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Abstract 
 
Non-targeted metabolomic profiling is used to simultaneously assess a large part of 

the metabolome in a biological sample. Here, we describe both the analytical and 

computational methods used to analyze a large UPLC-Q-TOF MS-based metabolomic 

profiling effort using plasma and serum samples from participants in three Swedish 

population-based studies of middle-aged and older human subjects: TwinGene, 

ULSAM and PIVUS. At present, more than 200 metabolites have been manually 

annotated in more than 3,600 participants using an in-house library of standards and 

publically available spectral databases. Data available at the Metabolights repository 

include individual raw unprocessed data, processed data, basic demographic variables 

and spectra of annotated metabolites. Additional phenotypical and genetic data is 

available upon request to cohort steering committees. These studies represent a unique 

resource to explore and evaluate how metabolic variability across individuals affects 

human diseases. 
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INTRODUCTION 

Metabolomic profiling, or metabolomics, can be described as a holistic approach to 

the study of low-weight molecules (<1,500 Da) called metabolites. These chemical 

entities, which are the intermediates or end products of metabolism, serve as direct 

signatures of biochemical activities and play an important role in many common 

diseases (Floegel et al. 2013; Stegemann et al. 2014; Wang-Sattler et al. 2012; Wang 

et al. 2011). 

 

A non-targeted metabolomics approach, as opposite to targeted approaches (Dudley et 

al. 2010), can be used to simultaneously measure as many metabolites as possible 

from a biological sample. Ultra-performance liquid chromatography (UPLC) and gas 

chromatography (GC) coupled with mass-spectrometry (MS) have been the preferred 

technologies to perform non-targeted metabolomics with high sensitivity, allowing the 

detection of a large number of metabolites (Buscher et al. 2009). 

 

Recent improvements in instrumental technologies and advances in bioinformatics 

tools have provided the possibility to perform non-targeted metabolomics on large 

prospective epidemiological studies with thousands of individuals and hundreds of 

phenotypes measured (Tzoulaki et al. 2014). 

 

However, partially due to the high cost and complexity in data processing, only few 

epidemiological studies have undergone large-scale metabolomic profiling. Wurtz and 

colleagues have used nuclear magnetic resonance to profile more than 13,000 

individuals and identify four novel biomarkers for incident cardiovascular disease in 

(Wurtz et al. 2015). Menni and colleagues have integrated metabolomics and 

epigenetic profiling to evaluate the biological mechanisms of aging (Menni et al. 

2013b) and diabetes (Menni et al. 2013a). Our group has integrated genetics and 

metabolomics data to identified four lipid-related metabolites with evidence for 

clinical utility, as well as evidence for a causal role in coronary heart disease 

development (Ganna et al. 2014b). 

 

Here, we present one of the largest UPLC-MS-based metabolomic profiling efforts to 

date using plasma and serum samples from participants from three Swedish 
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population-based studies: TwinGene, ULSAM and PIVUS, including more than 3,600 

participants. Thus far, more than 200 metabolites have been manually annotated using 

an in-house spectral library of authentic standards and publically available spectral 

databases. Moreover, thousands of metabolic features, not yet annotated, have been 

identified across the three studies. 

 

In addition to metabolomic profiling, information on lifestyle, anthropometrics and 

demographics, and measurements of established cardiovascular biomarkers are 

available in all participants. In two of the three studies, extensive measurements of 

subclinical cardiovascular disease are also available. Furthermore, all participants 

have been linked with national Swedish registries, allowing the identification of 

incident disease events for a maximum of up to 20 years of follow-up. This resource is 

used to perform metabolome-wide association studies (MWAS), to explore networks 

and pathways of metabolites, and to evaluate new methodologies for metabolite 

annotation. This data was successfully used by our group in a first analysis for 

association with incident coronary heart disease in 1,028 individuals (131 events) with 

validation in 1,670 individuals (282 events) (Ganna et al. 2014b). 

 

This article aims to add to the previous publication (Ganna et al. 2014b) by expanding 

the description of the data acquisition, feature identification and annotation to known 

metabolites as well as a discussion on the methodological aspects of using 

metabolomic profiling in large datasets. The included description of the data analysis 

pipeline can act as a blueprint for researchers in this rapidly increasing field. 

Furthermore, it contains notes for those that would like to use the data themselves.   
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MATERIAL AND METHODS 

The methods described in this section are expanded versions of descriptions in 

previous work (Ganna et al. 2014b). 

Study populations and sample collection 

The distribution of baseline characteristics and main cardiovascular risk factors for the 

individuals included in the three studies are shown in Table 1.  

 

TwinGene 

The Swedish Twin Registry is a population-based national register including over 

194,000 Swedish twins born from 1886 to 2008 (Magnusson et al. 2013). TwinGene is 

a longitudinal study within the Swedish Twin Registry initiated to examine 

associations between genetic factors and cardiovascular disease in Swedish twins. 

Twins born before 1958 who participated in a telephone screening between 1998 and 

2002 were re-contacted between April 2004 and December 2008. Health and 

medication data were collected from self-reported questionnaires, and a blood 

sampling kit was mailed to the subject who then contacted a local health care center 

for blood sampling and a health check-up. Contacts were allowed on Monday to 

Thursday mornings (and not the day before a national holiday), to ensure that the 

sample would reach the Karolinska Institutet Biobank in Stockholm the following day 

by overnight mail. The participants were instructed to fast from 8:00 PM the previous 

night. A total volume of 50 mL of blood was drawn from each individual by 

venipuncture. Data on cardiovascular health, medication and death dates were 

collected through linkage with national registers. In total, 12,591 individuals (55% 

women) participated in the study. 

 

The blood sampling was done as follows: First, a tube containing 

Ethylenediaminetetraacetic acid (EDTA) was filled and inverted 5 times immediately. 

These samples were used for DNA extraction. Second, three gel tubes were filled, 

inverted 5 times immediately, let standing for 30 minutes for coagulation in room 

temp, and centrifuged for 10-15 minutes at 3800 rpm. Finally, the serum was tapped 

from the gel tubes to a collection tube and placed in a transport cylinder. Tubes were 

sent to Karolinska University Laboratory by overnight post (i.e. in room temperature 
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for at maximum 48 hours) where they were frozen at -80° C for up to eight years until 

metabolomic profiling.  

 

Metabolomics was performed in a subsample of samples from the TwinGene cohort. 

Specifically, we utilized a case-cohort design by selecting all the incident cases of 

coronary heart disease (n=282), type 2 diabetes (n=218), ischemic strokes (n=186) and 

dementia (n=114) up to 31st December 2010 and a sub-cohort of 1,643 individuals 

(43% women). The subcohort was stratified on median age and sex, and for each of 

the four strata, we randomly selected a number of participants proportional to the 

corresponding number of cases. The subcohort was selected to avoid twins, including 

almost exclusively unrelated individuals. In total, samples from 2,139 individuals 

underwent metabolomic profiling. 

 

ULSAM  

Men born between 1920 and 1924 in Uppsala, Sweden were invited to participate at 

age 50 (N=2,841) in this longitudinal cohort study, which was started in 1970 

(Ingelsson et al. 2005), and with a participation rate of 81.7% (N=2,322) . Individuals 

have been reinvestigated at the ages of 60, 70, 77, 82 and 88 years. Information 

collected includes a medical questionnaire, blood pressure and anthropometric 

measurements, oral glucose tolerance test and 24-hour ambulatory blood pressure. 

Data on cardiovascular health, medication and death dates were achieved through 

linkage with national registers. At age 70, EDTA plasma, citrate plasma, serum and 

whole blood for DNA extraction were collected from fasting participants, kept on ice 

for a maximum of 4 hours, and stored at -70° C for up to 20 years until analysis. 

Additional EDTA plasma was collected during the oral glucose tolerance test in ~600 

participants. EDTA plasma samples from the age 70 baseline were used for the 

metabolomic profiling. In total, samples from 1,138 individuals underwent 

metabolomic profiling. 

 

PIVUS 

PIVUS is a community-based study where all men and women at age 70 living in 

Uppsala, Sweden in 2001-2005 were invited to participate (Lind et al. 2005). The 

1,016 participants (50% women) have been extensively phenotyped including 

measurements of endothelial function and arterial compliance, cardiac function and 
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structure by ultrasound and magnetic resonance imaging, evaluation of atherosclerosis 

by ultrasound and magnetic resonance imaging, seven-day food intake records, 

electrocardiogram (ECG) analysis, cardiovascular autonomic function and body 

composition by dual-energy X-ray absorptiometry. Cardiovascular events have been 

validated through review of hospital records. Blood samples were drawn between 8:00 

and 10:00 AM after an overnight fast. Samples were rapidly processed in a 

refrigerated centrifuge and thereafter kept cool until storage in -70oC. Serum was 

aliquoted and frozen within two hours and EDTA plasma was aliquoted and frozen 

within one hour. These samples were stored at -70° C for up to 11 years before 

metabolomic profiling that was performed in serum samples from 968 individuals.  

 

Sample preparation 

Serum or plasma samples were thawed and 100 µL of serum or plasma were 

transferred to 400 µL methanol in 96-well format to precipitate proteins (Figure 1a). 

This 80% methanol solution was stored at -20°C overnight, and then centrifuged for 

30 minutes at 3800g in 4°C to pellet precipitated protein. The supernatant was 

aliquoted to separate 96-well plates, sealed using a heat-seal foil, and stored at -20°C 

until analysis. Plate analysis order was completely randomized for each set of 

injections, and plates were run in batches of two plates, reflecting the autosampler 

capacity. Within each set of two plates, the run order was again completely 

randomized to prevent injection order artifacts. Duplicate injections were performed 

for all samples, with the second set of injections performed upon completion of the 

first set of injections for all samples. Each set of injections was randomized 

independently with respect to plate order, and injection order within a plate. 

 
UPLC-QTOFMS data acquisition 

Prior to each batch of two plates of samples, instrument maintenance (cone cleaning, 

mass calibration, and detector gain calibration) was performed, and a quality control 

(QC) standard mix was injected. Five injections were performed with 1 μL injections 

of a 20% methanol solution containing 2 μg/mL each of caffeine, terfenadine, 

sulfadimethoxime, and reserpine. Only the last three of these five injections were used 

for QC purpose, and evaluated for retention time (+/- 0.05 minutes), signal intensity 

(<25% relative standard deviation), and mass accuracy (< 3 ppm) of the four 

compounds. This approach is designed to prevent acquisition of low-quality data, and 
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acquisition of data from experimental samples was not started until the QC standards 

passed. The QC steps post-acquisition described in detail below were then used to 

remove poor injections/samples. 

 

One μL of protein-precipitated serum or EDTA plasma was injected on a Waters 

Acquity UPLC system. Separation was performed using a Waters Acquity UPLC 

BEH C8 column (1.8 µM, 1.0 x 100 mm), using a gradient from solvent A (95% 

water, 5% methanol, 0.1% formic acid) to solvent B (95% methanol, 5% water, 0.1% 

formic acid). Injections were made in 100% A, which was held for 0.1 min, ramped to 

40% B in 0.9 minutes, to 70% B over two minutes, and to 100% B over 8 minutes. 

The mobile phase was held at 100% B for 6 minutes, returned to starting conditions 

over 0.1 minute, and allowed to re-equilibrate for 5.9 minutes. Flow rate was constant 

at 140 µL/min for the duration of the run. The column was held at 50°C, while 

samples were held at 10°C. 

 
Column eluent was infused into a Waters Xevo G2 QTOF MS fitted with an 

electrospray source. Data was collected in positive ion mode, scanning from 50-1200 

m/z at a rate of 5 scans per second. Scans were collected alternatively in MS mode at 

collision energy of 6 V, and in idMS/MS mode using elevated collision energy (15–30 

V). IdMS/MS (also called MSE) allows for an unbiased examination of both precursor 

and fragment ion mass spectra without additional experiments (Broeckling et al. 

2013). 

 
Calibration was performed prior to every batch of 96 samples via infusion of sodium 

formate solution, with mass accuracy within 1 ppm. The capillary voltage was held at 

2200V, the source temp at 150°C, and the desolvation temperature at 350°C at a 

nitrogen desolvation gas flow rate of 800 L/hr. The quadrupole was held at collision 

energy of 6 volts. Raw data files were converted to .cdf format using Waters 

DataBridge software for processing (Figure 1a). 

 
Metabolic feature identification 

We used the XCMS software(Smith et al. 2006) to perform peak identification, 

alignment, grouping and filling (Figures 1b, 1c, 1d). This software is implemented in 
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R. An example of the code used for the data processing is available at: 

https://github.com/andgan/metabolomics_pipeline. 

  

Peak detection 

We performed peak detection in each chromatogram using the centWave algorithm 

(Tautenhahn et al. 2008) implemented in the xcmsSet function (Figure 1b). We noted 

that it is important to determine two instrument-dependent parameters: (1) ppm, 

indicating the mass spectrometer accuracy; and (2) peakwidth, indicating the 

chromatographic peak-width range. The former parameter was set as a generous 

multiple of the mass accuracy of the mass spectrometer (e.g. 25 ppm if the mass 

accuracy is 2-3 ppm using a multiple of 10), as previously suggested (Tautenhahn et 

al. 2008). The latter parameter was set by inspecting the peak-width in several 

chromatograms. To decide the values of remaining parameters in the xcmsSet 

function, we used an approach based on iterative testing of different settings as 

discussed in the Technical validation section. We also evaluated the quality of the 

algorithm performance by looking at the plot obtained, for one representative 

chromatogram, with the findPeaks function. 

 

The parameters used for peak detection in the three studies were the following:  

• TwinGene: method="centWave", ppm=25, peakwidth=c(2:15), snthresh=8, 

mzCenterFun="wMean", integrate=2, mzdiff=0.05, prefilter=c(1,5); 

• ULSAM: method="centWave", ppm=25, peakwidth=c(2:15), snthresh=6, 

mzCenterFun="wMean", integrate=2, mzdiff=0.05, prefilter=c(1,5); 

• PIVUS: method="centWave", ppm=25, peakwidth=c(2:15), snthresh=8, 

mzCenterFun="wMean", integrate=2, mzdiff=0.05, prefilter=c(1,5). 

 

Peak alignment 

Chromatographic shifts over time represent a common characteristic of 

chromatography-coupled mass spectrometry. Without a proper retention time 

alignment, peaks representing the same compound would not be correctly grouped 

across different samples because of retention time drift. We used the retcorr function 

to re-align the samples by correcting the retention time shifting. We used the obiwarp 

algorithm (Prince and Marcotte 2006) (implemented in the retcorr function), as it is 

more stable for large number of samples than the loess algorithm, which is the default 
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method in XCMS (Figure 1c). This algorithm uses the sample with the largest number 

of peaks as reference for alignment. Visualization of the extent of correction of 

retention time for each peak across samples can be obtained from the retcorr function 

and can be informative of batch effects or laboratory issues. The parameters used for 

peak alignment in the three studies were the following:  

• TwinGene, ULSAM and PIVUS: method="obiwarp",plottype="deviation". 

 

Peak grouping 

We grouped the aligned peaks across samples using the group function. Each group is 

called ‘metabolic feature’ or simply ‘feature’ (Figure 1d). Three main parameters 

needed to be determined: (1) bw, the retention time deviation to be allowed for 

grouping; (2) mzwid, m/z width to determine the peak grouping across samples; (3) 

minfrac, minimum fraction of samples in each group needed to call it as a valid 

feature. Simulation approaches based on iterative testing of different settings (see the 

Technical validation section) and the plot obtained from the group function were 

used to determine the right values for these three parameters. We kept the minfrac 

parameter relatively low (below 6%) to allow relatively rare and exogenous (e.g. 

cotinine, a metabolite of nicotine) metabolites to be included among the features 

brought forward. However, the disadvantage of using a too low minfrac parameter is 

an increased risk of detecting false-positive features or noise. The parameters used for 

peak grouping in the three studies were the following:  

• TwinGene: bw=2, minfrac=0.03, max=100, mzwid=0.01; 

• ULSAM: bw=3, minfrac=0.05, max=100, mzwid=0.01; 

• PIVUS: bw=2, minfrac=0.05, max=100, mzwid=0.01. 

 

Filling missing features 

The fact that metabolic features are not detected in all samples in a cohort might be 

due to a true lack of signals for certain samples (for example, cotinine should only be 

detectable in smokers) or, most likely, because some peaks are missed by the peak 

detection algorithm due to the inherent uncertainty when the intensity is close to the 

signal-to-noise cutoff. To overcome this problem, we used the fillpeak function to 

impute missing intensities for each metabolic feature. The fillpeak function uses the 

raw data, following retention time correction, to fill the missing intensity values. 

Notice that, if a feature has truly not been detected, the algorithm will assign a value 
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close to the signal-to-noise threshold. Default parameters were used in all three 

studies.  

 
Log2 transformation, quality control, normalization  

Our data acquisition workflow involved the simultaneous collection of low and high 

collision energy in alternating scans (Broeckling et al. 2013; Plumb et al. 2006). Thus, 

for every injection two corresponding data files were generated, rendering four files 

per individual sample. To perform peak identification, alignment, grouping and filling, 

we jointly processed MS (low collision energy) and MS/MS (high collision energy) 

chromatograms. This was done to ensure common features names in both datasets. 

However, in the following steps only the MS data were used, while the MS/MS data 

were used for metabolite annotation (see further below). 

 

First, feature intensities were transformed to the log2 base scale to approximate normal 

distribution. Second, potential sample outliers were identified by plotting the total 

intensity for each sample. Samples exhibiting extreme total intensities might indicate 

sample degradation or technical errors, and such samples were excluded. Third, an 

ANOVA-type normalization was used to take into account factors of unwanted 

variation (Kerr and Churchill 2001; Leek et al. 2010) (Figure 1e). In the Technical 

validation section, we show that this normalization performed better than other 

commonly used normalization approaches. The normalization was done by fitting a 

linear regression for association between each feature intensity and several factors of 

unwanted variability. We then used the residuals from the regression as new feature 

intensities. The factors of unwanted variability can be identified by studying the 

association between several technical variables and the first principal components. In 

each study, we adjusted for the following factors: 

• TwinGene: retention time correction, analysis date, storage time, unknown 
cluster effect; 

• ULSAM: retention time correction, analysis date, sample collection, plate 
effect; 

• PIVUS: retention time correction, analysis date, storage time, season effect. 

Finally, feature intensities were averaged between technical duplicates to reduce the 

inherent instrumental variability. Features with poor correlation between duplicates 

were excluded. The correlation threshold for feature exclusion is study dependent and 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2015. ; https://doi.org/10.1101/002782doi: bioRxiv preprint 

https://doi.org/10.1101/002782
http://creativecommons.org/licenses/by-nd/4.0/


 12 

was chosen so that the correlation between technical duplicates was significant with P-

value < 0.05 after adjusting for multiple testing, using a Bonferroni correction. 

 

In total, we detected 9,755, 10,162 and 7,522 metabolic features in TwinGene, 

ULSAM and PIVUS, respectively (Table 2). 

 
Metabolite annotation  

Tandem mass spectrometry (MS/MS) using precursor ion selection is a well-

established tool to elucidate metabolite structure. In traditional non-targeted 

metabolomics analysis, global MS analysis is followed by targeted MS/MS 

experiments to confirm the putative identification of significant features. However, 

this additional step requires additional analytical work, samples, instrumental time and 

data processing. Recent developments in mass spectrometer technologies have 

allowed for the acquisition of both MS and MS/MS simultaneously in the same 

experiment, by alternating low and high collision energy scans. Using this approach, 

which is a unique feature of Waters systems, ions are fragmented in an indiscriminate 

manner (i.e. no precursor ion selection) (Plumb et al. 2006). We have previously 

shown how to use the correlational relationships in the data to assign the correct 

precursor ion and reconstruct both idMS and idMS/MS spectra for each feature 

(Broeckling et al. 2013). R code for generating idMS and idMS/MS spectra is 

provided at https://github.com/andgan/metabolomics_pipeline. 

 

Once both idMS and idMS/MS spectra are reconstructed, we used several approaches 

for the annotation of metabolic features to metabolites, reflecting the different levels 

of confidence suggested by the Metabolomics Standard Initiative [MSI] (Sumner et al. 

2007) (Figure 1f): 

• The first approach (MSI level 1) had the highest confidence and was based on 

matching accurate mass, fragmentation pattern, and retention time with the in-

house spectral library of authentic standards collected under the same 

experimental conditions. 

• The second approach (MSI level 2) was based on spectrum and/or m/z 

similarities, and a reasonable retention time given the chemical properties, and 

their annotation relied on information available in public databases.  
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• The third approach (MSI level 3) used a combination of spectral data and 

accurate mass to assign the metabolite to a chemical class (without knowing 

the exact origin of the metabolite), and their annotation to a specific class 

relied on information available in public databases. 

• Finally, when all the other approaches to annotation of the metabolite or 

metabolite class failed, the metabolite was annotated as “unknown” (MSI level 

4). 

 

In total, we detected 109 metabolites with the first approach, 102 with the second 

approach, and could assign the chemical class to 18 metabolites with the third 

approach. In the Metabolights repository, we reported the names of metabolites with 

level 1 and level 2 annotation, and the number of annotated metabolites per cohort is 

summarized in Table 2. 

 

DATA RECORDS 

Three data records, one for each study, have been deposited in Metabolights with 

accession numbers MTBLS93 (TwinGene), MTBLS124 (ULSAM) and MTBLS90 

(PIVUS). Each data record contains five sections: 

1. Study design description: This section contains general information about the 

study characteristics and related publications; 

2. Protocols: This section contains a detailed description of the protocol used to 

collect and process the data; 

3. Samples: This section reports the anonymized identification code for each 

participant, as well as main demographic information (e.g. sex and age); 

4. Assay: In this section, all the assays (chromatograms) are reported and linked to 

the anonymized participant identification code. Each participant should have four 

assays: MS[repl. 1 and 2] and MS/MS[repl. 1 and 2] (here named MSn).We also 

report factors of unwanted variability (e.g. batch effects) that have been controlled 

for during normalization. Note that extended information about the assay 

characteristics can be downloaded in a .txt format.  

5. Study files: In this section, all uploaded assays (chromatograms) can be 

downloaded in .cdf.gz format. The assays follow this filename format: ‘analysis 

date’_’study name’_’increasing number01/02’. MS files filename end with *01 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2015. ; https://doi.org/10.1101/002782doi: bioRxiv preprint 

https://doi.org/10.1101/002782
http://creativecommons.org/licenses/by-nd/4.0/


 14 

and MS/MS files, collected on higher collision energy, end with *02. The section 

also contains a file called m_’study 

name’_metabolite_profiling_mass_spectrometry.tsv, which includes all 

metabolites that have been identified in the corresponding study. The annotated 

metabolites are linked to different databases to retrieve the chemical formula and 

additional information, when available. The retention time and m/z values 

reported correspond to those observed in our data. It also includes the intensities 

for each metabolite or metabolic feature across the study participants. 

 

Additional information not shown in Metabolights can be obtained by downloading 

the entire study or the study metadata. This file can then be open with ISAcreator for 

editing. 

 
TECHNICAL VALIDATION 

Description of technical variation 

In Table 2, we report the main summary statistics about the number of 

chromatograms, peaks and metabolic features detected in each study. We detected less 

metabolic features in PIVUS, presumably mostly due to the smaller sample size. We 

further report measures describing the technical variability of our method. These 

measures were possible to obtain because each sample has been analysed in non-

consecutive duplicates. All three studies were comparable in terms of mean feature 

correlation and mean coefficient of variation across features; the latter varying from 

2.9% in PIVUS to 5.2% in ULSAM. We also report the coefficients of variation 

obtained from a mixture of four known standards analysed between every analytical 

batch (192 samples/batch). The mix was analyzed in triplicates, and the relative 

standard deviation (RSD) of the intensity of the M+H signal for each compound was 

calculated as the SD divided by the mean and expressed as percent. The mean (range) 

RSDs over 12 random controls were 2.9% (0.5-8.0) for caffeine, 3.9% (0.8-8.4) for 

sulfadime, 4.0% (0.7-9.7) for reserpine and 4.0% (0.5-10.2) for terfenadine. 

 
Determination of optimal XCMS parameters  

The parameters used in XCMS to detect, align and group peaks can drastically change 

the number and quality of the identified features. This aspect is often underappreciated 
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in metabolomics studies and only few prior papers have touched upon this topic. 

Brodsky and colleagues have shown how the parameter tuning affects the inter-

replicate correlation and which parameters are likely to have the largest 

influence.(Brodsky et al. 2010) The authors of XCMS have suggested parameter 

values for different UPLC/MS instruments; both in a published paper(Patti et al. 2012) 

and in the online version of XCMS.(Tautenhahn et al. 2012) However, the settings are 

both instrumental and study-dependent, and need to be fine-tuned independently for 

each study.  

 

For each study, we randomly selected thirty participants (thus having 120 

chromatograms; including replicate 1 and 2, and both MS and MS/MS) and ran 

several parameter configurations within a reasonable interval around the suggested 

values. Specifically, we tried 2,161 combinations of different levels for the following 

parameters: snthresh, mzdiff, minfrac, mzwid and bw. The parameter configuration that 

maximizes the feature correlation between technical replicates is likely to be the best 

choice. In Figure 2a, the average feature correlation between technical replicates is 

reported separately for each parameter suggesting that a configuration with relatively 

higher snthresh and minfrac, and lower mzwid and bw improved the correlation. The 

mzdiff parameter did not influence the correlation. Similar to our observations, 

Brodsky and colleagues(Brodsky et al. 2010) also reported that an increase in the 

minfrac and decrease in the mzwid parameters were associated with higher feature 

correlation between technical replicates. To maximize the number of detected 

metabolic features while maintaining high correlation, a minfrac parameter (minimum 

fraction of sample in each group for calling it as a valid feature) slightly lower than 

the optimal value was employed. 

 
Comparison of different normalization approaches 

We determined which normalization approach worked better in our data by comparing 

the coefficient of variation and feature correlation between technical replicates (Table 

3). For simplicity, we performed these simulations using PIVUS data since this was 

the study with the smallest sample size. The ANOVA-type approach clearly 

outperformed other normalization methods based on single parameter scaling. This 

can be explained by the ability of the method to adjust for several factors of unwanted 

variation, such as analysis date or storage time. After applying the best normalization 
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approach, we plotted the correlation between technical replicates for each feature and 

compared it with what was expected under the null (Figure 2b). The null distribution 

was obtained by permuting each feature 200 times. Almost all features showed a 

stronger correlation than expected by chance. Nevertheless, some features had low 

correlation between technical replicates. Those features with a correlation coefficient 

of <0.3 had generally lower intensity than those with a correlation coefficient ≥0.7 

(mean feature intensity 10.7 and 12.0 respectively, P-valuediff < 0.0001).  

 

Finally, we performed a visual inspection of the metabolic feature distributions across 

samples in all three studies (Figure 2c). All three studies were well normalized, 

although ULSAM had higher variability than the other two studies. 

 
Targeted MS/MS analysis to determine the quality of the metabolite 
annotations 

After the entire metabolomic profiling workflow and subsequent metabolite 

annotations were performed, we evaluated the quality and robustness of our 

untargeted approach by performing a targeted and confirmatory analysis for a random 

subset of metabolites which we had annotated with level 1 (n=2) or 2 (n=2). We 

confirmed all four of these metabolites based on matching accurate mass, 

fragmentation pattern, and retention time. The targeted mass analysis of the selected 

metabolites (acetylcarnitine, cortisol, arachidonic acid and docosahexaenoic acid) was 

performed in the individual sample with the highest concentration of that metabolite 

from the PIVUS study using the multiple reaction monitoring (MRM) mode by 

monitoring the transitions between the protonated molecular ion ([M+H]+) including 

molecular ion adducts ([M+Na]+, [M+H-H2O]+, [M+K]+) and its product ions 

(fragments). Although limited to a small subset of the annotated metabolites, with a 

range of retention time from 0.5 minutes (acetylcarnitine) to ~6.3 minutes 

(arachidonic acid), these results support the high quality of the workflow and 

annotation. Further, we have previously validated the level 2 annotation of four 

metabolites associated with coronary heart disease by targeted mass analysis (LysoPC 

18:1, LysoPC 18:2 MG 18:2 and SM 28:1).(Ganna et al. 2014b). Nevertheless, we 

stress that the annotation quality might decrease at the boundaries of the retention time 

range and we didn’t specifically investigate this scenario. 
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Sharing of individual level phenotypic data 

All the raw data, including MS and MS/MS spectra, as well as the processed data for 

the annotated metabolites have been made available on the Metabolights repository. 

Age, sex and potential factors of batch effect are also accessible in the repository.  

Phenotypes from the TwinGene, ULSAM and PIVUS studies, other than age and sex, 

are not shared in Metabolights due to restrictions in the ethical permits. Nevertheless, 

data can be made available upon request for researchers who meet the criteria for 

access to the confidential data. Data from the TwinGene study are available from the 

Swedish Twin Registry steering committee (http://ki.se/en/research/the-swedish-twin-

registry-1; contact: Patrik.Magnusson@ki.se). Data from the ULSAM study are 

available from the ULSAM steering committee 

(http://www2.pubcare.uu.se/ULSAM/res/proposal.htm; contact: 

vilmantas.giedraitis@pubcare.uu.se). Data from the PIVUS study are available from 

the PIVUS steering committee (http://www.medsci.uu.se/pivus/; contact: 

lars.lind@medsci.uu.se). Finally, GC-MS analysis of the same plasma and serum 

samples, as well as LC-MS analysis of urine from the same participants are ongoing 

and will be shared with the community as soon as the analyses are ready. 
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DISCUSSION 

This article can act as a blueprint for data acquisition, feature identification and 

metabolite annotation in large-scale UPLC-MS metabolomics studies.  

 

Metabolome-wide association studies 

Non-targeted metabolomics can be performed in epidemiological studies to identify 

new biomarkers of disease. Similar to genome-wide association studies (GWAS) in 

the field of genomics, it is possible to conduct a non-targeted metabolome-wide 

association study (MWAS), using metabolites as independent variables (instead of 

genetic variants as in a GWAS) and a disease or other trait of interest as dependent 

variable. We suggest performing a univariate analysis (e.g. linear regression for 

continuous outcomes, logistic regression for dichotomous outcomes or Cox regression 

for time-to-event outcomes) for each feature. These models are typically adjusted for 

age and sex; but for specific outcomes, additional biological confounders can be 

included, depending on the research question. Features with low correlation between 

technical replicates or those observed in only few samples previous to peak filling 

should be excluded. 

 

Given the large number of statistical tests performed, correction for multiple testing 

needs to be considered. False discovery rate (FDR) can be used to control the number 

of false positives among the metabolites declared significant. This strategy works 

better in situations where a large number of discoveries are expected, which is often 

the case with metabolomics data, especially when investigating cardiovascular or 

metabolic traits. Validation in a separate study is highly recommended due to the 

inherent technical and biological variability of this type of data. Given the differences 

in age range, blood collection methods and blood partition (serum and plasma); 

TwinGene, ULSAM and PIVUS provide an excellent opportunity for performing 

validation studies. Moreover, we have recently introduced a methodology to 

determine the expected proportion of findings that can be validated in an external 

study (called rediscovery rate) and the proportion of these findings that are expected 

to be false positives (Ganna et al. 2014a). 
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Genetic information can also be integrated to suggest potential biological mechanisms 

and, importantly, to determine if the metabolite might be causative of the outcome of 

interest. This strategy, known as Mendelian randomization, (Sheehan et al. 2008) uses 

genetic variants, called instrumental variables, to disentangle the confounded causal 

relationships between intermediate phenotypes (e.g. metabolites) and disease. As an 

illustration of the above procedures, we have recently performed a MWAS of 

coronary heart disease and identified four new lipid-related metabolites. In this work, 

further genetic information was integrated to indicate if the associations were likely to 

be causal (Ganna et al. 2014b).  

 

Annotation 
Both MS and MS/MS chromatograms were collected simultaneously, by alternating 

low and elevated collision energy scans. This approach facilitated the annotation of 

metabolites by using correlational relationships across individuals to reconstruct both 

indiscriminate (id) MS and id MS/MS spectra for each feature (Broeckling et al. 

2013). To our knowledge, this approach has never previously been attempted in this 

large number of samples. Further, our analytical method allowed estimation and 

control of instrumental variability, since each sample was analyzed in non-consecutive 

duplicates. 

 

New methods to match features across studies  

Even if the discovery and replication studies have been analysed in the same 

laboratory and under the same experimental conditions, the metabolic features 

detected might be different because of study-specific sampling, storage and handling 

or due to differences in data processing (e.g. the minfrac parameter depends on the 

number of samples as more features are detected when a larger number of samples are 

jointly processed). In order to determine whether two features represent the same 

compound, both m/z and retention time need to be matched. The m/z match can be 

done within a certain confidence interval, depending on the accuracy of the mass 

spectrometer (e.g. ±0.02 m/z differences). The retention time matching is more 

challenging and depends on the retention time correction applied during peak 

alignment. To our knowledge, there is no established strategy to integrate this 

alignment information to improve the matching of retention time across studies. 
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Further research on this topic is encouraged and can be done using the reported data 

downloaded from the Metabolights repository. 

 
Additional uses 

A unique characteristic of our samples is the simultaneous collection of MS and 

MS/MS data. However, few papers have explored how to use this technology to 

improve metabolite annotation. Our resource represents a unique opportunity to 

identify new ways to use MS/MS data to improve annotation and analysis.  

 

Given the large sample size, it is possible to use annotated metabolites to perform 

correlation-based network analysis. This analysis can be further integrated with 

biological information from for example KEGG or Recon X (Thiele et al. 2013) to 

confirm correlations and suggest new potential biological pathways. Methods to 

integrate biological information with observed data correlation structures can also be 

developed using this data.  

 

Strength and limitations of our approach 

We believe our study have several important strengths and novel aspects. First, most 

prior articles describing metabolomics methods are technical, presumes a strong 

chemical background and do not focus on analyses of large human populations.  Here, 

we present a pipeline to process metabolomics data using vocabulary and concepts 

that are more familiar to researchers in population-based and clinical research. 

Second, the processing of the data using XCMS software is important and it is often 

underappreciated in previous reports. We believe that a clear illustration of the XCMS 

parameters is of great importance. Third, metabolic feature annotation is a key step, 

which has not been thoroughly described in the literature. Researchers that use 

metabolomics data from a commercial supplier (which is the common situation for 

most epidemiological researchers) might not be aware of this aspect since they do not 

perform the annotation. Here, we provide a clear illustration of the annotation process 

and its pitfalls. Finally, our data offer insight about the variability of the metabolome 

in individuals from the general population, providing incremental information to that 

available in existing metabolomics databases, such as HMDB, Metlin and Massbank.  
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We also acknowledge several limitations. The analytical workflow that we describe is 

based on the experience gathered from a specific type of data and platform; however, 

general considerations are valid for most metabolomics studies in large human 

populations, and our workflow can be easily implemented on data coming from other 

UPLC/MS platforms. Moreover, the workflow that we present is directly transferrable 

to any set of single channel data (e.g. GC/MS) with the caveat that settings should be 

adjusted to reflect different instruments (e.g. peak width and mass accuracy). We 

further recognize that the idMS/MS spectra annotation based on data collected already 

at the first-pass analysis is a unique feature of our platform and it is not available in 

most UPLC/MS systems, though the feature grouping methods could be applied to 

low collision energy in-source MS spectra, which can be informative. However, most 

of the steps of feature annotation described in our paper can be extended to 

experimentally generated MS/MS spectra, similarly to what has been described by 

Zhu and colleagues (Zhu et al. 2013). Finally, the differences in collection methods 

and storage time (in ULSAM up to 20 years) can be a limitation for certain biological 

questions, as it may decrease the statistical power to find associations due to weaker 

correlations of metabolites across studies, although it can be argued that it is an 

advantage as the generalizability increases when studying samples collected under 

different conditions. 

 

Conclusion 

Non-targeted metabolomics enables investigation of a large number of biological and 

clinical questions in different areas. Although these methods are gaining popularity, 

the methodology to analyze and processed metabolomics data has not been well 

described. Here, we provide a detailed description of the analytical and computational 

methods used in three Swedish population-based studies. We made available all the 

raw unprocessed data, processed data, basic demographic variables and spectra of 

annotated metabolites at the Metabolights repository. In conclusion, this is a unique 

resource for evaluating the relationship between metabolic variability and human 

disease. 
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SAMPLES, SUBJECTS, AND DATA OUTPUTS 
We uploaded this information as ISA-Tab metadata format to the Metabolights 

repository. 
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TABLES 
 
 
Table 1. Baseline characteristics of the individuals of the three cohorts included in the 
study.  
 

Cohort PIVUS ULSAM TwinGene 

 
n=968 n=1,138 n=2,139 

Age (years) 70 (0.2) 71 (0.6) 69 (8.3) 
Waist circumference (cm) 91 (11.6) 95 (9.60) 94 (11.9) 

Systolic blood pressure (mmHg) 150 (22.7) 147 (18.7) 143 (20.2) 
Diastolic blood pressure (mmHg) 79 (10.2) 84 (9.4) 82 (10.6) 

BMI (kg/m2) 27.1 (4.30) 26.3 (3.40) 26.3 (4.00) 
LDL-C (mmol/L) 3.37 (0.87) 3.90 (0.90) 3.75 (1.01) 
HDL-C (mmol/L) 1.50 (0.41) 1.28 (0.35) 1.35 (0.40) 

Triglycerides (mmol/L) 1.28 (0.60) 1.46 (0.79) 1.43 (0.81) 
Glucose (mmol/L) 5.34 (1.61) 5.79 (1.50) 5.8 (1.37) 

Current smoker 99 (10%) 227 (21%) 305 (14%) 
Lipid-lowering medication 154 (16%) 100 (9%) 363 (17%) 

Blood pressure-lowering medication 303 (32%) 394 (35%) 581 (27%) 
Female  486 (50%) 0 (0%) 921 (43%) 

 
Data are mean (standard deviation) for continuous variables and n (%) for categorical 
variables. BMI, body mass index; LDL-C, low density lipoprotein cholesterol; HDL-C, high 
density lipoprotein cholesterol  
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Table 2.Summary statistics of the main characteristics of the three studies 

 
  TwinGene ULSAM PIVUS 

Number of individuals included in the final dataset 2 139 1 138 968 
No. of total ion chromatograms * 8 126 4 776 3 846 

Average no. of peaks detected per chromatogram 10 295 5 989 8 205 
No. of metabolic features before exclusion 10 996 11 028 8 185 

No. of metabolic features after exclusion ** 9 753 10 160 7 520 
Mean feature correlation between technical replicates *** 0.38 0.46 0.43 

Mean coefficient of variation (%) between technical replicates 3.70% 5.20% 2.91% 
N. of annotated metabolites 202 177 189 

* Including MS, MS/MS and technical replicates 
** Exclusion due to low correlation between technical replicates 
*** Spearman correlation coefficient for one metabolic feature between all first and second replicate samples. The reported value is the average 
across all the metabolics features. 
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 Table 3. Comparison of several normalization approaches in PIVUS  
 

 
 

Normalization Method 
Mean feature correlation 

between technical 

replicates * 

Mean coefficient of 

variation (%) between 

technical replicates 

Raw data 0.39 4.18 

Median 0.42 4.67 

Median within analysis date ** 0.42 4.67 

Quantile 0.40 3.79 

ANOVA-type, adjusting for:     
analysis date 0.43 2.97 

analysis date, season 0.43 2.89 

analysis date, season, storage time 0.43 3.06 
analysis date, season, storage time, amount of retention time correction 0.43 2.91 

* Spearman correlation coefficient for one metabolic feature between all first and second replicate samples. The reported value is the average across 

all the metabolics features. 
** Median normalization is performed within each specific analysis date. 
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FIGURES  
 

FIGURE LEGENDS  

Figure 1. Schematic representation of the workflow used to obtain and process 

metabolomics data. a. Data on both MS and MS/MS were acquired from UPLC-MS. 

b. Peaks were detected for each chromatogram. c. Peaks were aligned across samples. 

d. Peaks were grouped across samples. Each peak group is called ‘metabolic feature’. 

e. Metabolic features were log-transformed, sample outliers excluded and data were 

normalized using ANOVA-type normalization, which accounts for factors of 

unwanted variation. f. Metabolites were identified by matching MS/MS reconstructed 

spectra with the in-house compound library or using publically available databases. 

*Photo courtesy of Waters Corporation. 

 

Figure 2. a. Results of iterative testing of different parameters for detection, 

alignment, grouping and filling steps in 30 random individuals (120 chromatograms) 

from PIVUS. We ran all 2,161 possible combinations of values within the reported 

ranges for five parameters (sntresh, mzdiff, minfrac, mzwid, bw). The reported 

correlations were the averages of the feature correlations between technical replicates 

for each parameter, across values of the other parameters. The dot in each panel 

indicates the value that has been used in the final XCMS settings. The last panel 

indicates the observed correlation for number of features detected across all possible 

parameter combinations. b. In blue: null distribution of the feature correlations 

between technical replicates obtained by permutation. In red: observed distribution of 

feature correlations. The observed correlations are almost always higher than those 

expected under the null. c. Feature distributions across samples in all three studies. 

The red dots represent the average correlations and the dotted bars represent the 

ranges between the 5th and 95th percentile of the distribution. 
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