estimator

s2lr variance estimate for logarithmic residuals of dispersion

αgw
i gene-wise dispersion estimate

αtr(µ̄i) trended dispersion fit

αMAP
i maximum a posteriori estimate of dispersion

σ2
r prior variance for logarithmic fold change r

Σi covariance matrix for ~βi

Supplementary Table S1: Notation

m p α theor. var. sample var.
6 2 0.05 0.645 0.677
6 2 0.20 0.645 0.644
8 2 0.05 0.395 0.411
8 2 0.20 0.395 0.396
8 3 0.05 0.490 0.532
8 3 0.20 0.490 0.462

16 2 0.05 0.154 0.160
16 2 0.20 0.154 0.138
16 3 0.05 0.166 0.169
16 3 0.20 0.166 0.155

Supplementary Table S2: Theoretical and sample variance of logarithmic disper-
sion estimates for various combinations of sample size m, number of parameters
p and true dispersion α. The estimates are the DESeq2 gene-wise estimates from
4000 simulated genes with Negative Binomial counts with a mean of 1024. The
sample variance of the logarithmic dispersion estimates is generally close to the
approximation of theoretical variance.
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function/package version additional information
DESeq (old) 1.14.0 using the GLM test

DESeq2 1.3.40
edgeR 3.4.2 using trended dispersion estimation

DSS 1.8.0
voom: limma 3.18.12

SAMseq : samr 2.0
Cuffdiff 2 2.1.1

Supplementary Table S3: Versions of software used in benchmark

Supplemental Figures
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Supplementary Figure S1: “Concordance at the top” plot. DESeq2 is run
on equally split halves of the data of Bottomly et al. [13] and the proportion of
genes in common after ranking by absolute logarithmic fold changes is compared
[55]. On the y-axis is the number of genes in common between the splits divided
by the size of the top-ranked list. The MAP estimate of logarithmic fold change
and the MLE after adding a pseudocount of 1 to all samples provide nearly the
same concordance for various cutoffs, while ranking by the MLE on raw counts
has generally low concordance.
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Supplementary Figure S2: Stability of logarithmic fold changes. DESeq2 is
run on equally split halves of the data of Bottomly et al. [13], and the logarithmic
fold changes from the halves are plotted against each other. In these three panels,
the x-axis presents the MLE LFCs from group I, while the y-axis presents LFCs
for group II: (A) the MLE LFCs, (B) the MAP LFCs, and (C) the MLE LFCs after
adding a pseudocount of 1 to every sample. Fixing the x-axis to the unbiased MLE
LFCs of group I allows for a comparison of the stability of the MAP estimators
against the stability of the pseudocount-based estimators. Though the MLE LFCs
for group I have high variance, this should affect the group II estimators equally.
Red points indicate genes with adjusted p-value less than 0.1. The legend displays
the root mean squared error of the varying estimates in group II to the MLE LFCs
from raw counts in group I, which is minimized for the MAP estimator (B).
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Supplementary Figure S3: Cook’s distance outlier detection. Shown are
normalized counts and Cook’s distances for a 7 by 7 comparison of the Bot-
tomly et al. [13] dataset. (A) Normalized counts for a single gene, samples divided
into groups by species (light green and light blue). Dotted segments represent fit-
ted means. A potential outlier is highlighted in red. (B) The Cook’s distances for
each sample for this gene, and the 99% quantile of the F (p,m− p) cutoff used for
flagging outliers. (C) The normalized counts after replacing the outlier with the
trimmed mean over all samples, scaled by size factor. The fitted means now are
less affected by the single outlier sample.
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Supplementary Figure S4: Smooth scatterplots of estimated logarithmic
fold changes from all algorithms. log2 fold changes are estimated from one
of the verification sets of the Bottomly et al. [13] dataset. The blue, red, and yel-
low colors indicate regions of increasing density of points. Bottom panels display
the Pearson correlation coefficients. We note that the direction of the estimate
of differential expression for DESeq2 and Cuffdiff 2 accorded for the majority of
genes called differentially expressed: among genes which were called differentially
expressed by either of these two algorithms, both agreed on the sign of the esti-
mated logarithmic fold change for 96% of genes (averaged over all 30 replicates)
in the evaluation set and for 96% of genes in the verification set.

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 19, 2014. ; https://doi.org/10.1101/002832doi: bioRxiv preprint 

https://doi.org/10.1101/002832
http://creativecommons.org/licenses/by/4.0/


●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●●●

●
● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●●●●● ●●●●●●● ●●

●

●●● ●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

0

1000

2000

SAM
se

q

DESeq
 (o

ld)

Cuf
fd

iff 
2

DESeq
2

ed
ge

R
vo

om DSS

nu
m

be
r 

of
 D

E
 c

al
ls

Supplementary Figure S5: Number of total calls in the evaluation set (3
vs 3 samples) of the sensitivity/precision analysis using the Bottomly et al. [13]
dataset thresholding at adjusted p-value < 0.1, over 30 replications.
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Supplementary Figure S6: Number of total calls in the verification set (7
vs 8 samples) of the sensitivity/precision analysis using the Bottomly et al. [13]
dataset thresholding at adjusted p-value < 0.1, over 30 replications.
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Supplementary Figure S7: Clustering of each algorithm’s calls on the eval-
uation set (3 vs 3 samples) for one replicate of the sensitivity/precision
benchmark. Genes are on the vertical axis and algorithms on the horizontal
axis. Red lines indicate a gene had adjusted p-value < 0.1 in the evaluation set.
Genes in which no algorithm had a call are not shown. Clustering is based on
the Jaccard index. DESeq2 calls are closest by a Jaccard-index-based distance to
edgeR and voom.
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Supplementary Figure S8: Clustering of algorithm calls on the verification
set (7 vs 8 samples) for one replicate of the sensitivity/precision bench-
mark. Genes are on the vertical axis and algorithms on the horizontal axis. Red
lines indicate a gene had adjusted p-value < 0.1 in the verification set. Genes in
which no algorithm had a call are not shown. Clustering is based on the Jaccard
index. DESeq2 calls are closest by a Jaccard-index-based distance to voom and
edgeR.
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