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ABSTRACT 12 

To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor 13 
CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4 and 5 into fluorescence 14 
activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with 15 
yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance 16 
energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 17 
had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence 18 
response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate 19 
interaction, proton coupling, and regulation. We observed a striking correlation between transport activity 20 
and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and 21 
candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, 22 
demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is 23 
applicable in plant and medical research. 24 
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INTRODUCTION 30 

Quantitatively, nitrogen is the single most limiting nutrient for plants. Thus, not surprisingly, maximal 31 
crop yield depends critically on nitrogen fertilizer inputs. Current practices require production of ~1.5 107 32 
tons of N-fertilizer per annum, consuming ~1% of the world’s annual energy production. Plants absorb 33 
only a fraction of the fertilizer applied to the field, leading to leaching into groundwater, polluting the 34 
environment and damaging human health. Improvements in nitrogen use efficiency of crops are urgently 35 
required, however, while potential targets including uptake transporters and metabolic enzymes have been 36 
identified, successful improvements in N-efficiency are rare {McAllister, 2012 #47168;Jiang, 2012 37 
#47174;Xu, 2012 #47195;Schroeder, 2013 #38704}. Overexpression of an alanine amino transferase or 38 
the transporter OsPTR9 are two of the few examples of improved nitrogen use efficiency {Shrawat, 2008 39 
#47212;Fang, 2013 #47196}. Ammonium, nitrate, amino acids and di- and tripeptides serve as the major 40 
forms of inorganic and organic nitrogen for plants. Uptake occurs predominantly from the 41 
soil/rhizosphere into roots, although aerial parts of the plant are also capable of absorbing nitrogen 42 
{McAllister, 2012 #47168}. Nitrogen availability and distribution in soil vary both spatially and 43 
temporally. Inorganic nitrogen uptake is complex and involves multiple ammonium and nitrate uptake 44 
systems, typically grouped into low-affinity/high capacity and high-affinity/low capacity systems 45 
{Siddiqi, 1990 #4490;Wang, 1994 #46939;von Wirén, 1997 #271}. Their relative activity is influenced 46 
by both exogenous and endogenous factors. The exact sites of uptake of the various forms of nitrogen 47 
along the length of the root, the cells that are directly involved and in vivo regulation are not well 48 
understood. Also the exact intercellular path towards the stele is not experimentally proven. The reasons 49 
for this lack of knowledge lie in the fact that nitrogen transport is difficult to measure. Some studies rely 50 
on the analysis of the depletion of the medium, others use stable isotopes, or the 13N-isotope, which has a 51 
short half-life time of ~10 minutes and requires access to a suitable supply source {Clarkson, 1996 52 
#47227;Wang, 1993 #46942}. Most of these techniques lack spatial resolution, i.e. information on which 53 
cell layers and which root zones absorb the nutrient. Electrophysiological assays can provide spatial 54 
information, however, they are mostly used at accessible surfaces. Spatial information has been provided 55 
in a few studies by methods such as vibrating electrodes {Henriksen, 1990 #47191;Henriksen, 1992 56 
#47192}, positron-emitting tracer imaging systems {Kiyomiya, 2001 #4957;Matsunami, 1999 #47226} or 57 
Secondary Ion Mass Spectrometers {Clode, 2009 #47224}. We also know little about differences in the 58 
distribution of the nitrogen forms in different root cell types or zones and with respect to cellular 59 
compartmentation. Classical approaches average total ion/metabolite levels over all cells in the sample, 60 
e.g. in whole roots. Nitrate levels differ dramatically between root cell types {Karley, 2000 #5731;Zhen, 61 
1991 #47236}. Recently a GFP-labeled protoplast-sorting platform was used to compare metabolomes of 62 
individual cell types in roots {Moussaieff, 2013 #47231}. This study found that levels of small 63 
oligopeptides were comparatively higher in the epidermis and endodermis compared to other root cell 64 
types. Compartmental analyses indicated that the nitrate concentration of root vacuoles is ~10-fold higher 65 
compared to the cytosol {Zhen, 1991 #47236}. 66 

Transporters are placed in strategic positions to control which and how much of a specific nitrogen form 67 
can enter a given cell at a given point of time. The progress in identifying transporter genes provided a 68 
new handle for addressing the mechanisms and the spatial and temporal regulation of nitrogen acquisition 69 
from a new level of detail. Three major families of transporters for inorganic nitrogen uptake (and 70 
distribution) have been identified: the NPF/POT nitrate transporter family {Leran, 2013 #47172}, NRT2 71 
nitrate transporters {Kotur, 2012 #47180}, and the ammonium transporters of the AMT/MEP/Rh family 72 
{Andrade, 2007 #46873;von Wirén, 2000 #1807}. In addition to their role in nitrate uptake, members of 73 
the NPF/POT {Leran, 2013 #47172} family play important roles also in the transport of histidine, 74 
dicarboxylates, oligopeptides, glucosinolates and surprisingly at least three major plant hormones: auxin, 75 
ABA and gibberellin {Boursiac, 2013 #46967;Krouk, 2010 #47183;Kanno, 2012 #47030}. Genes are 76 
valuable tools for exploring physiological functions. Analysis of RNA levels allows us to study gene 77 
regulation {Gazzarrini, 1999 #4798}, e.g. transcriptional GUS-fusions for determining organ and cell 78 
type specific expression, translational GFP-fusions for subcellular localization. Both classical and novel 79 
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methods, including cell-specific transcriptional profiles and ‘translatomes’ provide us with new insights 80 
into differences in expression of transporters in roots {Brady, 2007 #37928;Mustroph, 2009 #46141}. 81 
Analysis of cell type-specific expression profiles showed that the majority of changes in nitrate-induced 82 
gene expression are cell-specific {Gifford, 2008 #47229}. Expression and purification of the proteins 83 
followed by reconstitution in vesicles or expression in heterologous systems to interrogate biochemical 84 
properties include Km and transport mechanisms. The genes can be used as a basis for structure function 85 
studies {Loqué, 2007 #46838} and to obtain crystal structures {Andrade, 2005 #46878;Doki, 2013 86 
#47232}. We can use the genes to identify interacting proteins {Lalonde, 2010 #46051}. Importantly, the 87 
availability of genes enables us to generate specific mutants {Wang, 2009 #47239;Yuan, 2007 #46894}, 88 
which provide insights into their physiological roles. However, even with this massive amount of detailed 89 
data, the key information is missing, namely the information on the activity state of a given protein in 90 
vivo. In vivo activity depends mainly on two additional parameters beyond protein abundance at a given 91 
membrane: the local concentration of the substrate/s, the status of the cell (e.g., the membrane potential 92 
and local pH as key determinants for ion transporter activity) and the status of cellular regulatory 93 
networks required for activity of the protein in question. Again genes can help us to find regulators and 94 
study the effect of mutations on nitrogen acquisition, but ultimately, we need to be able to quantify the 95 
activity of the transporters in individual cells in vivo. 96 

Nitrogen uptake is controlled by many factors, such as nitrogen level, energy status of the plant, 97 
assimilation status of imported nitrogen, N-demand, and involved mobile signals between shoots and 98 
roots as well as between different parts of the root system {von Wirén, 1997 #271}. Nitrate transporters 99 
are regulated through phosphorylation, mediated by calcium-dependent calcineurin-like kinases 100 
(Calcineurin B-like, CBL and CBL-interacting protein kinase, CIPK) {Ho, 2009 #6414;Hu, 2009 101 
#6258;Wang, 2009 #47239}. Major breakthroughs were findings that indicate both members of the AMT 102 
and NPF/POT family function as transporters and receptors (transceptors) {Rubio-Texeira, 2010 103 
#46710;Ho, 2009 #6414;Lima, 2010 #46884}. However, despite broad progress, at present, we have only 104 
a limited understanding of signaling pathways that control nitrogen acquisition. 105 

It is important to develop tools for monitoring the activity of individual transporters in specific locations 106 
in individual cells of plant roots in a minimally invasive manner. A minimally invasive tool that has 107 
proven valuable for monitoring ions and metabolite levels with high spatial and temporal resolution are 108 
genetically encoded fluorescent nanosensors {Okumoto, 2012 #46924}. These sensors rely on substrate-109 
binding-dependent conformational rearrangements in a sensory domain. The rearrangements are reported 110 
by changes in Förster Resonance Energy Transfer (FRET) efficiency between two fluorescent proteins, 111 
which act as FRET donor and acceptor due to spectral overlap. Sensors for glucose, sucrose and zinc have 112 
successfully been used in Arabidopsis to monitor steady state levels as well as accumulation and 113 
elimination under both static and dynamic conditions where roots were exposed to pulses of the 114 
respective analytes {Lanquar, 2013 #47222;Deuschle, 2006 #5819;Chaudhuri, 2011 #38398;Chaudhuri, 115 
2008 #7389;Okumoto, 2008 #6844}.  116 

The recent progress in obtaining crystal structures for transporters, and more importantly the availability 117 
of transporter structures in multiple configurations, has provided insights into the conformational 118 
rearrangements occurring during the transport cycle {Henderson, 2013 #47169;Doki, 2013 119 
#47232;Guettou, 2013 #47175;Madej, 2013 #38678}. Biochemical and structural analyses have shown 120 
that many transporters undergo conformational changes during the transport cycle {Shimamura, 2010 121 
#38424;Jiang, 2012 #38425;Krishnamurthy, 2012 #38423}. Important in this context is that such 122 
rearrangements have been observed for many members of the MFS superfamily; including members of 123 
the NPF/POT family {Doki, 2013 #47232}. We therefore hypothesized that it should be possible to 124 
‘record’ the conformational rearrangements that occur during the transport cycle in a similar manner as 125 
used for the engineering of the FRET sensors. The first prototype for transport activity sensors, named 126 
AmTrac, uses ammonium transporters as sensory domains for engineering transport activity sensors by 127 
inserting a circularly-permutated EGFP (cpEGFP) into a conformation-sensitive position of an 128 
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ammonium transporter {De Michele, 2013 #38714}. Addition of ammonium to yeast cells expressing the 129 
AmTrac sensor trigger concentration-dependent and reversible changes in fluorescence intensity {De 130 
Michele, 2013 #38714}. Whether this approach is transferable to other family proteins in different species 131 
remained to be shown. To create nitrate and peptide transport activity sensors, we fused CHL1 and four 132 
PTRs to fluorescent protein pairs, expressed the fusions in yeast and tested their response to substrate 133 
addition (named NiTrac for nitrate transport activity and PepTrac for peptide transport activity). The five 134 
sensors responded to addition of nitrate or peptides, respectively. The kinetics of the NiTrac1 sensor 135 
response was strikingly similar to the transport kinetics of the native CHL1; the response was specific and 136 
reversible. The new sensors were used to study structure/function relationships, to correlate effects of 137 
mutations in CHL1 and NiTrac1 on activity and sensor responses, and to observe the effect of potential 138 
regulators on the conformation of the transporter. The successful use of the sensors in yeast indicates that 139 
these new tools can be used for in planta analyses. 140 

RESULTS 141 

Engineering of a nitrate transport activity sensor 142 

It is likely that the nitrate transceptor CHL1 undergoes conformational rearrangements during its transport 143 
cycle. To measure substrate-dependent conformational rearrangements, CHL1 was sandwiched between a 144 
yellow acceptor (Aphrodite) and cyan donor fluorophore (mCerulean) {Rizzo, 2006 #47257}; Fig. 1A). 145 
This chimera, named NiTrac1, was expressed in yeast, followed by spectral analysis of yeast cultures in a 146 
spectrofluorimeter (Fig. 1B). The fluorophores were in Förster distance, as evidence by significant 147 
resonance energy transfer. If conformational rearrangements were induced by substrate addition, one 148 
might expect a change in the energy transfer rate. To our surprise, and in contrast to typical FRET sensors 149 
(e.g. glucose or glutamate {Fehr, 2003 #5689;Okumoto, 2005 #6093}), we observed an overall reduction 150 
in the emission intensities of both donor and acceptor, but no obvious change in FRET efficiency. Cyan 151 
FPs are typically robust compare to the yellow variants; specifically, they are less sensitive to pH changes 152 
or other ions compared to yellow variants (here Venus encoded by codon-modified Aphrodite gene 153 
sequence {Deuschle, 2006 #5819}). However, Aphrodite emission was unaffected by nitrate when 154 
excited directly (Fig. 1B, inset), indicating that external nitrate triggers donor quenching in the cytosol. 155 
The sensor response can be expressed as a ratio change between the emission intensity of the sensor at 156 
CFP excitation relative to YFP emission obtained from acceptor excitation. As one may have expected, 157 
the nitrate analog chlorate that lead to the naming of CHL1 (chlorate resistance of the chl1 mutant) {Tsay, 158 
1993 #26}, also triggered NiTrac quenching (Fig. 1C). The response of NiTrac1 is nitrate- and chlorate-159 
specific; other compounds such as chloride, ammonium, divalent cations and dipeptide had no significant 160 
effect (Fig. 1D). When mCerulean was replaced by the corral-derived cyan fluorescent protein mTFP {Ai, 161 
2008 #7408}, we observed FRET, but nitrate addition had no effect on the emission of this variant (Fig. 162 
1E). The mTFP variant, named NiTrac1c (control) therefore can serve as a control sensor for in vivo 163 
measurements. Replacement of mCerulean with eCFP, another jellyfish variant, retained the donor-164 
quenching response to nitrate (Fig. 1F). Although we do not understand the mechanism by which nitrate 165 
triggers donor quenching, the effect is likely related to a specific property common to mCerulean and 166 
eCFP and lacking in mTFP. 167 

Engineering of four peptide transport activity sensors 168 

It is conceivable that nitrate is taken up by CHL1 into the cytosol where it binds to mCerulean, or eCFP, 169 
leading to quenching. However, addition of nitrate to yeast cells expressing CHL1 alone had no effect on 170 
the fluorescence of a cytosolically expressed mCerulean (Fig. 1G). One could argue that quenching 171 
occurs locally at the exit pore of the transporter directly at the plasma membrane and thus requires 172 
tethering of mCerulean to the transporter. To test whether quenching is specifically caused by nitrate, we 173 
created similar constructs for the oligopeptide transporters PTR1, 2, 4 and 5 from Arabidopsis 174 
{Komarova, 2012 #47264;Tsay, 2007 #38564;Leran, 2013 #47172} (Fig. 2A). These proteins share 175 
between 39 and 74% homology with CHL1. PepTrac1, PepTrac2, and PepTrac5 sensors all responded 176 
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with donor quenching to the addition of 0.5 mM diglycine (Fig. 2B-D). Interestingly, PepTrac4 responded 177 
to substrate addition with a ratio change that is consistent with a change in the energy transfer rate rather 178 
than donor quenching (Fig. 2E). Further characterization will be necessary to explore the molecular basis 179 
of donor quenching and how conformational rearrangements cause donor quenching in NiTrac1 by nitrate 180 
or PepTrac1 by peptides, and how they induce resonance energy transfer in PepTrac4. 181 

Biphasic kinetics of the NiTrac1 response 182 

The conformational rearrangements in the sensors could be induced by substrate binding or reflect 183 
rearrangements that occur during the transport cycle. Because binding and transport typically have 184 
different kinetic constants, we analyzed the response kinetics of NiTrac1. CHL1 is unusual in that it 185 
shows biphasic nitrate uptake kinetics (Fig. 3A) {Liu, 2003 #38570}. The observed dual-affinity in 186 
oocytes had been attributed to phosphorylation of T101 by endogenous kinase {Liu, 2003 #38570}. The 187 
phosphorylation hypothesis would suggest that about half of the transporter molecules are 188 
phosphorylated. Interestingly, we observed that the kinetics of the fluorescence response of NiTrac1 in 189 
yeast were also biphasic (Fig. 3A). Since it is unlikely that yeast also partially phosphorylates the 190 
transporter, the biphasic kinetics are more likely an intrinsic property of the protein. Mutation of T101 to 191 
alanine had been shown to eliminate the high-affinity component (Fig. 3B){Liu, 2003 #38570}. 192 
Introduction of T101A into NiTrac1 also eliminated the high-affinity component, intimating that NiTrac1 193 
is a transport activity sensor, and that conformational rearrangements during the transport cycle affect 194 
mCerulean emission (Fig. 3B). Interestingly, the transport Kms of both high and low-affinity phases 195 
matched the values obtained for the fluorescence response, supporting the hypothesis that NiTrac 196 
measures transport activity. Measurement of the sensor response in individual yeast cells demonstrated 197 
rapid nitrate-induced quenching and reversibility of the fluorescence intensity after removal of nitrate 198 
(Fig. 3C), indicating that the sensor can be used effectively for in planta analyses. 199 

Effect of mutations on the NiTrac1 response and NRT1.1 activity 200 

To study the NiTrac mechanism in more detail, and to identify residues important for the transport 201 
function of the transporter and sensor, we generated a homology model for CHL1 on the basis of crystal 202 
structures of bacterial proton-dependent oligopeptide transporter homologs (see Materials and Methods), 203 
and predicted potentially functionally important residues structurally close to the substrate binding pocket 204 
from the predicted structure and from sequence alignments. We specifically targeted residues that might 205 
be important for substrate specificity, residues involved in proton cotransport, and salt bridges possibly 206 
involved in dynamic movements during the transport cycle (Fig. 4A). As one may have expected, 207 
different mutants showed different energy transfer ratios, consistent with conformational differences 208 
(altered distance and/or orientation of the fluorophores in the absence of substrate; Fig. 4B). Interestingly, 209 
we not only observed cases in which donor quenching was lost, but also changes that are consistent with 210 
changes in FRET efficiency in response ligand addition, as well as mixtures of donor quenching and 211 
change in the FRET efficiency (Fig. 4B). However, without knowledge of the effect of the mutations on 212 
transport activity, the data are difficult to interpret. Therefore we introduced the corresponding mutations 213 
into CHL1, expressed the mutants in Xenopus oocytes and used two-electrode voltage clamp (TEVC, Fig. 214 
5) and 15N-uptake (Fig. 6) to measure transport activity. In response to nitrate addition, CHL1 expressing 215 
oocytes showed an inward current, consistent with the proposed 2H+/NO3

- cotransport mechanism. CHL1 216 
contains a highly conserved motif E41-E44-R45 in TM1 predicted to play a role in proton coupling 217 
{Doki, 2013 #47232;Solcan, 2012 #47188;Newstead, 2011 #47266;Newstead, 2011 #47267}. Mutations 218 
in this motif in the oligopeptide transporters PepTSt (from Streptococcus thermophiles {Solcan, 2012 219 
#47188}, PepTSo, PepTSo2 (both from Shewanella oneidensis) {Newstead, 2011 #47267}, and GkPOT 220 
(from Geobacillus kaustophilus) {Doki, 2013 #47232} typically lost proton-driven transport activity. We 221 
therefore tested the role of residues in this motif using NiTrac expressed in yeast and CHL1 expressed on 222 
oocytes. Mutation in any of the three residues (E41A, E44A and R45A, TM1) led to a loss of nitrate-223 
induced currents and 15N-uptake in both the high- and low-affinity range (0.5/0.25 and 10 mM) (Fig.5, 6). 224 
The corresponding mutant of NiTrac1 also lost the sensor response to nitrate addition (Fig.4B, Table 1), 225 
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indicating that the conserved motif is also used for proton cotransport of nitrate. Interestingly, the mutant 226 
was characterized by higher FRET compared to wild type CHL1, indicating that the mutation leads to a 227 
conformational change in the protein (Fig. 4B). Structural and functional analyses of the bacterial peptide 228 
transporter PepTSt had implicated a salt bridge between a conserved K126 in TM4 and E400 in TM10 in 229 
peptide recognition and/or structural movements during the transport cycle {Solcan, 2012 #47188}. This 230 
lysine is conserved throughout the POT family (K164 of CHL1, TM4) {Doki, 2013 #47232;Solcan, 2012 231 
#47188;Newstead, 2011 #47266;Newstead, 2011 #47267}. Consistent with results from the bacterial 232 
PepTSt and GkPOT, mutation of K164 to alanine or aspartate in CHL1 completely abolished nitrate 233 
uptake in both the high- and low-affinity range (0.25 and 10 mM) (Fig. 6), however, the nitrate-dependent 234 
inward currents were retained (Fig. 5). Mutation K136A in GkPOT and K126A in PepTSt both abolished 235 
completely proton-driven uptake but still had counterflow activities {Doki, 2013 #47232;Solcan, 2012 236 
#47188}. Both CHL1-K164 mutants either function as nitrate-dependent proton channels or have lost 237 
selectivity and, consistent with the shift of the reversal potential to more negative values transport other 238 
anions such as chloride. NiTrac1-K164A surprisingly showed a different response mode, i.e. upon 239 
addition of nitrate the mutant not only showed donor quenching but apparently also a change in FRET 240 
efficiency, underlining the exceptional sensitivity of NiTrac1 to effects of mutations on conformation 241 
(Fig. 4B). Mutation of the salt bridge acceptor E476A in TM10 of CHL1 led to loss of both the nitrate-242 
induced inward current and 15N-uptake (Fig. 5, 6) and NiTrac lost the sensor response to addition of 243 
nitrate (Fig. 4B); by contrast, and as one might expect, the conservative mutation E476D had no 244 
significant effect on transport properties and sensor response (Fig. 4B, 5, and 6). Alanine substitutions 245 
were introduced into corresponding sites predicted to be in the vicinity of the substrate-binding pocket 246 
(L49, Q358, and Y388 in TM1, TM7, and TM8, respectively). Consistent with results obtained for the 247 
corresponding residue (N342 in TM8) in GKPOT {Doki, 2013 #47232}, Y388A had no detectable effect 248 
on the nitrate-induced inward currents, 15N-uptake, and sensor response (Fig.4B, 5, and 6), indicating the 249 
residue Y388 may not involved in nitrate binding or transport cycle of CHL1. Mutation of L49 in TM1 250 
and Q358 in TM7 of CHL1 to alanine had no significant effect on nitrate-induced inward currents and 251 
15N-uptake (Fig. 5, 6), but NiTrac responses were characterized by a mixture of donor quenching and 252 
FRET change (Fig. 4B). Based on protein sequence alignments, CHL1 carries an extended cytoplasmic 253 
loop connecting the N- and C-terminal six helical bundles. To test the role of this loop, a triple mutant 254 
E264A-E266A-K267A was analyzed. The triple mutant lost specifically the low-affinity component 255 
nitrate-induced inward current and 15N uptake but retained the high-affinity component (Fig. 5, 6), 256 
implicating the charged residues in the extended loop in the regulation of nitrate uptake affinity. 257 
Similarly, the corresponding NiTrac1mutant also lost the sensor response to high nitrate concentrations 258 
(Fig. 4B). Together, these data show that NiTrac1 is a sensitive tool for reporting conformational changes 259 
in mutants and further support the hypothesis that NiTrac1 reports activity states of the transporter. 260 

Effect of regulatory proteins on the NiTrac1 response 261 

The transceptor CHL1 plays important roles in nitrate uptake, transport, sensing, must therefore be 262 
subject to regulation of its activity by posttranslational regulation on the one hand, on the other hand 263 
CHL1 must interact with intracellular proteins in order to control downstream transcription by signaling 264 
pathways. We hypothesized that binding of regulatory proteins or signaling proteins might affect the 265 
fluorescence properties of NiTrac1. Therefore, we tested whether coexpression of the known interactor 266 
CIPK23, which can phosphorylate CHL1 at T101 in in vitro assays, would affect the properties of 267 
NiTrac1 (Fig. 7). CIPK23 did not change the energy transfer between the fluorophores in the absence of 268 
nitrate, but blocked the fluorescence response of NiTrac1 to nitrate addition (Fig.7B), either by 269 
stoichiometric binding or by phosphorylation of T101. The coactivator CBL9, which did not affect CHL1 270 
transport activity on its own but enhanced the CIPK23-mediated phosphorylation of CHL1 {Ho, 2009 271 
#6414}, had no detectable effect on the fluorescence response of NiTrac1 by itself (Fig. 7C). By contrast, 272 
CIPK8, which is nitrate inducible in a CHL1-dependent fashion, did not affect the Nitrac1 response. 273 
However CBL1 on its own also blocked the Nitrac1 response to nitrate addition (Fig. 7D). The analysis of 274 
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coexpression of NiTrac1 with combinations of CIPKs and CBLs will require a different approach since 275 
episomal expression of three partners likely will create high variability due to copy number variance. 276 

A large-scale interactome screen recently identified novel CHL1 interactors {Jones, 2013 #47204}. To 277 
test whether some of these interactors affect NiTrac1 fluorescence, we coexpressed four candidate 278 
proteins with NiTrac1 in yeast. While two of the four did not show significant effects on NiTrac1 or the 279 
response to nitrate addition, we found that the potassium transporter KT2 and the WNK kinase WNK8 280 
blocked NiTrac1 responses (Fig. 7D). Further experiments will be required to characterize the role of 281 
these new interactions; however the results demonstrate the suitability of NiTrac1 for analyzing the effect 282 
of known and novel interactors on CHL1 conformation and activity. 283 

Discussion 284 

To be able to monitor the activity and regulation of individual isoforms of the nitrate and peptide 285 
transporter family in planta and to study their structure function relationships, we engineered five 286 
transporters of the NPF/POT family to report their activity and conformation in vivo. The five proteins 287 
were fused with yellow and cyan versions of GFP at their N- and C-termini, respectively. When expressed 288 
in yeast, the sensors respond to substrate addition either by donor quenching or by a FRET change. The 289 
most striking feature of NiTrac is the biphasic response kinetic which matches the dual-affinity transport 290 
properties of the protein strikingly well. Based on a predicted structural model and sequence alignments, 291 
we mutated select amino acids. Analysis of the fluorescence response of these mutants and comparison 292 
with transport assays provides us with insights into the structure-function relationship of the CHL1 nitrate 293 
transceptor. The sensor is also used for probing structural rearrangements that occur when NiTrac is 294 
coexpressed with putative regulators and interactors, and we discovered new candidate regulatory 295 
proteins. The engineering of a suite of nitrate and peptide transport activity sensors complements our 296 
recent work in which we developed the prototype for fluorescence-based activity sensors AmTrac and 297 
MepTrac by inserting circularly-permutated EGFP into conformation-sensitive positions of ammonium 298 
transporters. Addition of ammonium to yeast cells expressing the AmTrac/MepTrac sensors triggered 299 
concentration-dependent and reversible changes in fluorescence intensity {De Michele, 2013 #38714}. 300 
Together, the engineering of activity sensors through two different approaches – insertion of a 301 
fluorophore into a conformationally sensitive site in AMT/MEPs and terminal fusions of a fluorophore 302 
pair to the NPF/POT family proteins indicates the potential to transfer the concept to other transporters, 303 
receptors, and enzymes. This suite of genetically encoded sensors provides a unique set of tools for 304 
observing the activity of individual transporter family members in intact tissue layers of intact plants. 305 

Sensor output from NiTrac1 and PepTracs 306 

The activity sensors can provide three types of reports: (i) the basic ratio provides information on 307 
structure, specifically conformation of the population of sensors which can be compared between for 308 
example mutants or in response to coexpression of a regulator; (ii) the intensity of donor or acceptor can 309 
be subject to substrate-induced changes that lead to quenching as seen in NiTrac and PepTrac. At present, 310 
we do not understand the molecular basis of nitrate-induced donor quenching, which appears to affect 311 
mCerulean and CFP, but not mTFP. The fact that three PepTracs show a similar quenching effect when 312 
dipeptides are added may indicate that the quenching is caused by a conformational rearrangement in the 313 
transporter. A more detailed biophysical characterization may shed light on this unexpected behavior of 314 
the sensors. (iii) The change in the emission ratio of the two fluorophores upon substrate addition in 315 
PepTrac4 is likely caused by a change in resonance energy transfer as had been observed for small 316 
molecule sensors {Okumoto, 2012 #46924}. In certain cases, i.e. NiTrac1 mutants L49A and Q358A 317 
(Table 1), we observed a mixture of donor quenching and FRET changes. We thus hypothesize that both 318 
NiTracs and all four PepTracs have the potential to report in two different modes, i.e. donor quenching, a 319 
FRET change or a combination thereof. 320 

Structural rearrangements triggered by mutations, by binding of a regulator, or by mutations apparently 321 
lead to a variety of changes in the fluorescence output. One of the most striking features of NiTrac1 is that 322 
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it reflects the biphasic kinetics of CHL1 and that even the transport and fluorescence response constants 323 
are highly similar. Mutagenesis of T101 to alanine, which had been shown to specifically affect the high-324 
affinity component of nitrate uptake also specifically eliminated the high-affinity response in NiTrac1. 325 
These findings strongly supported the notion that NiTrac reports the processes that occur in the 326 
transceptor, when it binds and/or transports nitrate. The observations also intimate that the dual-affinity is 327 
not caused by partial phosphorylation of CHL1 when expressed in oocytes, as suggested by Tsay’s group 328 
{Liu, 2003 #38570}, but more likely represent an intrinsic property of CHL1 since they also occur when 329 
NiTrac1 is expressed in yeast. CHL1 also functions as nitrate sensor to regulate transcription of a variety 330 
of genes including that of the high-affinity nitrate transporter NRT2 {Ho, 2009 #6414}. Interestingly, the 331 
transport and signaling activities of CHL1 can be decoupled by Pro492L in the loop connecting TM10 332 
and 11{Ho, 2009 #6414}. It will thus be interesting to introduce this mutation into NiTrac1 and monitor 333 
the effect on the sensor output.  334 

Using NiTrac1 as a tool for structure function analyses 335 

Taking the advantage of a homology model, we introduced mutations into NiTrac1 and studied the effects 336 
on the transport activity by TEVC recording and 15N-uptake into oocytes, and compared the effects to 337 
fluorescence readouts from the corresponding NiTrac1 mutants. Specifically, we analyzed the role of the 338 
putative proton-coupling motif 41ExxER45; the role of charged residues in the extended loop 339 
R264R266K267; and residues in the substrate binding pocket as well as a predicted a salt bridge L49, 340 
K164, Q358, Y388, and E476 {Doki, 2013 #47232;Solcan, 2012 #47188 Newstead`, 2011 341 
`#47266;Newstead, 2011 #47267}. We observed three main types of response (Table 1): (i) loss of both 342 
nitrate uptake activity and loss of the sensor response in E41A, E44A, R45A, and E476A; (ii) loss of 343 
either high- or low-affinity uptake activity and correlated loss of the respective sensor response in T101A 344 
and R264A/R266A/K267A; (iii) maintenance of the nitrate uptake activity and sensor response in L49A, 345 
Y388A, Q358A, and E476D. Relative to NiTrac1, more than half of the mutants show a change in FRET 346 
between the two fluorophores in the absence of substrate addition. Consistent with the role of E41 and 347 
E44 in proton-coupling for bacterial peptide transporters, the fluorescence response of E41A, E44A, and 348 
R45A NiTrac1 variants support a similar role in the nitrate transporter CHL1. Interestingly, L49A, which 349 
did not show detectable differences in transport activity, showed a mixture of donor quenching and FRET 350 
change in response to nitrate addition, demonstrating that NiTrac1 is exquisitely sensitive for detecting 351 
changes in the overall protein conformation. R45A lost transport activity, but retained a FRET change 352 
response after addition of substrate rather than showing a quenching response, indicating an overall 353 
conformational change due to binding of nitrate in the absence of a functional transport cycle. 354 
Interestingly, mutation of charged residues in the extended cytoplasmic loop of CHL1 355 
(R264A/R266A/K267A) specifically affected the low-affinity component in sensor and uptake response, 356 
implicating the loop, potentially through interacting proteins that can tune activity. How T101 357 
phosphorylation, which affects the behavior of CHL1/NiTrac1 at low nitrate levels cooperates with the 358 
cytosolic loop, which appears to specifically affect the behavior in high nitrate conditions will be 359 
interesting to address in future experiments. Based on our studies, we presume that K164, Q358 and E476 360 
may participate in nitrate binding. Consistent with data from bacterial peptide transporters, E476A lost 361 
both sensor response and uptake activity. This conserved residue aspartate likely plays a role in the 362 
binding pocket and/or salt bridge formation that is important for the substrate transport cycle. Mutants 363 
carrying K164A/D and Q385A mutations were both characterized by significantly increased nitrate-364 
dependent inward currents. It will be interesting to further explore the cause for the increased conductivity 365 
with respect to transported ion species. While with the data from the limited number of mutants does not 366 
allow us to draw conclusions on the exact molecular nature of the conformational changes, we 367 
nevertheless provide the first evidence that activity sensors are highly sensitive and simple tools for 368 
probing structure-function relationships in heterologous and homologous systems without the necessity to 369 
purify the transporters. 370 

Effect of CIPK and CBL proteins on the NiTrac1 sensors 371 
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The interaction of proteins likely affects the conformation of both partners, either directly or as a 372 
consequence of modifications such as phosphorylation. Here we show that activity sensors can be used to 373 
probe such interactions with exquisite sensitivity. As a proof of concept, we demonstrate that 374 
coexpression of the calcium-dependent kinase CIPK23, which is phosphorylating T101 of CHL1 and 375 
thereby inhibiting the low affinity component of CHL1, can block the fluorescence response when 376 
coexpressed with NiTrac1. Although typically CIPKs are thought to require a CBL for substrate 377 
recognition and derepression of the autoinhibition, CIPK23 had been shown to be able to interact with 378 
CHL1 on its own and trigger at least partial phosphorylation of T101 in vitro {Ho, 2009 #6414}. 379 
Interestingly, although CBL9 had been shown to enhance the CIPK-mediated phosphorylation of T101, 380 
we did not observe an effect of coexpression of CBL on NiTrac1. Surprisingly, and despite the high 381 
sequence identity between AtCBL9 and AtCBL1 (~89% identity), CBL1 but not CBL9 inhibited the 382 
nitrate response of NiTrac1. AtCBL1 and 9 have been shown to regulate a variety of processes including 383 
potassium uptake, pollen germination, as well as sugar-, hormone- and ROS-signaling {Xu, 2006 384 
#47038;Cheong, 2007 #47249;Hashimoto, 2011 #47244;Sagi, 2006 #47245;Kimura, 2013 385 
#47250;Drerup, 2013 #47246;Li, 2013 #47251}. Even though CBL1 and 9 have apparent overlapping 386 
functions, they can have specific effects, e.g., the AtCBL1-AtCIPK1 complex is involved in ABA-387 
dependent stress responses, while the AtCBL9-AtCIPK1 complex plays roles in ABA-independent stress 388 
responses {Drerup, 2013 #47246}. In general, CIPKs depend on their coactivator-CBLs to activate CIPK 389 
kinase activity. However, recent studies showed that full-length CIPK23, CIPK16, or CIPK6 alone can 390 
activate the AKT1 potassium channel system (Li et al., 2006; Lee et al., 2007; Fujii et al., 2009). Also, 391 
AtCBL10 interacts with AKT1 to regulate potassium homeostasis without binding to any AtCIPKs {Ren, 392 
2013 #47034}. The assays deployed here use strong promoters and high copy number plasmids. It will 393 
therefore be important to test whether low levels of the kinase are sufficient for inhibiting NiTrac1. It will 394 
also be interesting to compare the responses of NiTrac1 when expressed in mutant plants lacking 395 
components of the CBL-CIPK machinery. 396 

WNK kinase and potassium transporter interactions 397 

In addition, we tested whether NiTrac1 can used to monitor conformational rearrangements caused by 398 
interacting proteins, specifically we tested interactors detected in a large-scale membrane 399 
protein/signaling protein interaction screen {Lalonde, 2010 #46051;Jones, 2013 #47204}. Surprisingly, 400 
we found an interaction of CHL1 with the potassium transporter AtKT2/KUP2/SHY3, which plays a role 401 
in potassium uptake. Coexpression of KT2 with NiTrac1 lead to a block of the nitrate response. Whether 402 
this interaction plays a role in crosstalk between nitrogen and potassium uptake remains to be shown. In 403 
addition, we had found an interaction with the ‘no lysine (K) kinase 8’ WNK8. Also WNK8 blocked the 404 
nitrate-induced fluorescence response of NiTrac1. WNK8 had been shown to interact specifically with 405 
and phosphorylate subunit C of the vacuolar H+-ATPase AtVHA-C {Hong-Hermesdorf, 2006 #47279}; 406 
as well as with the calcineurin B-like 1 calcium sensor AtCBL1 {Li, 2013 #47280}. It will be interesting 407 
to further explore the network between CBL1, WNK8 and CHL1.  408 

Obviously, NiTrac1 is highly sensitive to conformational changes that occur during the transport cycle, 409 
effects of mutations and to changes caused by interaction with other proteins. Thus analyses performed 410 
with these sensors in plants will have to differentiate between responses caused by substrate and 411 
regulatory interactions. The use of controls, e.g. the mTFP sensor, and elimination of FRET by 412 
exchanging the acceptor with a non-fretting fluorophore, as well as the use of mutant sensors may be a 413 
way to dissect the relative contribution of substrate and protein interactions. These new tools are 414 
complementary to the classical tools set including electrophysiology and tracer studies, but has the clear 415 
advantage of allowing measurements deep inside plant or animal tissues and organs, domains largely 416 
inaccessible to other technologies. 417 

Outlook 418 
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In summary, we developed a set of five sensors that can report the activity of nitrate and peptide 419 
transporters in vivo. At the same time, such activity sensors prove to be sensitive tools for studying the 420 
effect of mutations on the conformation of the transporter or to detect regulatory interactions with other 421 
proteins. The next step will be to deploy NiTrac1 and its mutants as well as the PepTracs in Arabidopsis 422 
plants to characterize the activity of the transporters and their regulation in vivo. The plant peptide 423 
transporters are close homologs of the human SLC15 peptide transporters. The SLC15 transporter PepT1 424 
has pathophysiological relevance in processes like intestinal inflammation and inflammatory bowel 425 
disease {Ingersoll, 2012 #47274} and it serves as a key transport mechanism for uptake of drugs {Agu, 426 
2011 #47278}. Given the success in engineering five members of the plant transporter family we envisage 427 
that the approach can be implemented also for measuring the activity of the human transporters in situ and 428 
to use such sensors for example for drug screens. 429 

  430 
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MATERIALS AND METHODS 431 

DNA Constructs 432 

All transporter and sensor constructs were inserted by Gateway LR reactions, into the yeast expression 433 
vectors pDRFlip30, 34, 39, and -GW. pDRFlip30 is a vector that sandwiches the insert between an N-434 
terminal Aphrodite t9 (AFPt9) variant {Deuschle, 2006 #5819}, with 9 amino acids truncated of C-435 
terminus, and a C-terminal monomeric Cerulean (mCer){Rizzo, 2006 #47257}. pDRFlip39 sandwiches 436 
the inserted polypeptide between an N-terminal enhanced dimer Aphrodite t9 (edAFPt9) and C-terminal 437 
fluorescent protein enhanced dimer, 7 amino acids and 9 amino acids truncated of N-terminus and C-438 
terminus of eCyan (t7.ed.eCFPt9), respectively. pDRFlip34 carries an N-terminal AFPt9 and a C-terminal 439 
t7.TFP.t9 (t7.TFP.t9){Rizzo, 2006 #47257}. All plasmids contain the f1 replication origin, a 440 
GATEWAYTM cassette (attR1-CmR-ccdB-attR2), positioned between the pair of fluorescent proteins, the 441 
PMA1 promoter fragment, an ADH terminator, and the URA3 cassette for selection in yeast. Vector 442 
construction has been described {Jones, 2013 #44029}. The full length ORF of CHL1, PTR1, PTR2, 443 
PTR4, and PTR5 from Arabidopsis and different mutants of NRT1.1 in the TOPO GATEWAYTM Entry 444 
vector were used as sensory domains for creating the nitrate sensor NiTrac1, and the peptide sensors 445 
PepTrac1, PepTrac2, PepTrac4, PepTrac5. The yeast expression vectors were then created by 446 
GATEWAYTM LR reactions between different forms of pTOPO-NRT/PRT and different pDRFlip-GWs, 447 
following manufacturer’s instructions. For functional assays in Xenopus oocytes, the cDNAs of CHL1 448 
and all mutants of CHL1 were cloned into the oocyte expression vector pOO2-GW {Loqué, 2009 449 
#46882}. Point mutations for studying characterization of CHL1 in oocyte and NiTrac1 in yeast were 450 
generated by QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies). For the 451 
coexpression assays with interactors in yeast, putative interactors were inserted, by LR reaction, in the 452 
yeast expression vector pDR-XN-GW vector, which was replaced URA3 with LEU2 in pDRf1 containing 453 
the f1 replication origin, GATEWAYTM cassette (-attR1-CmR-ccdB-attR2), PMA1 promoter fragment, 454 
ADH terminator in yeast {Loqué, 2007 #46838}. 455 

Yeast cultures 456 

The yeast BJ5465 [MATa, ura3–52, trp1, leu2Δ1, his3Δ200, pep4∷HIS3, prb1Δ1.6R, can1, GAL+] was 457 
obtained from the Yeast Genetic Stock Center (University of California, Berkeley, CA). Yeast was 458 
transformed using the lithium acetate method {Gietz, 1992 #1477} and transformants were selected on 459 
solid YNB (minimal yeast medium without nitrogen; Difco) supplemented with 2% glucose and –ura/-460 
ura-leu DropOut medium (Clontech). Single colonies were grown in 5 mL liquid YNB supplemented 461 
with 2% glucose and –ura/-ura-leu drop out under agitation (230 rpm) at 30ºC until OD600nm ~ 0.5 was 462 
reached.  The liquid cultures were subcultured by dilution to OD600nm 0.01 in the same liquid medium and 463 
grown at 30oC until OD600nm ~ 0.2. 464 

Fluorimetry 465 

Fresh yeast cultures (OD600nm ~ 0.2) were washed twice in 50 mM MES buffer, pH 5.5, and resuspended 466 
to OD600nm ~0.5 in the same MES buffer supplemented with 0.05% agarose to delay cell sedimentation. 467 
Fluorescence was measured in a fluorescence plate reader (M1000, TECAN, Austria), in bottom reading 468 
mode using a 7.5 nm bandwidth for both excitation and emission {Bermejo, 2010 #6861;Bermejo, 2011 469 
#38314}. Typically, emission spectra were recorded (λem 470-570 nm). To quantify fluorescence 470 
responses of the sensors to substrate addition, 100 µL of substrate (dissolved in MES buffer, pH 5,5 as 471 
500% stock solution) were added to 100 µL of cells in 96-well flat bottom plates (#655101; Greiner, 472 
Monroe, NC). Fluorescence from cultures harboring pDRFlip30 (donor: mCER) and 39 (donor: 473 
t7.ed.eCFPt9) was measured by excitation at λexc 428 nm; cell expressing from pDRFlip34 (donor 474 
t7.TFP.t9) were excited at λexc = 440 nm. 475 

Quantitative fluorescence intensity data from individual yeast cells expressing the sensors (Figure 3C) 476 
were acquired on an inverted microscope (Leica, Wetzlar, Germany). To be able to record fluorescence 477 
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intensities in single cells over time, yeast cells were trapped as a single cell layer in a microfluidic 478 
perfusion system (Y04C plate, Onyx, Cellasic, Hayward, CA, USA) and perfused with either 50 mM 479 
MES buffer, pH 5.5, or buffer supplemented with 10mM KNO3 {Bermejo, 2010 #8121;Bermejo, 2011 480 
#8122}. Briefly, imaging was performed on an inverted fluorescence microscope (Leica DMIRE2) with a 481 
QuantEM digital camera (Photometrics) and a 40x/NA (numerical aperture) 1.25–0.75 oil-immersion lens  482 
(IMM HCX PL Apo CS). Dual-emission intensity ratios were simultaneously recorded using a DualView 483 
unit with a Dual CFP/YFP-ET filter set (ET470/24m and ET535/30m; Chroma) and Slidebook 4.0 484 
software (Intelligent Imaging Innovations). Excitation (filter ET430/24x; Chroma) was provided by a 485 
Lambda LS light source (Sutter Instruments; 100%lamp output). Images were acquired within the linear 486 
detection range of the camera at intervals of 20 s. The exposure time was typically 1000 ms with an EM 487 
(electron-multiplying) gain of 3 °ø at 10 MHz and an electron multiplying charge coupled device 488 
(EMCCD) camera (Evolve, Photometrics, Tucson, AZ, USA). Measurements were taken every 10 sec, 489 
with 100 ms exposure time using Slidebook 5.4 image acquisition software (Intelligent Imaging 490 
Innovations, Denver, CO, USA). Fluorescence pixel intensity was quantified using Fiji software; single 491 
cells were selected and analyzed with the help of the ROI manager tool. 492 

Structure prediction for CHL1 and PTR1 493 
Protein structure prediction for CHL1 and PTR1 was performed using Phyre {Kelley, 2009 #47252}. 494 
Full-length CHL1 (At1g12110) and AtPTR1/NPF8.1 (At3g54140) amino acid sequences were used for 495 
the 3D structure prediction on the website. The analysis made use of 4 solved crystal structures of 496 
nitrate/peptide homologs (PDB ID: 4iky, 2xut, 4aps, 4lep){Doki, 2013 #47232;Solcan, 2012 497 
#47188;Newstead, 2011 #47266;Newstead, 2011 #47267}. The homologs shared 16-27% identity with 498 
CHL1 or PTR1. The predicted potentially functionally important residues were from the predicted 499 
structure (3DLigandSite, {Wass, 2010 #47275}) and from sequence alignments. After structural 500 
prediction of CHL1, 41-ExxER-45, in TM1, the conserved sequence motif involved in proton cotransport 501 
(22-ExxER-26, 21-ExxER-25, 21-ExxER-25, 32-ExxER-36 in PepTSt, PepTSo, PepTSo2, and GtPOT, 502 
respectively), putative residues involved in substrate binding pocket L49 in TM1 (Y30, Y29, Y29, and 503 
Y40 in PepTSt, PepTSo, PepTSo2, and GtPOT, respectively), Q358 in TM7 (Q289, Q317, Q291, and Q311 504 
in PepTSt, PepTSo, PepTSo2, and GtPOT, respectively), and Y388 in TM8 (N328, N321, and N342 in 505 
PepTSt, PepTSo2, and GtPOT, respectively), and putative residues of salt bridges K164 in TM4 (K126, 506 
K127, K121, and K136 in PepTSt, PepTSo, PepTSo2, and GtPOT, respectively), E476 in TM10 (E400, 507 
E419, E402, and E413 in PepTSt, PepTSo, PepTSo2, and GtPOT, respectively), and residues 508 
R264/R266/K267 in the lateral helices loop between TM6 and TM7 were selected for mutagenesis.  509 

Functional expression of CHL1 and respective mutants in Xenopus oocytes 510 
TEVC in oocyte was performed essentially as described previously {De Michele, 2013 #38714}. In brief, 511 
for in vitro transcription, pOO2-CHL1 and respective mutants were linearized with MluI. Capped cRNA 512 
was in vitro transcribed by SP6 RNA polymerase using mMESSAGE mMACHINE kits (Ambion, Austin, 513 
TX). Xenopus laevis oocytes were obtained from lab of Miriam Goodman by surgery manually, or 514 
ordered from Ecocyte Bio Science (Austin, TX). The oocytes were injected via the Roboinjector (Multi 515 
Channel Systems, Reutlingen, Germany; {Pehl, 2004 #38504;Lemaire, 2004 #45382}) with distilled 516 
water (50 nl as control), or cRNA from CHL1 or CHL1 mutants (50 ng in 50 nl). Cells were kept at 16°C 517 
two to four days in ND96 buffer containing 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, and 518 
5 mM HEPES, pH 7.4, containing gentamycin (50 μg/μl) before recording experiments. Recordings were 519 
typically performed at day three after cRNA injection. 520 

Electrophysiological measurements in Xenopus oocytes 521 
Electrophysiological analyses of injected oocytes were performed as described previously {Huang, 1999 522 
#47253;De Michele, 2013 #38714}. Reaction buffers used recording current (I)-voltage (V) relationships 523 
were (i) 230 mM mannitol, 0.3 mM CaCl2, and 10 mM HEPES, and (ii) 220 mM mannitol, 0.3 mM 524 
CaCl2, and 10 mM HEPES at the pH indicated plus 0.5 or 10 mM CsNO3. Typical resting potentials were 525 
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~-40 mV. Measurements were recorded by oocytes were voltage clamped at −40 mV and a step protocol 526 
was used (-20 to −180 mV for 300 ms, in −20mV increments and measured by the two-electrode voltage-527 
clamp (TEVC) Roboocyte system (Multi Channel Systems){Pehl, 2004 #38504;Lemaire, 2004 #45382}. 528 

15NO3
− uptake assays in Xenopus oocytes 529 

Nitrate uptake assays were performed using 15N-labeled nitrate {Ho, 2009 #6414}, and oocytes injected 530 
with CHL1 cRNA were used as positive controls. After two to four days cRNA injection, the oocytes 531 
were incubated for 90~120 min in 15NO3

− medium containing 230 mM mannitol, 0.3 mM CaCl2, 10 mM 532 
HEPES, pH 5.5. Then, oocytes were rinsed five times with ND96 buffer, and individually dried at 80°C 533 
for one to two days. 15N content was analyzed in an ECS 4010 Elemental Combustion System (Costech 534 
Analytical Technologies Inc., Valencia, CA, USA) whose output was connected to a Delta plus 535 
Advantage mass spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). 536 

Statistical analyses  537 

For statistical analyses of 15N-nitrate uptake into oocytes (Fig. 6) and the effect of treatments on the 538 
fluorescence responses (Fig. 1C and Fig. 7) we used analysis of deviance (ANOVA); factors (sample, 539 
treatment) were treated as fixed factors. ANOVAs were performed using the Analysis of Variance 540 
(ANOVA) Calculator - One-Way ANOVA from Summary Data (www.danielsoper.com/statcalc). All 541 
experiments were performed at least with three biological repeats. The reported values represent mean 542 
and standard deviation. Student’s t-test was used in Fig. 1, 6, and 7 to determine significance. 543 
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LEGENDS TO FIGURES AND TABLES: 797 

 798 

 799 

Figure 1. Design and development of NiTrac sensors (A). Schematic representation of the NiTrac1 sensor 800 
construct. Aphrodite, yellow; mCerulean, light blue; CHL1/NRT1.1/NPF6.3 dark blue; TM, 801 
transmembrane domain. (B). Emission spectra for NiTrac1 expressed in yeast cells; excitation at 428 nm: 802 
addition of 5 mM potassium nitrate (red; control 5 mM KCl - blue) lead to a reduction in fluorescence 803 
intensity of donor and acceptor emission, caused by donor quenching. Inset: Emission of Aphrodite in 804 
NiTrac1 when excited at 505 nm. Aphrodite emission was unaffected. (C). Nitrate and its analog chlorate 805 
both trigger quenching at 5 mM concentrations. Nitrate-induced ratio change (peak fluorescence intensity 806 
of Aphrodite excited at 505 nm over emission spectrum at 485nm obtained with excitation at 428 nm). 807 
Data are normalized to buffer-treated control c (D). Substrate specificity: Yeast cells expressing NiTrac1 808 
were treated with the indicated compounds at 5 mM concentrations. Only nitrate and chlorate triggered 809 
responses that were significantly different from control c (*, p <0.05, t-test). Experiment performed as in 810 
Fig. 1C. (E). Absence of quenching of NiTrac1 when mCerulean was exchanged for mTFP (excitation at 811 
440 nm). Inset: Emission of Aphrodite in NiTrac1 when excited at 505 nm. (F). Donor quenching is 812 
retained when mCerulean is exchanged for eCFP in NiTrac1 in response to addition of 5 mM potassium 813 
nitrate (red; control 5 mM KCl, blue; excitation at 428 nm). Inset: Emission of Aphrodite in NiTrac1 814 
when excited at 505 nm. (G). No detectable effect on the fluorescence properties of nitrate addition to 815 
yeast cells coexpresing a cytosolically localized free mCerulean and the CHL1 transceptor. Mean ± SD; n 816 
= 3. 817 
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 818 

 819 

 820 

Figure 2. PepTrac sensors. (A). Schematic representation of the PepTrac sensor constructs. AtPTR1, 2, 4, 821 
and 5 were used for PepTrac sensors creation. Three-dimensional model of AFP-PTRs-mCerulean 822 
chimeric protein based on the crystal structure of bacteria peptide transporters (see materials and 823 
methods). PTR1 is shown in rainbow cartoon; AFP in yellow; mCerulean in blue. (B-D). Donor 824 
quenching of PepTrac1, 2, and 5 expressed in yeast in response to addition of 0.5 mM diglycine (red; 825 
control 5 mM KCl, blue; excitation at 428 nm). Inset: Emission of Aphrodite in PepTrac1, 2, and 5 when 826 
excited at 505 nm. (E). FRET ratio change for PepTrac4 (red; control 5 mM KCl, blue; excitation at 428 827 
nm). Mean ± SD; n = 3. 828 
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 830 

 831 

Figure 3. Biphasic kinetics of the NiTrac1 response. (A) Biphasic nitrate uptake kinetics of the 832 
fluorescence response of NiTrac1 (red) and biphasic nitrate uptake transport kinetics of CHL1/NRT1.1 833 
(Black). (B) Monophasic nitrate uptake kinetics of the fluorescence response of NiTrac1-T101A (red) and 834 
monophasic low-affinity transport kinetics of CHL1/NRT1.1-T101A (Black, oocyte uptake data from 835 
{Liu, 2003 #38570}. The Kms of NiTrac1 for nitrate are ~75.1±21μM and 3.8±2.6mM; for NiTrac1-836 
T101A is 3.5±3.7mM. Excitation and emission as Fig 1C. The amount of decreased fluorescence intensity 837 
by addition of indicated nitrate concentration in Fig 3A and 3B were normalized to water-treated control 838 
(0) (mean ± SD; n = 3). (C) Analysis of the NiTrac1 response in individual yeast cells trapped in a 839 
Cellasic microfluidic plate. Cells were initially perfused with 50 mM MES buffer pH 5.5, followed by a 840 
square pulse of 10 mM KNO3 in MES buffer for six minutes (blue frame). Data were normalized to the 841 
initial value (mean ± SD; n =3). 842 
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 844 

 845 

 846 

Figure 4. Response of NiTrac1 mutants to nitrate addition. (A) Three-dimensional model of CHL1 847 
protein based on the crystal structures of bacteria (see Materials and methods). Red square, potential 848 
substrate binding pocket. Left panel, enlarged potential substrate binding pocket. (B). Fluorescence 849 
response of NiTrac1 mutants expressed in yeast in response to addition of 10 mM potassium nitrate (red; 850 
control 10 mM KCl, blue; excitation at 428 nm). To compare the differences in fluorescence intensity 851 
between wild type and mutants of CHL1 as well as the differences after addition of nitrate, all data from 852 
wild type and mutants were normalized to the intensity of KCl-treated controls at 470nm. Mean ± SD; n = 853 
3. 854 
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 856 

 857 

 858 

Figure 5. Current and voltage curve of CHL1/NRT1.1 mutants using TEVC. Oocytes were voltage 859 
clamped at −40 mV and stepped into a test voltage between -20 and −180 mV for 300 ms, in −20-mV 860 
increments. The currents (I) shown here are the difference between the currents flowing at +300 ms in the 861 
cRNA-injected CHL1 mutants and water-injected control of the indicated substrates. The curves 862 
presented here were recorded from a single oocyte. Similar results were obtained using another two 863 
different batches of oocytes.  864 
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 866 

 867 

 868 

Figure 6. 15NO3
- uptake activity of various CHL1 mutants in oocytes. The injected oocytes with various 869 

cRNA of CHL1 mutants were incubated with 0.25mM and 10 mM K15NO3 buffer at pH 5.5 for about 870 
1.5~2 h, and their 15N content was determined as described in Methods. The values are the mean ± SD (n 871 
= 5~6 for all three experiments). Data are normalized to the 0.25mM treated CHL1-injected oocytes. +, 872 
significant difference (p <0.05, t-test) compared with water-injected oocytes. An asterisk indicates a 873 
significant difference (p <0.05, t-test) compared with the CHL1-injected oocytes. Similar results were 874 
obtained using another two batches of oocytes.  875 
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 877 

 878 

 879 

Figure 7. Effects of the fluorescence response of NiTrac1 by interacting proteins. Known interactors or 880 
regulators, as CIPK8, CIPK23, CBL1, and CBL9 as well as other interactors identified in a large-scale 881 
membrane protein interaction screen were co-expressed with NiTrac1 in yeast cells. (A). Donor 882 
quenching response of NiTrac1 with vector as control. (B) And (C). Fluorescence response of NiTrac1 in 883 
CIPK23 and CBL9 coexpressing yeast, respectively. The fluorescence response indicates that CIPK23, 884 
CBL1, At2g40540, and At5g41990 affect the conformation NiTrac1, whereas no detectable change is 885 
observed for CBL9, CIPK8, At1g71140, and At1g25510. (A-C). Nitrate-induced ratio change (peak 886 
fluorescence intensity of Aphrodite excited at 505 nm over emission spectrum obtained with excitation at 887 
428 nm).  Data are normalized to KCl-treated control at 470 nm. An asterisk indicates a significant 888 
difference (p <0.05, t-test) compared with the KNO3-treated control. Mean ± SD; n = 3. 889 
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Table1. Summary of the nitrate uptake, TEVC, and fluoresc-

ence w/wo substrate responses of CHL1 and CHL1 mutants 

15N, 15NO
3
- flex assay. TEVC, two electrode volage clamp. HA, High-affinity concentration LA, low-

affinity concentration. DQ, donor quenching. ETH, energy transfer high. ETL, energy transfer low. 

FRET*,NiTrac partten without substrate treatment. SR, substrate response of NiTrac.      in blue 

and red, positive uptake activity.     , negative uptake activity.     , degree of FRET. Blue, reduced 

FRET; red, increased FT SR, substrate resposne.   

T101A 
HA 

LA 

HA 

LA 

n.d. 

n.d. 
DQ 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2014. ; https://doi.org/10.1101/002741doi: bioRxiv preprint 

https://doi.org/10.1101/002741
http://creativecommons.org/licenses/by-nc/4.0/

	Cover Page
	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

