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ABSTRACT 

Metabolomic profiling is an emerging technique in life sciences. Human studies using 

these techniques have been performed in a small number of individuals or have been 

targeted at a restricted number of metabolites. In this article, we propose a data 

analysis workflow to perform non-targeted metabolomic profiling in large human 

population-based studies using ultra performance liquid chromatography-mass 

spectrometry (UPLC-MS). We describe challenges and propose solutions for quality 

control, statistical analysis and annotation of metabolic features. Using the data 

analysis workflow, we detected more than 8,000 metabolic features in serum samples 

from 2,489 fasting individuals. As an illustrative example, we performed a non-

targeted metabolome-wide association analysis of high-sensitive C-reactive protein 

(hsCRP) and detected 407 metabolic features corresponding to 90 unique metabolites 

that could be replicated in an external population. Our results reveal unexpected 

biological associations, such as metabolites identified as monoacylphosphorylcholines 

(LysoPC) being negatively associated with hsCRP. R code and fragmentation spectra 

for all metabolites are made publically available. In conclusion, the results presented 

here illustrate the viability and potential of non-targeted metabolomic profiling in 

large population-based studies. 
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INTRODUCTION 

Metabolomic profiling, or metabolomics, can be described as a holistic approach to 

the study of low-weight molecules (<1,500 Da) called metabolites. These chemical 

entities, which are the intermediates or end products of metabolism, serve as direct 

signatures of biochemical activities and play an important role in many common 

diseases, such as type 2 diabetes and cardiovascular diseases [1-5]. 

  

Improvements in instrumental technologies and advances in bioinformatics tools have 

provided the possibility to perform metabolomics on large prospective 

epidemiological studies with thousands of individuals and hundreds of phenotypes. 

Combining this rapid progress with improved understanding of the genetic 

determinants of metabolic changes [6,7], this ‘omics’ technology has already 

generated new hypotheses for therapeutic interventions and biomarkers discovery [8]. 

 

Two different types of analytical approaches are currently used in metabolomics 

studies: targeted and non-targeted. Most published studies in the human metabolomics 

field have used a targeted approach [9]. This approach relies on the measurements of 

a specific subset of metabolites, typically focusing on pathways of interest. At 

present, more than 40,000 endogenous and exogenous metabolites have been 

identified in humans [10]. Given that most of the human studies use a targeted 

approach investigating up to 200 metabolites, a large number of disease-related 

metabolites are likely to have been missed. The ‘non-targeted’ approach has the 

advantage to simultaneously measure as many metabolites as possible from a 

biological sample. Ultra performance liquid chromatography (UPLC) and gas 
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chromatography (GC) coupled with mass-spectrometry (MS) have been widely used 

in non-targeted metabolomics efforts [11].  

 

There are two different approaches to non-targeted metabolomics. 

In the first approach, metabolite identification is performed on the entire metabolic 

profile before the statistical analysis, which is then carried out only on the annotated 

metabolites or on both the annotated metabolites and those that could not be annotated 

with the current library of standards. The second approach, which is used in the 

workflow of the present study, detects as many metabolic features (metabolic 

fragments obtained during ionization process or an intact [molecular] ion of the 

original metabolite) as possible and treats each of them as separate variables in the 

analysis. A metabolic spectrum is reconstructed for each metabolic feature of interest 

and used for annotation through public databases or private libraries. Moreover, the 

features that cannot be annotated are reported and the spectra can be shared with the 

scientific community. This non-targeted metabolic feature-based approach has not 

been fully explored in large population studies due to complexity in alignment, 

analysis and annotation of the data generated from MS. 

 There are few previous papers describing the analytical procedures for large-scale 

non-targeted metabolic profiling in serum or plasma [12,13] and in tissues [14], 

especially focusing on sample preparation, liquid chromatography approaches and 

data pre-processing. However, less attention has been paid in describing the 

bioinformatics and statistical analysis of data from large population-based studies.   

 

In this article, we aim to describe our data analysis workflow for non-targeted 

metabolomics analysis in large epidemiological studies, from raw data to reporting 
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statistical associations and identification of metabolites. The data analysis workflow is 

illustrated by an example in which we have investigated the metabolites associated 

with high-sensitive C-reactive protein (hsCRP) levels in two population-based studies 

of 2,489 individuals. The R code used to process and annotate non-targeted 

metabolomics data is made available at 

https://github.com/andgan/metabolomics_pipeline. 
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RESULTS 

Three fundamental quantities: retention time, mass charge ratio and intensity 

In mass spectrometry, a three-dimensional signal comprising retention time, mass 

charge ratio (m/z) and intensity is generated. The retention time is the time of elution 

for any metabolite in liquid chromatography. The m/z is the mass over charge of the 

metabolite and reflects the molecular mass, adducts, and in-source fragments of a 

compound. While the m/z and retention time are the two fundamental components to 

identify a particular metabolite, the intensity describes the abundance of this 

metabolite. 

 

All signals contained in visual output from the mass spectrometer are shown in the 

form of a chromatogram; see Figure 1 for an example. Each peak in the 

chromatogram represents a metabolic feature and the peak area is proportional to the 

relative abundance of that feature. A metabolite feature can be either a molecular 

fragment obtained during the ionization process or an intact (molecular) ion of the 

original metabolite. Multiple metabolite features representing a single metabolite are 

often detected. This phenomenon is due to the occurrence of in-source fragmentation, 

adduct and multimer formation, naturally occurring isotopes, and multiple charge 

states. 

 

Workflow description 

We have schematically outlined the analytical workflow in Figure 2. The workflow 

can be divided in four modules: 
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1) In the first module, peaks from each chromatogram generated by the mass 

spectrometer are detected, aligned and grouped across samples. Each group of peaks 

with unique mass-to-charge ratio (m/z) and retention time is called a ‘feature’.  

 

2) In the second module, the intensities of features are log-transformed and 

normalized to take into account factors of unwanted variation. Quality control is 

performed to exclude samples with unusual total feature intensity and features with 

poor replicability.  

 

3) In the third module, univariate statistical analysis is performed to identify features 

associated with the outcome of interest. False discovery rate (FDR) is controlled to 

select significant features without being too conservative. These features are then 

independently tested in a separately processed study to minimize the number of false-

positives. 

 

 

4) Finally, using an indiscriminate data acquisition workflow coupled with 

correlational grouping [15], both indiscriminant (id) MS and tandem MS (idMS/MS) 

spectra (if available) are generated and used to identify significant features through 

private library matching or annotate them through public databases. Four 

identification and annotation steps with different levels of confidence are described.  
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Module 1: feature detection 

Peak Detection 

As can be seen in Figure 1, a chromatogram contains several thousands peaks with 

large intensity differences across a spectrum of m/z and retention times. To obtain a 

true non-targeted metabolite profile, it is important to quantify as many true peaks as 

possible. To perform this task we use XCMS [16], a bioinformatics package 

implemented in R and widely used by the metabolomics community. The algorithm 

that performs the peak detection is called centWave [17] and it is implemented in the 

xcmsSet function. Two instrument-dependent parameters have a key role in the 

algorithm performances: (1) ppm, indicating the mass spectrometer accuracy; and (2) 

peakwidth, indicating the chromatographic peak-width range. The ppm parameter 

should be set to a generous multiple of the mass accuracy of the mass spectrometer 

(e.g. 25 ppm if the mass accuracy is 2-3 ppm using a multiple of 10). The peakwidth 

parameter is used to give an approximate estimate of the peak width range. 

Visualization tools like AMDIS (http://chemdata.nist.gov/mass-spc/amdis/) or 

instrument-specific software can be used define this parameter. It is important to note 

that the peakwidth parameter should not be interpreted as a stringent threshold since it 

allows peak detection in a slightly larger range than specified. To decide the values of 

remaining parameters in the xcmsSet function, we suggest an approach based on 

iterative testing of different settings as discussed at the end of this module, or to 

evaluate the algorithm performances by looking at the plot obtained, for one 

representative chromatogram, with the findPeaks function (see R code at 

https://github.com/andgan/metabolomics_pipeline). In Figure 3, examples of well 

and badly detected peaks are illustrated. Importantly, when a large number of samples 
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are processed, the xcmsSet function can be parallelized using the nslave parameter, 

which can considerably speed up the peak detection step.  

 

Peaks Alignment 

Chromatographic shifts over time represent a common characteristic of 

chromatography-coupled mass spectrometry. Without a proper retention time 

alignment, peaks representing the same compound would not be correctly grouped 

across different samples because of differences in retention time. This issue is critical 

in large studies, where the mass spectrometer might run for months and some level of 

analytical variation is unavoidable. The retcorr function from the XCMS package 

realigns the samples by correcting the retention time shifting. We suggest using the 

obiwarp algorithm [18] (implemented in the retcorr function), as it is more stable for 

large number of samples. This algorithm uses the sample with the largest number of 

peaks as reference for alignment. It is therefore important to check that the abundance 

of peaks in the ‘centring sample’ is not due to abnormal laboratory conditions. Since 

the amount of correction in retention time for each peak can be obtained from the 

retcorr function, samples with an abnormal total retention time correction can be 

easily identified and removed. Similarly, visualization of retention time corrections 

across samples can be informative of batch effects or laboratory issues. 

 

Peak Grouping 

In this step, the peaks that have been detected and aligned are now grouped across 

samples. Each group, typically called ‘metabolic feature’ or simply ‘feature’, has 

unique retention time and m/z. The group function from the XCMS package performs 

this task. Three parameters play a key role: (1) bw, the retention time deviation to be 
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allowed for grouping; (2) mzwid, m/z width to determine the peak grouping across 

sample; (3) minfrac, minimum fraction of samples in each group needed to call it a 

valid feature. Simulation approaches based on iterative testing of different settings 

(see discussion at the end of this module) and the plot obtained from the group 

function (see R code in Supplementary Material) is useful to determine the right 

values for these three parameters. With a large number of samples, we suggest to keep 

the minfrac parameter relatively low (for example at 0.03) to allow rare and 

exogenous (e.g. cotinine, a metabolite of nicotine) metabolites to be included in the 

analyses. However, the disadvantage of using a too low minfrac parameter is an 

increased risk of detecting false-positive features or noise. In Figure 4, we report the 

graphical output of the group function and discuss some examples of well and badly 

grouped peaks. 

 

Filling missing features 

The majority of features are not detected in all samples. Indeed, most of the feature 

intensities are missing when arriving at this step. This might be due to a true lack of 

signals for certain samples (for example, cotinine should not be detectable in non-

smokers) or, most likely, because some peaks are missed by the peak detection 

algorithm due to the inherent uncertainty when the intensity is close to the signal-to-

noise cutoff. To overcome this problem, the fillpeak function from the XCMS 

package uses the raw data, following retention time correction, to fill the intensity 

values for each of the missing features. However, even after the fillpeak function it is 

possible that some features are not detected in certain samples and a zero value is 

assigned to these.   
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Finally, the groupval function extracts the m by n matrix of intensities, with m 

number of features and n number of samples. It should be noted that the n samples 

include replicates, and both MS and idMS/MS data (when idMS/MS data were 

collected, i.e. Waters MS^E [19]); hence, n is four times the number of samples 

originally collected from study participants. Each feature is uniquely tagged by a mass 

and retention time, approximated to the third decimal place for accurate mass MS 

systems. 

 

How to detect best parameter configuration in XCMS 

The parameters used in XCMS to detect, align and group peaks can drastically change 

the number and quality of the identified features. Brodsky and colleagues have shown 

how the parameter tuning affects the inter-replicate correlation and which parameters 

are likely to have the largest influence [20]. The authors of XCMS have suggested 

parameter values for different UPLC/MS instruments; both in a published paper [21] 

and in the online version of XCMS [22]. Our advice is to randomly select a small 

number of samples (n=20-40) with duplicate or even triplicate injections and to try 

several parameter configurations within a reasonable interval around the suggested 

values. The parameter configuration that maximizes the intra-replicates correlation is 

likely to be the best choice. If replicates are not available, manual inspection of the 

plots generated by the peak detection and grouping algorithms can help to indicate 

whether the selected configuration is appropriate (Figure 3 and 4). 
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Module 2: quality control 

Log2 transformation, sample outlier exclusion, normalization  

Our data acquisition workflow involves the simultaneous collection of low and high 

collision energy in alternating scans [15,19]. Thus, for every sample two 

corresponding data files are generated. In the previous module, we jointly processed 

idMS (low collision energy) and idMS/MS (high collision energy) data. This was 

done to ensure common features names in both datasets. In the next steps (module 2-

3), only the idMS data are used, while the idMS/MS data is used in the last module 

for annotation of significant features. 

  

First, feature intensities are transformed to the log2 base scale to approximate normal 

distribution while keeping the interpretation of the coefficients straightforward; e.g. 1-

unit change is equivalent to a doubling on the original scale. To identify potential 

outliers, the total intensity (sum of the intensities) is calculated for each sample. A 

very low total intensity might indicate sample degradation or technical errors and 

these samples should be excluded. 

 

Second, feature intensities are normalized to allow comparability across samples. 

Normalization is usually performed using statistical models to derive an optimal 

scaling factor based on data distribution (e.g. quantile or median normalization) or by 

inclusion of internal or external standards. The latter approach has larger efficiency, 

but adds complexity to sample preparation [23]. Among methods for statistical 

normalization, quantile normalization has been shown to outperform linear 

normalization [20,24]. When sources of unwanted variability, such as batch effect, 

seasonal effect or storage time affect the comparison between samples, ANOVA-type 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2014. ; https://doi.org/10.1101/002782doi: bioRxiv preprint 

https://doi.org/10.1101/002782
http://creativecommons.org/licenses/by-nd/4.0/


 13

normalization methods can be advantageous [25] [26]. A simple approach can be 

applied by obtaining the residuals from a linear model for association between each 

feature and the factors of unwanted variability. These factors can be identified by 

studying the association between several technical variables and the first principal 

components. This and other methods are commonly used to adjust for batch effects in 

microarray data and are discussed in depth by Leek and colleagues [27]   

In addition to visual investigation of the data before and after normalization, 

correlation between replicates can be used as criteria to compare and select the 

optimal normalization approach. 

Finally, feature intensities are averaged between duplicates to reduce the inherent 

instrumental variability. Those features with poor correlation between replicates are 

excluded. 
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Module 3: analysis 

Univariate statistical analysis 

Similar to genome-wide association studies (GWAS) in the field of genomics, we 

propose a non-targeted metabolome-wide association study (MWAS) design, using 

metabolites as independent variables (instead of genetic variants as in a GWAS). We 

suggest performing a univariate analysis (e.g. linear regression for continuous 

outcomes, logistic regression for dichotomous outcomes or Cox regression for time-

to-event outcomes) for each feature. These models are typically adjusted for age, sex 

and analysis-specific covariates; but for specific outcomes, additional biological 

covariates can be included depending on the research question.  

 

Given the large number of statistical tests performed, correction for multiple testing 

needs to be considered. Two widely used methods to address the issue of multiple 

testing are Bonferroni correction and false discovery rate (FDR). Bonferroni’s method 

controls the probability of making any false positives among all tests, which is 

reasonable in GWAS, where few discoveries are expected from the large number of 

statistical tests. However, in non-targeted metabolomics studies, especially on 

metabolism-related outcomes, a large number of discoveries are expected due to the 

high degree of correlation between features, and strong biological links between 

circulating metabolites and development of these outcomes. In such situations, 

Bonferroni’s method is much too conservative and therefore the FDR method should 

be considered. This method is more appropriate as it gives better power to detect a 

larger number of biologically significant findings while controlling the expected 

proportion of false positives. We used simulations to investigate the behaviour of 

these two multiple-testing correction methods in a setting with highly clustered data, 
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similar to what is observed in metabolomics data (Figure 5). Each set of highly 

clustered simulated data constitute a block, and blocks are independent. We assumed 

an exchangeable correlation structure within the block. Therefore, the test statistics 

within the block are strongly correlated, but not correlated with the test statistics in 

other blocks. Two scenarios were studied: (1) 40% true signals, all with a moderate 

effect size; and (2) 1% true signals with large effect size. We simulated 1,000 

individuals (500 cases and 500 controls) and 10,000 features clustered in 500 high 

correlated blocks. The correlation of features in the block was 0.9. The two-sample t-

statistics were used, and the P-values were obtained by permuting group labels. The 

standard estimate of FDR as a function of the P-values was computed [28].  

 

The Bonferroni method selected only a small fraction of the true signals (Figure 5; 

panel A), even after allowing a higher P-value threshold. On the other hand, the FDR 

method captured a much larger number of features, by allowing a small fraction of 

false discoveries. The effects of block independence can be seen from the perspective 

of the false discovery proportion (FDP), which is the random proportion of false 

discoveries among the rejected nulls. Note that true FDPs varied from realization to 

realization. When compared with the true FDP, the FDR estimate was nearly unbiased 

and maintained low variability for small FDR (Figure 5; panel C). When we 

simulated a scenario with few, highly significant features, the two methods performed 

similarly (Figure 5; panel B) with an increased variability of FDR estimates (Figure 

5; panel D), partially due to the correlated structure of the data. This observation has 

been described and discussed previously [28]. 

The FDR threshold to use for inclusion in the replication phase is quite arbitrary and 

study-dependent. When there is a large number of expected significant features (e.g. 
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when investigating metabolic traits), a conservative FDR (1% to 5%) may be used to 

facilitate the replication and annotation procedures (by having fewer features to 

follow-up in the downstream workflow), while if there are fewer expected findings 

(such as for non-metabolic traits) the FDR threshold may be set higher (e.g. up to 

20%). This should also be balanced against the proportion of expected false positive 

findings that you are willing to accept in that specific setting. 

 

Replication in an external population 

Even if the discovery and replication studies have been analysed in the same 

laboratory and under the same experimental conditions, the metabolic features 

detected might be different because of study-specific sampling, storage and handling 

or due to different bioinformatics data processing (e.g. the minfrac parameter depends 

on the number of samples as more features are detected when larger number of 

samples are jointly processed). In order to determine whether two features represent 

the same compound, both m/z and retention time need to be matched. The m/z match 

can be done within a certain confidence interval, depending on the accuracy of the 

mass spectrometer (e.g. ±0.02 m/z differences). The retention time matching is more 

challenging and depends on the retention time correction applied during peak 

alignment. In general, a larger number of features that are significantly replicated 

among all those that are matched indicate a better quality of the matching strategy. 

Among the features taken forward to validation and that can be matched in the 

replication sample, the number of promising features that can be replicated is 

controlled by the FDR, but also by the underlying effect sizes and the validation 

sample sizes. 
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Module 4: identification and annotation 

Generation of idMS and idMS/MS spectra for significant features 

Tandem mass spectrometry (MS/MS) using precursor ion selection is a well-

established tool to elucidate metabolite structure. In traditional non-targeted 

metabolomics analysis, global MS analysis is followed by targeted MS/MS 

experiments to confirm the putative identification of significant features. However, 

this additional step requires additional analytical work, samples, instrumental time 

and data processing. Recent developments in mass spectrometer technologies have 

allowed for the acquisition of both MS and MS/MS simultaneously in the same 

experiment, by alternating low and high collision energy scans. Using this approach, 

which is a unique feature of Waters systems, ions are fragmented in an indiscriminate 

manner (i.e. no precursor ion selection) [19]. The challenge of this acquisition 

approach is the correct assignment of precursor-product ion relationships. Recently, 

we have shown that by taking advantage of inherent variability within the data, 

correlational relationships can be used to make these assignments and reconstruct 

both idMS and idMS/MS spectra for each feature [15]. Feature identification can be 

obtain by in-house spectral libraries and feature annotation can then be facilitated by 

spectral matching against publically available databases (e.g. METLIN [29], 

MassBank [30]). R code for generating idMS and idMS/MS spectra is provided in the 

https://github.com/andgan/metabolomics_pipeline.  

 
Identification and annotation 

Results of an MWAS are represented as clusters of highly correlated features. Each 

cluster includes features with very similar retention time, but different masses, due to 

fragments and derivative ions of the same metabolites. There are several approaches 

to the identification or annotation of metabolic features, each reflecting different 
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levels of confidence. In Figure 6, we report the workflow that we use to identify or 

annotate the features and the level of confidence obtained within each step. Some 

steps can only be performed given the availability of idMS/MS spectra, which are 

specific of our platform. For a detailed discussion of the levels of confidence, we refer 

to the definition by the Metabolomics Standard Initiative (MSI) [31]. 

 

The first approach has the highest confidence (level 1 according to MSI) and it is 

based on the direct matching of idMS and/or idMS/MS generated spectra to an in-

house spectral library of authentic standards collected under same experimental 

conditions. We define the matching at this confidence level as ‘identification’, in 

contrast to ‘annotation’, which is used as a lower level of confidence.   

Thus, a level 1 identification is based on matching accurate mass, fragmentation 

pattern, and retention time. The main limitation with this approach is the lack of 

authentic standards and the additional analytical and instrumental effort needed to 

create a spectral library. 

 

The following three approaches correspond to the MSI confidence level 2 and are 

therefore referred to as approach 2a, 2b and 2c, where 2a is the most confident. They 

are all based on spectrum and/or m/z similarities, but not retention time similarity, and 

their annotation relies on information available in public databases. The three levels 

can be summarized as follows: level 2a corresponds to matching both accurate mass 

and fragmentation pattern to library spectra in a public database; level 2b corresponds 

to a match based on only fragmentation pattern (precursor ion cannot be assigned or is 

undetected); level 2c corresponds to matching of only accurate mass to a public 

database or literature. Both levels 2a and 2c require assignment of a molecular 
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precursor ion in the spectrum. This process can be challenging as often the M+H ion 

of the metabolite is either not present or is in low abundance compared to the base 

peak. Several programs, such as CAMERA [32] and PeakML/mzMatch [33] can help 

by detecting highly correlated clustered features (based on co-elution in a single 

sample) and annotating isotopes and predictable adducts and in-source fragments. For 

example, m/z differences between spectral peaks can inform about the potential 

adducts present in the spectra and allow back-calculation of the molecular weight; 

typical adducts observed in positive mode are [M+H]+, [M+Na]+, [M+K]+,  [2M+H]+, 

[2M+Na]+, and [2M+K]+. Less common adducts might also be observed and 

complicate the back-calculation of the molecular weight [34]. 

 

Level 2a requires the ability to search public spectral libraries based on both accurate 

precursor mass and fragmentation pattern. This approach can be implemented in the 

MS/MS spectrum match option in METLIN [29] and the MS/MS search option in 

HMDB [10]. Level 2b involves spectral searching only (i.e. precursor ion is not easily 

assigned). This approach can be implemented in the spectrum search option in 

MassBank [30], multiple fragments option in METLIN, or in-source spectral search in 

the NIST search program (http://chemdata.nist.gov/mass-spc/ms-search/). This 

strategy usually provides a larger number of "matched" metabolites per feature, and 

hence subsequent screening based on visual inspection of the top findings is needed to 

determine the most reliable match. Level 2c requires only matching based on accurate 

mass of the assigned precursor in the idMS spectrum.  This approach is utilized when 

spectral library data is not available for the putative metabolite. Caution should be 

used when assigning level 2c annotation as multiple metabolites (e.g. multiple 
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compounds with the same empirical molecular formula but different structure) will 

share the same molecular weight. 

 

The next approach, which corresponds to MSI confidence level 3, uses a combination 

of spectral data, accurate mass, and retention time to assign the metabolite to a 

chemical class (without knowing the exact origin of the metabolite). Finally, if all the 

other approaches have failed in the annotation of the metabolite or metabolite class, 

the metabolite is annotated as “unknown” (level 4 according to MSI). 

 

It is our view that spectral data should be provided for all identified and annotated 

features, included those annotated as “unknown”. This ensures data transparency and 

enables prospective annotation. For a thoughtful discussion regarding identification 

and annotation of non-targeted metabolomic features, we suggest the article from 

Dunn and colleagues [34], and a recently published protocol on metabolite 

characterization using METLIN [35]. 
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Example of application: high-sensitive c-reactive protein 

We applied the workflow described above to serum specimens from two population-

based studies including 2,489 fasting individuals (1,519 from TwinGene and 970 

from PIVUS); see the Materials and Methods section for a detailed description of 

the study participants. The section is organized as follow. First, we describe the 

processing of raw metabolomics data (module 1) and the quality control (module 2). 

A similar approach was applied both to TwinGene and PIVUS; however, details are 

reported only for results from PIVUS to exemplify the workflow. Second, we 

describe a MWAS on levels of hsCRP levels in TwinGene with replication of the 

significant findings in PIVUS (module 3). Third, we show how to annotate the 

validated features using both publically available databases and a private spectral 

library (module 4). 

 

Iterative testing of different settings to determine the best XCMS parameters 

Inter-replicate correlation was evaluated under different parameter configurations. 

Thirty individuals were randomly chosen (120 files; including duplicate injections, 

and both idMS and idMS/MS data) and run through the detection, alignment, 

grouping and filling peaks steps for 2,161 combinations of different levels for five 

parameters (snthresh, mzdiff, minfrac, mzwid, bw). In Figure 7, the average 

correlation between duplicates is reported separately for each parameter suggesting 

that a configuration with relatively higher snthresh and minfrac, and lower mzwid and 

bw improved the intra-replicates correlation. The mzdiff parameter did not influence 

the intra-replicates correlation. Similar to our observations, Brodsky and colleagues 

[20] also reported that an increase in the minfrac and decrease in the mzwid 

parameters were associated with higher between-replicates correlation. 
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To maximize the number of detected features while maintaining a high inter-replicate 

correlation, a minfrac parameter (minimum fraction of sample in each group for 

calling it as a valid feature) slightly lower than the optimal value was employed.  

The following parameters were used in the final analysis for peak detection (xcmsSet 

function): method="centWave", ppm=25, peakwidth=c(2:15), snthresh=8, 

mzCenterFun="wMean", integrate=2, mzdiff=0.05 prefilter=c(1,5); peak alignment 

(rector function): method="obiwarp",plottype="deviation"; peak grouping (group 

function): bw=2, minfrac=0.03, max=100, mzwid=0.01 and peak filling 

(fillPeaks.chrom function). All the other parameters were set to default.  

 

Module 1: Processing of metabolomics data in PIVUS 

Using these parameters in XCMS, 8,185 features were detected by processing 3,880 

files (including replicates, and both idMS and idMS/MS data) from PIVUS. In total, 

31,755,397 peaks (approximately 8,206 per data file) were detected and aligned 

across files. Data files that could not be properly aligned resulted in a high retention 

time correction (difference between retention time before and after alignment). In 

Supplementary Figure 1, red dots indicate files with abnormal retention time 

correction that needed to be excluded from further analysis. After exclusion, the 

average retention time correction in absolute values was 0.37 seconds (max: 2.35 

seconds). Among the 8,185 aligned features, 86% of them was detected in less than 

half of the samples with a signal/noise level greater than 8. The fillpeak algorithm 

identifies the intensities for the missing data files by using the original raw data.  

 

Module 2: Quality control in PIVUS 
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In the next step, idMS/MS data was excluded and quality control was performed on 

1,898 files (including replicates). Two files were removed because of the unusually 

low total intensity (sum of all the features intensities).  

We calculated the correlation between replicates and the median of the coefficients of 

variation for each feature using different normalization approaches (Supplementary 

Table 1). The ANOVA-type approach outperformed normalization methods based on 

single parameter scaling. To determine which factors of unwanted variability should 

be included in the normalization, we studied the association between several technical 

variables and the scores obtained form the first two principal components. We 

observed that season of sample collection (P-value: 2.8x10-48), amount of retention 

time correction (P-value: 4.1x10-48) and storage time (P-value: 2.5x10-8) had the 

strongest association with the first principal component, while date of analysis (P-

value: 7.0x10-104) had the strongest association with the second. The ANOVA-type 

approach simple regresses the feature intensity on the aforementioned variables and 

uses residuals to re-scale the data. 

Distribution of log2-transformed feature intensities (Figure 8, panel A and B) and 

scores form the first two principal components (Figure 8, panel C and D) before and 

after normalization suggest an increased comparability between data files. 

Finally, duplicates were averaged and the average intensity values used in the 

downstream analysis. 

 

 

Module 3: MWAS of hsCRP levels in TwinGene and replication in PIVUS 

The age, sex and hsCRP distributions in TwinGene and PIVUS are reported in 

Supplementary Table 2. Participants with hsCRP higher than 20 mg/L (N=88 in 
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TwinGene; N=21 in PIVUS) were excluded since they are likely to have acute 

infections or chronic inflammatory diseases, while our objective was to assess 

associations with hsCRP levels within the lower-moderately elevated range to study 

the metabolome in low-grade asymptomatic chronic inflammation.  

 

In the remaining 1,431 participants of TwinGene, statistical analysis was performed 

by fitting 11,056 multivariable linear regressions (one for each feature detected in 

TwinGene) including age and sex as covariates and using log-transformed hsCRP as 

outcome. The Q-Q plot from the analysis in TwinGene (Supplementary Figure 2) 

highlights a major deviation from the null distribution, compatible with a scenario of 

a large number of highly correlated significant findings. 

 

Among the 998 features with a FDR lower than 1%, 526 could be matched in PIVUS. 

Requirements for feature matching across studies included m/z difference of ± 0.02 

and retention time differences of ± 3 seconds. The relatively low proportion of 

matched features could be explained by the inherent biological variability between the 

two studies and specifically by the larger size of TwinGene, which allows the 

detection of rare exogenous metabolites. The appropriate retention time window was 

determined by selecting the value that maximized the ratio between number of 

features replicated in PIVUS with a P-value < 0.05 and the total number of matched 

features (a high ratio indicates a good matching strategy). Supplementary Figure 3 

illustrates the behavior of these quantities over different time windows.  

 

In a replication effort, univariate analysis (similarly to what was done in TwinGene) 

was performed in participants from PIVUS (N=949). Out of the 526 features with 
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FDR <1% in TwinGene that also could be detected in PIVUS, 435 features had a P-

value < 0.05. Out of these 435 features, 407 were taken forward for identification and 

annotation. The remaining 28 features had a retention time of 32±2 seconds 

representing metabolites that are not retained on the chromatographic column. These 

compounds are highly polar, and co-elution presents challenges in quantitation, due to 

ionization suppression; and annotation, due to high complexity.   

 

Module 4: Identification and annotation of features significantly associated with 

hsCRP in both TwinGene and PIVUS 

Both idMS and idMS/MS spectra were generated for the remaining 407 features. 

Those with highly similar spectra, strong correlation and similar retention time were 

deemed to be from the same metabolite. Using this manual clustering approach, the 

407 features were clustered in 90 groups, each representing a unique metabolite. 

Features belonging from chemically-linked metabolites (e.g. phosphocholines) are 

highly correlated, but retention times are different; hence, such features are not 

grouped together. Of the 90 metabolites, fifteen had missing idMS and/or idMS/MS 

spectra, indicating either that a single feature was detected for that compound, or that 

the feature represents a false positive result.  

 

Each of the remaining 75 spectra was taken forward to the annotation step. Spectral 

matching was performed against our private library using the spectrum matching 

function implemented in the NIST mass spectral search program 

(http://chemdata.nist.gov/mass-spc/ms-search/). Using this first approach, three 

metabolites were identified with confidence level 1 according to the MSI definition. 
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These metabolites were 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (P-value: 

2.1x10-11), hippuric acid (P-value: 1.5x10-6), and 18:1 fatty acid (P-value: 1.6x10-6).  

 

For the remaining 72 candidate metabolites, we attempted the approach 2a (see 

detailed description above) based on inferred molecular weight and spectral matching 

against publically available databases. To determine the molecular weight of the 

compound, we inspected the idMS spectra and looked for expected patterns of m/z 

differences between peaks. Typically, a m/z difference of 21.982 between two peaks 

indicates that one peak is [M + H]+and the other is  [M + Na]+. Similarly, isotope 

peaks will be observed from the contribution of naturally occurring carbon. We 

annotated a plausible molecular weight in 36 metabolites and performed a spectral 

comparison in METLIN as described by Zhu and colleagues [35]. For five 

metabolites, we had good matches and we assigned these as being of level 2a 

confidence. These were gamma-glutamyl-leucine (P-value: 1.0 x 10-10), 

phenylalanylphenylalanine (P-value: 1.2x10-7), 3,4,5-trimethoxycinnamic acid (P-

value: 1.1x10-8), 3-indolepropionic acid (P-value: 3.5x10-8) and 11β-hydroxyandrost-

4-ene-3,17-dione (P-value: 3.1x10-5). 

 

Annotation of the remaining 67 metabolites was attempted using the NIST public 

spectral library in-source fragmentation search and the METLIN multiple fragment 

search; neither of which require the annotation of the molecular weight of the 

metabolite (approach 2b). One metabolite was annotated as a prostaglandin, with 

several typical peaks, although the specific type of prostaglandin could not be 

determined using spectra matching with the NIST public library. Metabolites 

identified or annotated with these approaches (approach 1, 2a or 2b) are reported in 

the Table 1. 
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In the approach 2c, we attempted to annotate the remaining metabolites by matching 

the plausible molecular weights with METLIN and HMDB. Using this approach, we 

defined 27 additional metabolites as being lipids, with a specified molecular formula, 

while the exact structure could not be determined. The large majority of these lipids 

were phosphatidylcholines (PC) and the remaining were phosphatidylethanolamines 

(PE) or phosphoserines. Two were glycerolipids, two sphingolipids and one a fatty 

acid ester. 

 

Among the remaining non-annotated metabolites, two had a peak in their 

corresponding idMSMS spectra at m/z 184.074, corresponding to a phosphocholine 

fragment, which indicates that these are phosphocholine-containing compounds 

(annotation level 3). 

 

In summary, among the 90 metabolites significantly associated with hsCRP, 36 could 

be identified or annotated at MSI confidence level 1 or 2. Of these, 9 were identified 

with high confidence by matching the idMS/MS spectra with the private library or 

public databases. The strongest metabolite-hsCRP association that we could identify 

was 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine. The number of features per 

metabolite, strength and direction of association in each study and metabolite class for 

all 90 metabolites are reported in Supplementary Table 3. All PCs with m/z<570.3 

(LysoPC) had an inverse relationship with hsCRP. Spectra for all the 90 metabolites 

are made publically available to the scientific community (Supplementary 

Material). 
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DISCUSSION 
 
The role of metabolomics in biomedical research 
 
Metabolomic profiling is an important emerging technique in life sciences and 

biological research that can play a central role in systems biology [36]. The 

understanding of genetic and environmental determinants of diseases can be enhanced 

by the knowledge of their biochemical signature. Moreover, metabolomics can be a 

powerful tool to refine the pathways of association between diseases and genetic 

variants, or to generate new hypotheses regarding the underlying biological processes 

[37].  

 

The growing expectation of the utility of metabolomics in medical and 

pharmacological research has been justified by several important population-based 

studies that have focused on genotype-metabolite [6,35] or metabolite-phenotype 

associations [1,38]. These studies have highlighted the heritability of metabolic traits, 

discovered new metabolite-genotype associations and suggested new biomarkers for 

common diseases. However, none of these studies have implemented a non-targeted 

metabolic feature-based approach.  

 

There are several reasons why a non-targeted metabolic feature-based metabolomics 

approach has not been commonly performed in large human population studies. First, 

the processing and statistical analysis of data from mass spectrometry-based 

metabolomics in larger study samples is cumbersome, and there is a lack of methods 

descriptions and protocols of how to do this. Notable exceptions are the paper by 

Dunn and colleagues [12] and the recent tutorial by our group [13], both of which 

however are mainly focused on laboratory procedures. Second, annotation of findings 
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from non-targeted metabolomics experiments have been complicated by the lack of 

comprehensive spectral databases. Only in the past few years, these databases have 

gathered detailed information on a large number of metabolites and collected MS/MS 

spectra to facilitate annotation. Third, metabolomics results are highly dependent on 

sample collection, storage and analysis [39], which pose challenges for the replication 

of findings across studies. 

 

Nevertheless, there are a few good examples of non-targeted metabolomics studies 

that have been performed in smaller clinical populations to identify markers of 

cardiovascular disease [40], in rats to investigate the chemical basis of neuropathic 

pain [41] and in glioblastoma cells [42].  The main advantage of the non-targeted over 

the targeted approach is the larger number of detected compounds, which translates 

into a greater potential for novel biomarker discovery, the ability to build annotation-

independent metabolic scores for prediction, unbiased biological discoveries and the 

possibility to share uncharacterized metabolites with the scientific community, 

enhancing open-source, collaborative research. 

 

 

Strengths and limitations of our approach 

We believe our study have several important strengths and novel aspects. First, most 

of the articles about metabolomics methods are technical, presuming a strong 

chemical background and do not focus on large human populations and, are thus less 

suitable for the epidemiological community.  Here we present a pipeline to process 

metabolomics data using language and concepts that are more familiar to researchers 

in population-based and clinical research.  Second, the processing of the data using 
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XCMS software is extremely important and it is often underappreciated by other 

reports. We believe that a clear illustration of the XCMS parameters is of great 

importance. Third, statistical analyses have typically been described for small sample 

sizes and mainly rely on multivariate analysis (e.g. PCA). Here, we propose an 

analytical framework similar to those used in other areas within the molecular 

epidemiology field (e.g. genetic epidemiology) and that rely on univariate analysis. 

Finally, metabolic features annotation is of great importance. Researchers that use 

metabolomics data from a commercial supplier (which is the common situation for 

most epidemiological researchers) might not be aware of this aspect since they do not 

perform the annotation. Here we provide a clear illustration of the annotation process, 

which is important for researchers active in this field. 

 

 We also acknowledge several limitations. Although the analytical workflow we 

describe is based on the experience gathered from a specific type of data and 

platform, general considerations are valid for most metabolomics studies in large 

human populations, and our workflow can be easily implemented on data coming 

from other UPLC/MS platforms. Moreover, the workflow that we present is directly 

transferrable to any set of single channel data (e.g. GC/MS) with the caveat that 

settings should be adjusted to reflect different instruments (e.g. peak width and mass 

accuracy). 

We further recognize that the idMS/MS spectra annotation based on data collected 

already at the first-pass analysis is a unique feature of our platform and it is not 

available in most UPLC/MS systems, though the feature grouping methods could be 

applied to low collision energy in-source MS spectra, which can be highly 

informative. However, most of the steps of feature annotation described in our paper 
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can be extended to experimentally generated MS/MS spectra, similarly to what has 

been described by Zhu and colleagues [35]. In this paper, we did not describe 

laboratory procedures, since this topic has been covered by previous protocols 

[12,14,15]. Different experimental workflows (e.g. use of internal standards) might 

require different data analysis procedures that are not covered in this study. In 

general, a rigorous experimental protocol will simplify the data quality control. Other 

software such as MetAlign [43] and MZMine 2 [44] can also be used to process and 

align mass-spectrometry data. We focused on XCMS since it is widely used in the 

scientific community and it has an online implementation that can be used without 

previous knowledge of the R language. 

 

Conclusion 

Non-targeted metabolomics enables investigation of a large number of biological and 

clinical questions in different areas. In this paper, we have presented a data analysis 

workflow for non-targeted metabolomics in biological specimens from large studies 

of human populations. We described challenges and proposed solutions for quality 

control, statistical analysis and annotation of metabolic features. Moreover, we 

demonstrate how this approach could be applied to real data from two 

epidemiological studies. Finally, we performed an MWAS of hsCRP to illustrate the 

potential of the non-targeted metabolomics. 
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METHODS 

Ethic Statement 

All participants of both studies gave a written consent and the Ethics Committees of 

Karolinska Institutet and Uppsala University approved the study. 

 

Study description 

TwinGene 

The Swedish Twin Registry is a population-based national register including over 

170,000 Swedish twins born from 1886 to 2000 [45]. TwinGene is a longitudinal sub-

study within the Swedish Twin Register that was initiated to examine associations 

between genetic factors and cardiovascular diseases in Swedish twins. In TwinGene, 

we performed a case-cohort design by selecting all the incident cases of coronary 

heart diseases, type 2 diabetes, ischemic strokes and dementia up to 31st December 

2009 and a sub-cohort (controls) of 1,796 individuals. Since it has been previously 

shown to improve the study efficiency [46], the subcohort was stratified on median 

age and sex, and for each of the four strata we randomly selected a number of 

participants proportional to the corresponding number of cases in the strata. The 

following analysis is conducted only on the individuals from the sub-cohort since this 

is representative of the original population. Of them, 1,519 passed the quality control 

and had hsCRP measured with a high-sensitivity method by Synchron LX systems 

(Beckman Coulter).  

 

PIVUS 

Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) 

(http://www.medsci.uu.se/pivus/pivus.htm) is a community-based study where all 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2014. ; https://doi.org/10.1101/002782doi: bioRxiv preprint 

https://doi.org/10.1101/002782
http://creativecommons.org/licenses/by-nd/4.0/


 33

men and women at age 70 living in Uppsala, Sweden were invited to participate in 

2001 [47]. Of the 2,025 subjects invited, 1,016 subjects participated. Blood samples 

were available for 972 participants selected for metabolomic profiling. Of them, 970 

passed the quality control. High-sensitive C-reactive protein (hsCRP) was measured 

with an ultra-sensitive particle enhanced immunoturbidimetric assay (Orion 

Diagnostica, Espoo, Finland). 

 

 

Laboratory procedures and mass spectrometry 

Metabolomics profiling was performed at the Proteomics and Metabolomics Facility, 

Colorado State University. Each sample was injected in non-consecutive duplicates in 

a randomized manner and analysed using ultra-performance liquid chromatography 

system (Waters Acquity UPLC system). Data was collected in positive ion mode. 

Scans were collected alternatively in MS mode at collision energy of 6 V and in 

idMS/MS mode using higher collision energy (15–30 V). idMS/MS (also called MSE) 

allows for unbiased view of MS/MS fragmentation without additional experiments 

[15], as discussed further in module 4. Further information regarding the laboratory 

procedures is available in the Supplementary Material. 
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FIGURE LEGENDS 

Figure 1. Example of chromatogram. Each peak represents a compound (e.g. 

metabolite) with unique m/z and retention time, and the peak area is proportional to 

the amount of the compound. 

 

Figure 2. Workflow for doing metabolomics in large human populations from raw 

data to reporting statistical associations and identification of metabolites. 

 

Figure 3. Examples of well and badly detected peaks obtained from the findPeaks 

function. Panel A: well detected peak; the Gaussian curve is correctly fitted to the 

intensity points. Panel B: a fictitious peak is detected in a highly noisy area (low 

signal-to-noise threshold); increasing the signal-to-noise threshold would avoid 

misidentifying this peak. Panel C: a single peak is split in two peaks; increasing the 

peakwidth parameter allows identifying only one peak. Panel D: a large peak is 

identified in an unrealistically large time window; reducing the peakwidth parameters 

allows avoiding this error. 

 

Figure 4. Examples of well and badly grouped peaks obtained from the group 

function. Panel A: well grouped peaks; most of the peaks for a specific m/z (500.90-

500.91) have been grouped in a similar retention time window. Panel B: peaks are 

spread across all the retention times and do not seem to cluster in a specific time 

window, however the algorithm detected a group around 200 seconds retention time. 

Increasing the minfrac parameter should avoid detecting groups with only few peaks. 

Panel C: a well-detected group is split in two groups; increasing the bw parameter 

allows to increase the retention time window for the group detection. Panel D: for 
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this specific m/z (159.05-159.06), only one group is identified; however two other 

groups seem to be present at higher retention times; decreasing the minfrac parameter 

allows to detect groups with fewer peaks. 

 

Figure 5. Simulations to investigate the behaviour of two multiple testing correction 

methods in a metabolomics-like scenario. Panel A and B: Simulation to investigate 

the proportion of significant findings identified by varying the inclusion cut-off with 

two multiple testing correction methods: false discovery rate (FDR; black dashed 

lines) and Bonferroni (red dashed lines). Their averages are denoted by black solid 

and red solid line, respectively. The x-axis is the Bonferroni-corrected P-value or the 

FDR, depending on the method. In panel A, we simulate a scenario with 40 % true 

signals, all with a moderate effect size. In panel B, the true signals are 1 % of all 

signals and have large effect sizes. Panel C and D: We use the same simulation 

settings as in panel A and B, respectively, to investigate the bias and variability of 

FDR estimates compared to the true false discovery proportion. The average estimates 

of the 25 simulations (one each line) is overlapping with the identity line, indicating 

no bias. In panel D, we observe larger variability, which is however modest for small 

FDR. 

 

Figure 6. Decision tree for identification and annotation of features from 

metabolomics data.  

 

Figure 7. Results of iterative testing of different parameters for detection, alignment, 

grouping and filling steps on 30 random individuals (120 files) from PIVUS.  We ran 

all 2,161 possible combinations of values within the reported ranges for five 
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parameters (sntresh, mzdiff, minfrac, mzwid, bw). The reported correlations were the 

average of correlations for each parameter, across values of the other parameters. The 

dot in each panel indicates the value that has been used in the full analysis. The last 

panel indicates the observed correlation for number of features detected across all 

possible parameter combinations. 

 

Figure 8. Normalization and removal of unwanted variability. Feature distribution of 

100 random samples from PIVUS before (panel A) and after (panel B) ANOVA-type 

normalization. First two principal components in PIVUS before (panel A) and after 

(panel B) adjustment for season and storage time. 
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Table 1. Metabolites associated with hsCRP and annotated through spectra matching with a private compound library or public databases (approach 1, 2a or 2b) 

Feature ID in 
TwinGene 

Molecular 
Weight 

N. of 
Significant 
Features 
From the 

Same 
Metabolite 

P-value 
TwinGene 

P-value 
Pivus 

Direction of 
Association 
Combined 

P-value 
Combined 

Identificatio
n and 

Annotation 
approach 

Compound Subclass Metabolite Name 

M524.362T382.723  521.348 39 6.0E-04 1.5E-09 - 2.1E-11 1 Glycerophosphocholines 
1-oleoyl-2-hydroxy-sn-glycero-3-
phosphocholine 

M221.014T112.295 179.058 6 1.2E-05 1.9E-02 - 1.5E-06 1 
Alpha Amino Acids and 
Derivatives 

Hippuric Acid 

M565.520T452.724  282.256 3 2.1E-04 2.3E-03 + 1.6E-06 1 Unsaturated Fatty Acids 18:1 fatty acid 

M261.144T109.900 260.137 3 1.7E-05 2.0E-07 + 1.0E-10 2a 
Alpha Amino Acids and 
Derivatives 

Gamma-glutamyl-Leucine 

M296.130T119.570 312.147 1 6.9E-04 6.8E-06 + 1.2E-07 2a Peptides Phenylalanylphenylalanine 

M190.087T152.558 189.079 3 1.1E-04 8.5E-05 - 3.5E-08 2a 
Indolyl Carboxylic Acids 
and Derivatives 

3-Indolepropionic acid 

M239.092T142.656 238.084 13 1.6E-05 1.5E-04 - 1.1E-08 2a 
Hydroxycinnamic Acid 
Derivatives 

3,4,5-Trimethoxycinnamic acid 

M303.196T165.056 302.188 5 5.3E-04 1.9E-02 - 3.1E-05 2a Androgens and Derivatives 11β-Hydroxy-4-androstene-3,17-
dione 

M317.212T196.185 - 9 9.8E-06 5.1E-06 - 2.5E-10 2b 
Prostaglandins and related 
compounds 
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Spectra matching (m/z and 
retention time) with private 
library obtained under same 

experimental conditions 

Feature 

Known molecular precursor ion 

   YES NO 

      YES 

APPROACH 2a 
(MSI LEVEL 2) 

NO 

Spectra matching (m/z 
only) with public 

databases (unknown 
molecular precursor ion) 

     YES NO  
APPROACH 2b 

(MSI LEVEL 2) 

 

NO 

Spectra matching (m/z 
only) with public 

databases (known 
molecular precursor ion) 

APPROACH 4 

(MSI LEVEL 4) 

APPROACH 2c 
(MSI LEVEL 2) 

   YES 

APPROACH 1 
(MSI LEVEL 1) 

     YES 

APPROACH 3 
(MSI LEVEL 3) 

NO 

Known metabolic class        
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