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ABSTRACT

A large choice of tools exists for many standard tasks in the
analysis of high-throughput sequencing (HTS) data. However, once
a project deviates from standard work flows, custom scripts are
needed. We present HTSeq, a Python library to facilitate the
rapid development of such scripts. HTSeq offers parsers for many
common data formats in HTS projects, as well as classes to
represent data such as genomic coordinates, sequences, sequencing
reads, alignments, gene model information, variant calls and more,
and provides data structures that allow for querying via genomic
coordinates. We also present htseg-count, a tool developed with
HTSeq that preprocesses RNA-Seq data for differential expression
analysis by counting the overlap of reads with genes.

1 INTRODUCTION

The rapid technological advance in high-throughput sequencing
(HTS) has led to the development of many new kinds of assays,
each of which requires the development of a suitable bioinformatical
analysis pipeline. For the recurring “big tasks” in a typical pipeline,
such as alignment and assembly, the bioinformatics practitioner can
chose from a range of published tools. For more specialised tasks,
and in order to interface between existing tools, customised scripts
often need to be written.

For instance, before reads are aligned, various preprocessing steps
may need to be performed on the raw reads, such as trimming low-
quality ends, removing adapter sequences or demultiplexing. Once
reads have been aligned, downstream analysis typically attempts to
relate the alignment to feature metadata such as gene models.

In the case of RNA-Seq data a typical downstream analysis is
calculating the number of alignments overlapping certain features
(gene, exons, etc.). An example for ChIP-Seq data would be the
generation of aggregate coverage profiles relative to transcription
start sites or other features of interest.

While collections of scripts, and some specialised tools with
graphical user interfaces, are available for some of these recurring
smaller tasks, users are often restricted by the limited scope and
flexibility of such monolithic tools. Only the most common and
widely used analysis work flows can be performed without the need
to write custom scripts for some of the tasks.

Here we present HTSeq, a Python library to facilitate the
rapid development of scripts for processing and analysis of high-
throughput sequencing (HTS) data. HTSeq includes parsers for
common file formats for a variety of types of input data and offers a
general platform for a diverse range of tasks. A core component

of HTSeq is a container class that simplifies working with data
associated with genomic coordinates, i.e., values attributed to
genomic positions (e.g., read coverage) or to genomic intervals
(e.g., genomic features such as exons or genes). Two stand-
alone applications developed with HTSeq are distributed with
the package, namely htseq-qa for read quality assessment and
htseq-count for preprocessing RNA-Seq alignments for differential
expression calling.

Most of the features described in the following sections have been
available since the initial release of the HTSeq package in 2010.
Since then, the package and especially the htseq-count script have
found considerable use in the research community. The present
article provides a description of the package and also reports on
recent improvements.

HTSeq comes with extensive documentation, including a tutorial
that demonstrates the use of the core classes of HT'Seq and discusses
several important use cases in detail. The documentation, as well
as HTSeq’s design, is geared towards allowing users with only
moderate Python knowledge to create their own scripts, while
shielding more advanced internals (such as the use of Cython,
Behnel er al. (2011), to enhance performance) from the user.

HTSeq is released as open-source software under the GNU
General Public Licence and available from http: //www-huber.
embl.de/HTSeq or from the Python Package Index https:
//pypi.python.org/pypi/HTSeq.

2 COMPONENTS OF HTSEQ

HTSeq is designed as an object-oriented framework that uses classes
to encapsulate data and provide services. Its classes fall into four
categories: Parsers, data records, auxiliary classes and containers.

2.1 Parser and record objects

Currently, HTSeq provides parsers for reference sequences
(FASTA), short reads (FASTQ), short-read alignments (the
SAM/BAM format and some legacy formats), feature, annotation
and score data (GFF/GTF, VCF, BED, Wiggle).

HTSeq provides a parser for each of the supported file types and
a record class for each type of data. Parser objects are tied to files
and act as iterator generators which can be used e.g. in the head of
a for loop, to populate the loop variable for each iteration with an
instance of the appropriate record class. For instance, a FastqParser
object is connected to a FASTQ file and when used as an iterator,
it generates objects of type SequenceWithQuality that represent the
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records in the FASTQ file and provide the data in slots for the read
name, read sequence and quality string.

A core idea is that the loop body does not need to know
about specifics of the data source because the parser enforces
clearly defined conventions. For example, it is sufficient to inform
the FastqParser object on construction which of the various
encoding standards for the base-call quality scores the file uses.
The parser will decode and convert the scores as necessary,
and any downstream code may safely assume that the integer
array representing the quality scores is always in the standard
Sanger/Phred scale.

Another example of conflicting conventions concerns genomic
coordinates. Some formats index the first base pair of a chromosome
with zero (e.g., the BED format), others with one (e.g., the GFF
format). In some formats, an interval is meant to include both
start and end positions, in other formats, the base pair under the
“end” coordinate is not part of the interval. HTSeq sticks to one
convention, namely to start indexing sequences with zero and not to
include endpoints (as is standard in Python). Parser classes adjust
coordinates where needed, and hence, whenever HTSeq objects
present genomic coordinates in the HTSeq classes for this purpose,
Genomiclnterval and GenomicPosition, they are guaranteed to
follow this convention. When writing a position or interval into a
file, the conversion is reversed to follow the convention of the output
file format.

Typically, files are processed sequentially; however, support of
random access for FASTA and BAM files is provided, too. For
this feature, HTSeq builds on PySam (the Python bindings to the
samtools API; Heger er al.) to leverage the indexing functionality
provided by samtools (Li et al., 2009).

Note that in all these cases the operating system’s buffering and
caching of disk accesses works to our advantage. Even though a
typical HT'Seq script may look like it accesses its input data files in
every loop, most loop iterations will get their data from memory,
so that the streaming fashion of data access carries no performance
penalty.

2.2 The GenomicArray class

Data in genomics analyses is often associated with positions on a
genome, i.e., coordinates in a reference assembly. One example
for such data is read coverage: for each base pair or nucleotide of
the reference genome, the number of read alignments overlapping
that position are stored. Similarly, gene models and other genomic
annotation data can be represented as objects describing features
such as exons that are associated with genomic intervals, i.e.,
coordinate ranges in the reference.

A core component of HTSeq is the class GenomicArray, which is
a container to store any kind of genomic-position dependent data.
Each base-pair position on the genome can be associated with a
value that can be efficiently stored and retrieved given the position.

Use cases for the GenomicArray class fall into two distinct
categories: representing data and representing metadata. Coverage
vectors are an example for the former: To generate them, one
initializes a GenomicArray object with zeroes and iterates through
a list of alignments, adding one to all positions covered by each
of them. The tutorial in the online documentation gives detailed
explanations and code examples for this and other use cases.
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Fig. 1. Efficient storage of piecewise constant data: We wish to store data
that conceptually form a one-dimensional array as depicted on top. The
values are constant for certain index ranges, which we call steps, and we wish
to store for each step just its starting index and its value. A balanced binary
tree (bottom) allows for efficiently retrieval of the value given a position
index.
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Fig. 2. Using the class GenomicArrayOfSets to represent overlapping
annotation metadata. The indicated features are assigned to the array, which
then represents them internally as steps, each step having as value a set
whose elements are references to the features overlapping the step.

Especially for large genomes and a moderate number of reads
the resulting vector will have steps, i.e., stretches of constant
values. To store these efficiently, we represent each chromosome (or,
alternatively, each strand of the chromosome) with an object of class
StepVector. Such an object stores steps, i.e., intervals associated
with a value, in a way that offers fast access while substantially
reducing memory requirements. Internally this is done by using the
map template of the C++ standard template library (Josuttis, 1999)
(exposed to Python via SWIG; Beazley er al. (1996)), which is
typically implemented as a red-black tree (Sedgewick, 1988). See
Figure 1 for an example.

On the other hand, for large numbers of reads, the steps may
become small and this storage strategy will be less efficient than
a simple dense array. Hence, the user can alternatively ask the
GenomicArray object to use standard NumPy arrays to represent
the chromosomes. (NumPy (Oliphant er al.) is a widely used
Python extension providing dense array functionality and linear
algebra routines.) For larger genomes, a computer’s RAM may
be insufficient to keep the data for all chromosomes in memory
simultaneously, and in that case the memmap feature of NumPy
may be used, which transparently swaps currently unused parts of
the data out to disk. As before, the choice of storage back-end is
transparent, i.e., if the user changes it, no changes need to be made
in the code using the GenomicArray objects.

Similar to NumPy arrays, a GenomicArray has a data type,
which may either be a simple scalar type such as int or float,
or object, i.e., a reference to arbitrary Python objects. The
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latter is handy for the other main use case of genomic arrays,
namely providing access to metadata. Given a genomic interval, for
example, the interval a read was aligned to, it may be interesting to
know which genomic features this interval overlaps.

For RNA-Seq data, determining the overlaps between aligned
reads and exons is a common approach to estimating for each
gene how many reads originated from its transcripts. This can be
achieved by using the HTSeq GFF _Parser to read in a GFF file
with exon annotations and a GenomicArray to store the exons at
their respective genomic intervals. The second step is to iterate
through the aligned reads (using e.g. the BAM_Reader) and finding
the overlaps between the reads genomic intervals and the exons
genomic intervals. To this end the GenomicArray object can be
queried with a Genomiclnterval object and will return all the steps
overlapping that interval.

Here, dealing with the situation of a read overlapping with no
feature or a single feature is usually straightforward, while an
overlap with several features is more challenging to interpret. The
possibility to code custom logic at this point is a core advantage
of our approach of iterating sequentially through data rather than
offering vectorized functions (see Discussion).

A variant of the GenomicArray, the class GenomicArrayOfSets
facilitates dealing with overlapping genomic features. Figure 2.2
shows a situation with two features (e.g. genes) partially overlapping
(and one feature is split by a gap, e.g., an intron). The depicted meta
data can be stored in a GenomicArrayOfSets object £ by performing
three assignment operations, typically using the syntax “f[iv]
+= a”. This adds the object a to the interval specified by the
Genomiclnterval object iv, in order to assign objects representing
A (twice, once for each of its parts) and B to the corresponding
intervals. Afterwards, the GenomicArrayOfSets object will contain
steps as depicted in Figure 2.2, which carry as values sets of object
references.

If afterwards £ [p] is accessed (where p is a GenomicPosition
object indicating a position within the overlap of A and B),
set ([ "A", "B" ]) is returned. When querying with an
interval, the return value is an iterator over all steps covered
by this interval. In this manner, the GenomicArrayOfSets offers
functionality to handle metadata associated with overlapping
intervals and allows for easy, straight-forward querying.

3 DOCUMENTATION AND CODING STRATEGIES

HTSeq comes with extensive documentation to guide developers.
Care has been taken to expect only moderate experience with Python
from the reader. A “Tour” offers an overview over the classes and
principles of HTSeq by demonstrating their use in simple examples.
Then, two common use cases are discussed in detail to show how
HTSeq can be applied to complex tasks.

The first use case is that of aggregate coverage profiles: Given
ChiP-Seq data, e.g. from histone marks, we want to calculate
the profile of these marks with respect to specific positions in the
genome, such as transcription start sites (TSSs). This is achieved
by aligning coverage data in windows centred on the TSSs and
averaging over the TSSs of all genes or a subset thereof. The
documentation discusses and compares three alternative strategies to
combine the data on TSS positions with the data on read alignments.
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Fig. 3. The detailed structure of a read alignment is presented as a list
of objects of class CigarOperation, which interprets the CIGAR strings
given in a SAM file and calculates which bases on both the read and
the reference are affected by the individual operations. For example, the
CIGAR string “20M300N30M2I8M”, which indicates the complex mapping
situation depicted here, is represented by five CigarOperation objects, each
providing the data in one of the lines in the table (right).

As this serves to illustrate three typical ways to write scripts with
HTSeq, we summarise them here briefly:

(1) In the case of relatively small genomes we suggest processing
all read alignments into a tally of alignment coverage for the whole
genome and storing it in a GenomicArray. The GenomicArray can
then be queried with the genomic intervals corresponding to the
selected TSSs to obtain the coverage profiles in windows around
them, which are then added up in a vector that will hold the result.

(i1) The alternative is to proceed in the opposite order: The list of
TSSs is obtained first and stored in a GenomicArray object. Then,
the read alignments are processed sequentially: For each alignment,
the GenomicArray is queried to find nearby TSSs and the result
vector is incremented where a match is found.

(iii) The BAM _Reader offers random access on an indexed BAM
file and can therefore be used to extract only the reads overlapping a
specified interval. Using this functionality we can iterate through the
TSS positions and query the BAM file for alignments in a window
around each TSS and construct the profiles from this data.

The documentation demonstrates each of these approaches with
worked-out code examples to illustrate these various manners of
working with the HT'Seq library.

The second use case discussed in detail is that of counting for
each gene in a genome how many RNA-Seq reads map to it. In this
context, the HTSeq class CigarOperation is demonstrated, which
represents complex alignments in a convenient form (Figure 3).
This section of the documentation also explains HTSeq’s facilities
to handle multiple alignments and paired-end data.

The remainder of the documentation provides references for all
classes and functions provided by HTSeq, including those classes
not used in the highlighted use cases of the tutorial part, such as the
facilities to deal with variant-call format (VCF) files.

4 HTSEQ-QA AND HTSEQ-COUNT

We distribute two stand-alone scripts with HTSeq, which can be
used from the shell command line, without any Python knowledge,
and hence are also of use to practitioners without Python knowledge
—and also illustrate potential applications of the HTSeq framework.

The script htseqg-ga is a simple tool for initial quality assessment
of sequencing runs. It produces plots as in Figure 4, which
summarise the nucleotide compositions of the positions in the read
and the base-call qualities.
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Fig. 4. Example of a quality report on a SAM file, produced by htseq-
ga. The top panels show the nucleotide composition, the bottom panels the
distribution of base-call quality scores, as they change with sequencing cycle
shown from the 5’ to the 3’ end of the reads. The left panel shows statistics
for reads that have not been aligned, the right panels for the aligned reads.

The script htseq-count is a tool for RNA-Seq data analysis: Given
a SAM/BAM file and a GTF or GFF file with gene models, it
counts for each gene how many aligned reads overlap its exons.
These counts can then be used for gene-level differential expression
analyses using methods such as DESeq2 (Anders and Huber,
2010) or edgeR (Robinson et al., 2010). As the script is designed
specifically for differential expression analysis, only reads mapping
unambiguously to a single gene are counted while reads aligned
to multiple positions or overlapping with more than one gene are
discarded. To see why this is desirable, consider two genes with
some sequence similarity, one of which is differentially expressed
while the other one is not. A read that maps to both genes equally
well should be discarded, because if it were counted for both genes,
the extra reads from the differentially expressed gene may cause
the other gene to be wrongly called differentially expressed, too.
Another design choice made with the downstream application of
differential expression testing in mind is to count fragments, not
reads, in case of paired-end data. This is because the two mates
originating from the same fragment provide only evidence for one
cDNA fragment and should hence be counted only once.

As the htseqg-count script has found widespread use over the last
three years, we note that we recently replaced it with an overhauled
version, which now allows to process paired-end data without
the need to sort the SAM/BAM file by read name first. See the
documentation for a list of all changes to the original version.

5 DISCUSSION

HTSeq aims to fill the gap between performant but monolithic tools
optimised for specialised tasks and the need to write data processing
code for HTS application entirely from scratch. For a number of
the smaller taks covered by HTSeq, good stand-alone solutions
exist, e.g. FastQC (Andrews et al., 2011) for quality assessment
or Trimmomatic (Lohse et al., 2012) for trimming of reads. If the
specific approaches chosen by the developers of these tools are

suitable for a user’s application, they are easier to use. However, the
need to write customised code will inevitably arise in many projects,
and then, HTSeq aims to offer advantages over other programming
libraries that focus on specific file formats, e.g. PySam (Heger et al.)
and Picard (Wysoker et al.) for SAM/BAM files, by integrating
parsers for many common file formats and fixing conventions for
data interchange between them. HTSeq complements Biopython
(Cock et al., 2009), which provides similar functionality for
more “classic” bioinformatics tasks such as sequence analysis and
phylogenetic analyses but offers little support for HTS tasks.

While most uses of HTSeq will be the development of custom
scripts for one specific analysis task, it can also be useful for writing
more general tools which may then be deployed for use by the
community. The htseq-count script, for example, prepares a count
table for differential expression analysis, a seemingly easy task,
which, however, becomes complicated when ambiguous cases have
to be treated correctly. When HTSeq was first released in 2010, no
other simple solution was available, but we note that by now, further
tools for this task have appeared, including the summerizeOverlap
function in the GenomicRanges Bioconductor package (Lawrence
et al., 2013) and the stand-alone tool featureCount (Liao et al.,
2013), which is implemented in C. Nevertheless, neither htseq-count
nor the other tools offer much flexibility to deal with special cases,
which is why the HTSeq documentation discusses in detail how
users can write their own scripts for this important use case.

Interval queries are a recurring task in HTS analysis problems,
and several libraries offer solutions for various programming
languages, including BEDtools (Quinlan and Hall, 2010; Dale
et al., 2011) and IRanges/GenomicRanges (Lawrence et al., 2013)
Typically, these methods take two lists of intervals and report
overlaps between intervals in the latter with intervals in the former
list. HTSeq uses a different paradigm, namely that one list of
intervals is read in and stored in a GenomicArrayOfSets object,
and then the other intervals are queried one by one, in a loop.
This explicit looping often simplifies development for users, and
hence we prefer it over the use of specialized algorithms optimised
for list-vs-list queries. The advantage is especially apparent in
the read counting problem discussed above, where split reads,
gapped alignments, ambiguous mappings etc. cause much need for
treatment of special cases within the inner loop.

In conclusion, HTSeq offers a comprehensive solution to facilitate
a wide range of programming tasks in the context of high-
throughput sequencing data analysis.
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