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Abstract 

Consensus clustering (CC) is an unsupervised class discovery method widely used to study sample 
heterogeneity in high-dimensional datasets.  It calculates "consensus rate" between any two samples as 
how frequently they are grouped together in repeated clustering runs under a certain degree of random 
perturbation. The pairwise consensus rates form a between-sample similarity matrix, which has been used 
(1) as a visual proof that clusters exist, (2) for comparing stability among clusters, and (3) for estimating 
the optimal number (K) of clusters. However, the sensitivity and specificity of CC have not been 
systemically studied.  To assess its performance, we investigated the most common implementations of 
CC; and compared CC with other popular methods that also focus on cluster stability and estimation of K. 
We evaluated these methods using simulated datasets with either known structure or known absence of 
structure. Our results showed that (1) CC was able to divide randomly generated unimodal data into pre-
specified numbers of clusters, and was able to show apparent stability of these chance partitions of known 
cluster-less data; (2) for data with known structure, the proportion of ambiguously clustered (PAC) pairs 
infers the known number of clusters more reliably than several commonly used K estimating methods; 
and (3) validation of the optimal K by choosing the most discriminant genes from the discovery cohort 
and applying them in an independent cohort often exaggerates the confidence in K due to inherent gene-
gene correlations among the selected genes. While these results do not yet prove that any of the published 
studies using CC has generated false positive findings, they show that datasets with subtle or no structure 
are fully capable of producing strong evidence of consensus clustering. We therefore recommend caution 
is using CC in class discovery and validation. 
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Author Summary 

Consensus clustering (CC) is rapidly becoming the algorithm of choice for unsupervised class discovery 
with genomic datasets. It has been used both as a visualization tool and an inference tool, and has been 
cited ~600 times since its introduction in 2003. In a typical application, The Cancer Genome Atlas 
(TCGA) Research Network used CC to analyze gene expression data of glioblastoma and identified four 
subtypes. But as often occurred in this type of studies, neither the strength of the evidence nor the 
sensitivity of the method was quantitatively evaluated. Here, by comparing the TCGA dataset with a 
series of randomly simulated datasets known to lack cluster, we highlight the potential for CC to generate 
false positive results in subtype discovery. We describe a CC-based summary statistic, the proportion of 
ambiguous clustering (PAC), as the measure to infer the optimal number of clusters.  Using simulated 
data with known number of clusters we show that PAC outperforms commonly used methods such as 
CDF, ∆(K), Silhouette Width, GAP-PC and CLEST in scenarios closely resembling real studies. We 
conclude by making practical recommendations for conducting unsupervised class discovery using CC.	   
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Introduction 

Cluster analysis is one of the main tools for unsupervised subtype discovery from high-dimensional data. 
Since 1996, cluster analysis of microarray-derived gene expression profiles has led to the recognition of 
molecular subtypes of many cancers [1-6]. However, it is difficult to quantify clustering strength by 
casting it into a standard hypothesis-testing problem, because each real dataset could have a unique 
covariance structure. For example, shared regulatory pathways inevitably produce strong gene-gene 
correlations, thus a multivariate Gaussian distribution without gene-gene correlation does not constitute a 
valid null in practice.  This difficulty led to the development of non-parametric, resampling-based 
methods, where multiple subsamples of the original dataset are clustered, and the results are compared to 
assess cluster stability. One such method, CLEST	  [7], computes cross-validation errors for a range of 
potential cluster numbers (denoted K throughout this study), and compares these errors to find the optimal 
K. Another resampling-based method, consensus clustering (CC) [8], has recently gained widespread 
application in subtype discovery. CC calculates a “consensus rate” between all pairs of samples, defined 
as the frequency with which a given pair is grouped together in multiple clustering runs under a certain 
degree of random permutation, implemented either by random initialization or by sample- or gene-
subsampling. The resulting similarity matrix is often used as both a visualization tool and an inference 
tool for putative clusters, where the differences between within-group and between-group consensus rates 
allow the assessment of cluster stability and the estimation of the optimal K. 

The main assumption of CC is that if the objects under study were drawn from distinct sub-populations 
that truly exist, different subsamples of these objects would exhibit similar cluster numbers, i.e., the true 
K. This assumption is easily validated in cases of well-separated clusters. However, whether apparently 
robust clusters might also arise from structureless data (i.e., having no clusters) has not been studied.  
This question underscores a potential limitation of resampling-based methods, namely the difficulty of 
formally evaluating the significance of cluster results without stating the underlying null assumptions. 
Although this limitation is acknowledged in the literature [for example, 8], many studies still relied on the 
consensus rate heatmap to visually demonstrate the existence of clusters, without investigating the 
robustness of the conclusions.   

A motivating example 

Glioblastoma multiforme (GBM) was the first cancer type studied by The Cancer Genome Atlas (TCGA) 
Research Network [9], and was reported to have four molecular subtypes according to gene expression 
clusters discovered by CC [10].  Here we use the same data in a technical reassessment of CC.  We will 
not discuss biological implications of GBM subtypes, which have been revised and expanded since the 
initial study by TCGA	  [11-13]. 

We ran CC on the gene expression data for the first GBM cohort (n = 202, referred to as GBM1, see 
Materials and Methods), with K = 4 and k-means as the base clustering method. The consensus rate 
matrix was calculated by 500 repeated clustering runs, taking a random 80% subset of genes (Figure 1a) 
or samples (Figure 1b) in each run.  As originally reported [10], the consensus heatmaps (Figure 1a-b) 
show four crisp clusters; and it was the crispness of the clusters that was cited as the strong evidence for 
inherent structure at K = 4 in GBM1.  However, the appearance of clusters in the Pearson's correlation 
coefficient matrix (Figure 1c) is substantially weaker, with many samples having strong correlations with 
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samples in a different cluster.  Similarly, principal component analysis (PCA) (Figure 1d) does not show 
distinct gaps among the four reported clusters, rather they represent contiguous partitions of an unbroken 
data cloud.  These findings raise the question whether CC has over-stated the robustness of clusters.  

A related issue is the robustness of estimated K.  We re-ran CC using K = 2 and K = 3, applied average-
linkage hierarchical clustering to the consensus matrices, and re-displayed the same correlation matrix in 
Figure 1c with the hierarchical-clustering-based order for K=2 (Figure 2a), K=3 (Figure 2b) and with the 
order from the first principal component scores (Figure 2c). Each panel in Figure 2 showed interesting 
structure, suggesting that it is possible to re-order a sample-sample similarity matrix in different ways to 
support different claims regarding optimal K. 

The examples above motivated us to ask the following questions: (1) How can an investigator know if 
he/she is merely partitioning data from a unimodal distribution into multiple groups? (2) How should the 
optimal K be determined? (3) How to verify the existence of clusters and how to validate K?  In the 
following, we address these questions by systematically studying the sensitivity and specificity of CC on 
known negative and known positive datasets. 

Results 

CC is capable of finding clusters in null datasets of unimodal distribution 

We consider the typical case where the input data are expression levels of p genes measured on n 
samples, and the question is whether the n samples form K clusters.  The underlying assumption 
of CC is that repeated subsampling of genes or samples can capture the true structure of the 
population from which the data come from. However, since CC does not generate a measure of 
statistical confidence associated with this estimation procedure, one needs to compare clustering 
results for the test dataset with those from an ensemble of negative datasets, which form a null 
distribution. Several types of null distribution have been proposed in the literature, but they vary 
in how closely they mimic real-life data values and gene-gene correlations.  For example, the null 
n-p matrix can be populated randomly from a univariate uniform or unimodal distribution [7]. 
Alternatively, if multivariate distributions are used, the covariance among the variables can be 
either set to zero or "borrowed" from real datasets, by sampling random projections in the 
principal component space derived from the real data. In the following we will examine how the 
choice of the null model could affect the reported confidence of clustering results, beginning with 
an illustrative example. 

We tested the performance of CC on two simple datasets, (1) 100 samples that form a regularly 
spaced square-shaped grid in the PC1-PC2 space (called Square1), and (2) ~300 samples forming 
a similar but circle-shaped grid (called Circle1).  Briefly, we drew two 1000-element random 
vectors from Normal(0,1) that served as fixed PC1 and PC2 vectors.  Next, for Square1, we 
generated 100 pairs of [PC1, PC2] coefficients that would place 100 samples onto a 10-by-10 grid 
in the PC1-PC2 space. In this formation, samples had regularly increasing PC1 scores from left to 
right in the PC1-PC2 plot, and regularly increasing PC2 scores from bottom to top. The [PC1, 
PC2] scores were slightly "wiggled" from the grid points by adding random Normal(0,1) noise. 
The final 100x1000 matrix is formed by linear combinations of the two fixed PC vectors with the 
100 different coefficient pairs.  Similarly, for Circle1, we repeated the procedure above but 
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changed the number of samples from 100 to 400, forming a 20-by-20 grid plus the same level of 
random wiggle. We then trimmed the square grid to keep only the samples with a distance to the 
center smaller than a radius of ~9.62 grid units, leaving ~300 samples that form a circle. Strictly 
speaking, both Square1 and Circle1 have higher gene-gene correlations than a matrix filled with 
Normal(0,1) data because all 100 (or 300) objects are derived from the same PC1 and PC2 
vectors. However, they are still unimodal in the sense that the sample placements lack local 
compactness or separation. Thus they can serve as the test case where no cluster is known to 
exist, and from which no robust cluster should be found. 

We performed consensus clustering on Circle1 for K = 2-8, using k-means as the base method. In 
Figure 3, the upper panels show the group partition in a single typical k-means run; and lower 
panels show the CC matrix heatmaps for 250 runs with 80% subsampling. While there is no 
inherent structure in Circle1, CC can nonetheless partition the samples into K subgroups, which 
are spatially well segregated.  Importantly, CC is able to show a high apparent stability of clusters 
in the heatmap, for example, at K = 2-4 (Figure 3a-3c). Moreover, the stability is further 
improved for larger K (such as 7 or 8), making it tempting to conclude that the original data 
contain 7 or 8 clusters (Figure 3f-3g). 

The apparent stability in this example is potentially caused in part by the presence of outliers or 
"corners" of the sample distribution. To explicitly investigate this, we performed CC on Square1 
for K = 2-5. As in Circle1, Square1 samples show clear partitioning and apparent stability, 
especially for K = 4 (Figure 4). Clusters for K = 2-3 were not as ‘clean’, suggesting that the four 
corners of the grid helped to anchor the K = 4 partitions and lend them stability. 

Together, these simple illustrative examples show that CC is able to claim apparent stability of 
chance partitioning of null datasets drawn from a unimodal distribution, and thus has the potential 
to lead to over-interpretation of cluster stability in a real study. A related lesson is that, visual 
evidence alone can be misleading, and formal inference methods are needed to test the robustness 
of the clusters.  This is particularly relevant in practice, as many published studies utilizing CC 
neglected to evaluate the strength of the evidence, and relied on visualization of the CC matrix to 
declare clusters. In the next section, we construct a more realistic null model by applying 
GBM1’s gene-gene correlation structure to generate a family of datasets obeying a unimodal 
distribution. We then evaluate the original GBM1 data in comparison with these empirical null 
datasets. 

CC shows stable clusters for null models harboring empirical gene-gene correlations 

In a data matrix with p genes in one dimension and n samples in another, gene-gene correlation (a 
p-p matrix), and sample-sample correlation (an n-n matrix) are dependent of each other. For 
example, if the samples fall into two clusters, the genes that differentiate the two clusters will be 
correlated, leading to a recognizable structure in gene-gene correlation. Conversely, if a group of 
genes are co-regulated, they will limit the "shape" of sample projections in the p-dimensional 
space. For example, if gene-1 (g1) and gene-2 (g2) are strongly correlated, samples will tend to 
occupy an elongated ellipsoid in the g1-g2 dimension rather than a sphere, making it easier to 
identify sample clusters from one end of the ellipsoid to another. In short, gene-gene correlation 
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is a key parameter in the unsupervised discovery of sample clusters, and needs to be considered 
when constructing realistic null distributions.  

In settings naturally encountered in genomic studies, n << p, and gene-gene correlation 
information is often reliably represented by the top eigenvectors, i.e., the principle component 
loadings that quantify the contribution of each of the p genes to the most salient data structure. 
When the top K eigenvectors are known from a real dataset, one can create null cluster-less 
datasets with the same gene-gene correlation by (1) drawing the top K principal component 
scores of n simulated samples by randomly sampling a univariate Gaussian distribution to form 
an n-K score matrix, and (2) multiplying this score matrix with the K eigenvectors from the real 
dataset (Materials and Methods). By repeating this procedure, we generated 50 null datasets 
from GBM1 and called this collection the pcNormal datasets. When needing to run one-to-one 
comparisons with GBM1, we chose a representative dataset from pcNormal as the one for which 
the silhouette width statistics (defined in Materials and Methods) is ranked 25th among the 50, 
and denoted this dataset as Sim25.  

Although the pcNormal datasets lack structure, CC analysis show stable clusters with K = 2, 3, 4. 
An example, Sim25 (Figure 5) showed "block-like" clusters in the K=4 heatmap, and these are as 
crisp as those for the original GBM1 data (compare Figure 5b-5c with Figure 1a-1b). Although 
this comparison does not establish that GBM1 has no structure, it shows that simulated data with 
no known local density or outlier groups are fully capable of producing visually convincing 
evidence for strong clusters via the use of CC.  

Quantitative comparisons of cluster strength between GBM1 and the null datasets 

CC heatmaps in Figure 1 and 5 allow visual comparisons of cluster strength. However, formal 
inference requires quantitative summaries for the presence of clusters under a range of possible 
Ks. Two such summaries are CLEST [7] and silhouette width [14]. Briefly, CLEST is a 
resampling-based method that randomly partitions the original dataset into a learning set and a 
test set. The former is used in	  an	  unsupervised clustering method to build a K-cluster classifier, 
which is applied to partition the latter (the test set) in supervised assignment. The test set is also 
partitioned independently using the same unsupervised clustering algorithm as applied for the 
training set.  The concordance between the supervised and unsupervised partitions for the test set 
is summarized by measures such as the Fowlkes-Mallows (FM) index, for which a higher value 
indicates stronger clustering signals in the original data. Silhouette width is computed for each 
sample and each K based on the comparison of its distance to its own cluster and that to other 
clusters. A dataset with strong clusters tend to show a high average value of positive silhouette 
width, and fewer samples of negative silhouette width.   

We apply these two methods to compare clustering strength between three TCGA datasets and 
the 50 pcNormal null datasets. The three datasets are: TCGA’s first and second GBM cohort 
(GBM1 and GBM2, respectively), and the validation dataset [10], which is a combination of 
data from multiple prior studies [15-18]. CLEST results (Figure 6a) show that, for all K values 
except 2, the three real datasets have higher FM values than the null datasets. GBM1, in 
particular, show the highest FM values, suggesting that GBM1 has more structure than the null 
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datasets. However, K = 4 is not clearly the optimal number of clusters for GBM1, because the 
differences from the null datasets are comparable across K = 3 - 8.  

Figure 6b shows the average of positive silhouette widths on the x-axis and the fraction of 
samples with negative silhouette widths on the y-axis. Datasets with strong clustering signals are 
expected to appear on the lower-right side of the plot. At K=4, GBM1 is within the distribution of 
the 50 pcNormal datasets along the y-axis, but is a positive outlier along the x-axis. We also 
added to this figure the results from simulated positive datasets with four known clusters pulled 
apart with controlled degrees of separation (as measured by a, explained below and in Materials 
and Methods). GBM1 is most similar to the dataset with a= 0.2. This result suggests that GBM1 
has a certain clustering structure, however it does not confirm K = 4 as the optimal number of 
cluster in the range K=2-6 using silhouette width statistics (Figure 6c). GBM2 and the Validation 
dataset are within the range of pcNormal for both axes, reinforcing the results from Figure 6a that 
they have weaker structures than GBM1.  

The apparent structure of GBM1 can be attributed to the fact that our simulations relied on 
normally distributed samples in the hyperspace and could not capture all the spatial features of 
the actual dataset.  For example, Figure 1d showed "protrusions" of GBM1 samples towards two 
lower front corners of the PC1-PC2-PC3 cubic space. Such local formations in the hyperspace are 
difficult to match by simulations, partly explaining the observed difference between GBM1 and 
the null simulations (Figure 6b). In short, while some quantitative measures, such as CLEST and 
average silhouette width, could bring out the uniqueness of GBM1, other measures, such as the 
heatmaps in Figure 1a-1b and the negative silhouette width fraction, could not. This underlines 
the fact that different clustering measures emphasize different features of a given heterogeneous 
high-dimensional dataset. The average of positive silhouette widths, for example, is strongly 
influenced by the existence of one or more highly compact clusters. 

Limitations of ∆(K), GAP-PC and CLEST for finding K. 

CC matrix has been used as a sensitive heuristic for visualizing clusters, assessing stability, and 
inferring the optimal K. To formally estimate K, two statistics derived from CC, the cumulative 
distribution function (CDF) and the proportional change in the area under the CDF curve upon an 
increase of K (∆(K)) have been proposed (explained in more detail in Materials and Methods). 
We investigated the performance of CDF and ∆(K), along with two other methods, using 
simulated positive datasets of known clustering separation and known K.  

To generate datasets of known structure, we first obtained K clusters in Sim25 using a k-means 
run, and then gradually "pulled apart" the samples in each cluster, in PC space, from the global 
center of all samples. We implemented this pulling apart procedure for K = 2-6, with pull-apart 
degree "a" in the range [0, 0.8], where 1.0 represents pulling the PC scores of the samples away 
from the global mean by a distance equal to the original distance between the cluster mean and 
the global mean. 

We tested four methods for estimating K: CDF, ∆(K), GAP-PC [19], and CLEST, shown in four 
different rows in Figure 7. Within each row, arranged from left to right are the results from four 
datasets, for no-pull-apart at a = 0, 2-way pull-apart at a = 0.08, 3-way pull-apart at a = 0.12, and 
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4-way pull-apart at a = 0.12, respectively. These a values were chosen as the smallest values in 
the range [0,0.8] where the CDF plot exhibits a flat curve for the true K value (Figure 7a). 

As shown in Figure 7a, CDF is able to infer the correct number of clusters, as indicated by the flat 
CDF curves of only the true K values (for K = 2 – 4), reflecting a perfect or near-perfect 
partitioning of the dataset at the correct K. As expected, the no-pull-apart dataset in 7a does not 
have such a flat curve because it is constructed with K = 1.  

In contrast, all ∆(K) curves in Figure 7b are alike in that they all exhibit an ‘elbow’ at K=4, 
suggesting that K=4 had smaller improvement than K=3, and that K=3 could be called optimal, 
even when the true K is 1, 2, or 4.   

The GAP-statistic provides an estimate of K by comparing the change in within-cluster dispersion 
with that expected under a reference null distribution. There are two alternative algorithms: for 
GAP-unif, the null datasets are generated from a uniform distribution over the range of each 
observed feature; for GAP-PC, they are generated from a uniform distribution in the principal 
component space [19]. The authors suggested in [19] that the optimal K is the smallest K for 
which the GAP score is larger than the lower bound for K+1; where the lower bound is defined as 
the GAP score minus the standard error for that particular K value. According to this inference 
rule, all four plots in Figure 7c conclude an optimal K of 3, even when the true K is 1, 2, or 4.  

The CLEST method is based on the 𝑑! statistic, which measures the difference between 𝑡!, the 
observed similarity statistic (such as the FM index), and 𝑡!!, its estimated expected value under 
the null hypothesis of K=1. Among the K values that satisfy a pre-specified 𝑑!"# criterion (here 
𝑑!"#=0.05), the optimal K is the one with maximum 𝑑!. If none of the tested K values satisfy the 
pre-specified criteria, the optimal K is concluded to be 1. In Figure 7-d1, optimal K is 1 because 
𝑑! < 0.05 for all K. For the 2, 3, and 4-way pull-apart cases, CLEST concludes an optimal K of 
2, 3, and 5 respectively, as given by the K with the maximum 𝑑!. In total, CLEST was able to 
make correct inferences in three out of four cases tested. 

In summary, when clusters are sufficiently separated, the CDF curves exhibit a flat middle 
segment only for the true K, and this can be used to infer the optimal K (Figure 7a). In contrast, 
∆(K) can be uninformative even in the presence of genuine structure (Figure 7b). The published 
GAP decision criterion may also perform poorly (Figure 7c). CLEST, on the other hand, may 
have similar sensitivity compared with CDF curves (Figure 7d).  In a later section we will expand 
our evaluation to a wider range of (K, a) combinations. 

Proportion of ambiguous clustering (PAC) and its performance 

In the CDF curve of a consensus matrix, the lower left portion represents sample pairs rarely 
clustered together, the upper right portion represents those almost always clustered together, 
whereas the middle segment represent those with ambiguous assignments in different clustering 
runs. As shown in Figure 7a, the CDF curves show a flat middle segment only for the true K, 
suggesting that very few sample pairs are ambiguous when K is correctly inferred.  To quantify 
this feature of the CDF curve we developed the "proportion of ambiguous clustering" (PAC), 
defined as the fraction of sample pairs with consensus indices falling in the intermediate sub-
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interval (u1, u2) ∈ [0, 1].  A low value of PAC indicates a flat middle segment, and a low rate of 
discordant assignments across permuted clustering runs.  We therefore can infer the optimal K by 
finding the lowest PAC.  

Figure 7 showed results for four particular combinations of K and a.  To compare different 
methods across a wider range of (K, a) values, we developed a new plot, showing five panels of 
stacked bar plots for each of six methods (Figure 8a-f).  For each method, the five panels 
correspond to, from bottom to top, K = [2,...,6].  Within each panel, from left to right are 
segmented bar plots for increasing a in the range [0, 0.08].  Within each bar plot, the length of the 
vertical segments show the fraction of inferred K across 50 simulated datasets for the given (K, a) 
combination. The segments were color-coded to facilitate direct visualization of how well the 
inferred Ks agree with the true K, as shown on the far right.  Such plots allow systematic 
performance comparisons for different methods under different (K, a).  Figure 8 shows the results 
for PAC, ∆(K), CLEST, GAP-PC with the original decision rule, GAP-PC with a modified 
decision rule (explained in Materials and Methods), and the silhouette width. For a given (K, a), 
the same 50 datasets were used in testing the six methods. 

As shown in Figure 8a, PAC performs well across most of tested (K, a) pairs.  When a > 0.04 it 
detects the correct K for K = 2-6.  When a < 0.04 it tends to call K = 2 even for larger true Ks, 
and this tendency to under-call returned for some of the runs for larger a.   

In comparison, ∆(K) detects the correct K for K= 2 and 3, but calls K = 3 even when the true K = 
4 - 6 (Figure 8b), i.e., it consistently under-calls when K >3. This result is consistent with that in 
Figure 7b. 

For CLEST, the inferred K is correct for most datasets with true K=2,3,6 and with a > 0.2 (Figure 
8c). When a < 0.2 it calls K = 2 even for true K of 3-6.  When the true K is 4, CLEST has a 
tendency to overcall K=5. The tendency to overcall is even stronger when the true K is 5, in 
which case CLEST is more likely to call K = 6 than K = 5. On the whole, the parameter space of 
correct identification is smaller than in PAC, but much bigger than other methods.   

The original GAP-PC method performs well for K= 2-3, and improves with larger a, but it 
severely under-calls for K = 4 - 6 (Figure 8d).  In contrast, the modified GAP-PC performs well 
for K = 3 - 6, although it tends to over-call when true K = 2 (Figure 8e).  On the whole, the 
modified GAP-PC is much improved over the original GAP-PC and ranks second best (after 
PAC) among the six methods.  

Lastly, the silhouette width severely under-calls in most situations.  For a > 0.4, however, it calls 
either K =2 or the correct K, never calling a third value of K (Figure 8f). 

In sum, using simulated data with known number of clusters we show that PAC outperforms 
several commonly used methods in calling the correct K. 

Gene-gene correlation among most discriminant genes makes it easy to “validate” 
any K  
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After an optimal K is determined for a dataset, the next task is to validate K. This can be difficult 
when there is no external information (e.g., known class labels) with which to calculate 
classification error rates.  An alternative solution is to replicate the observation of K clusters in 
independent datasets.  Ideally, the replication in the test set should not "borrow" any information 
from the first, learning set.  However, a method that has become highly popular involves (1) 
determining the most discriminant genes from the original dataset for its optimal K value, and (2) 
using these same genes to classify samples in an independent dataset.  In a popular 
implementation [2,17], the best classifier genes for each of K clusters are chosen from the 
learning set, and a heatmap of all learning samples with only these genes is constructed, with the 
samples and the genes both grouped in K clusters. Next, another heatmap is made using the same 
genes for the replication samples. Observing the same number of discrete gene and sample 
clusters in the latter heatmap is considered a validation of K. We show below that, due to the 
gene-gene correlation structure in genomic datasets, this approach can easily “validate” a K value 
even for data with no known structure.  

For this analysis, we chose Sim25, the representative dataset from the pcNormal simulations, as 
the “original” dataset from which the clusters and discriminating genes were to be learned. 
Following the procedure in [10], we first run k-means on Sim25 with K=4 and obtain four 
clusters for the 202 samples. We then find the 210 most discriminating genes for each cluster 
based on the t-scores for each cluster against the three other clusters. The four gene sets are 
combined to form a list of 551 unique genes, and are used in both Sim25 and the replication 
datasets.  The heatmap of Sim25 (Figure 9a) shows discrete placement of four gene sets and four 
sample classes. However, for nine null datasets from the pcNormal simulations, chosen in a way 
to represent the entire spectrum of silhouette widths, the same clustering signature is observed in 
all 9 cases (Figure 9b). This is because the most discriminant genes contain many that are 
strongly correlated with each other.  Such correlations arise from co-regulation by common 
upstream regulators, or from inherent differences in different cell types, and can easily recur in an 
independent dataset even when the clustering pattern is different or absent. Results in Figure 9 
show that the blocks of genes co-expression in subsets of samples could persist even when the 
independent dataset is simulated from a unimodal distribution, thus apparently validating K.  

Discussions 

CC measures cluster reproducibility under perturbed runs, and provides a meaningful heuristic for 
visualizing cluster stability. However, it is important to distinguish the utility of CC as a formal 
inference tool from its informal, visualization function. Our assessment using simulated Circle1 
and Square1 has shown that CC is exquisitely sensitive: declaring structure where there is no 
significant separation or local compactness. This led us to systemically study the strength of 
clustering by comparing the real data with suitably formed null datasets. 

We compared GBM1 with random unimodal data and observed that the consensus clustering 
heatmaps and summary statistics for GBM1 were often within the empirical null distribution. 
Methods such as CLEST and average silhouette width were able to distinguish GBM1 from the 
null datasets, likely because of the local clusters or outliers in GBM1. However, methods such as 
∆(K), GAP-PC and negative silhouette fraction either could not confirm the structure in GBM1 or 
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could not confirm optimal K = 4.  These findings are not surprising, as different clustering 
measures and validation procedures emphasize different features of the data. For instance, the 
average-silhouette-width is strongly influenced by the existence of one or more highly compact 
clusters.  The GAP statistic, on the other hand, is affected by the degree of overlap between 
clusters.  Thus it is important to be aware of the strengths and weaknesses of each method, 
especially when clusters have poor separation. Moreover, we found that, while the consensus 
matrix by itself is not a suitable inference tool, one of its distribution features, the proportion of 
ambiguously clustered (PAC) pairs, reflected the true structure of the data better than other 
common strategies such as CDF, ∆(K), silhouette width, GAP-PC, and CLEST.  

Another novelty of this assessment is to evaluate different methods across a range of "positives", 
i.e., data with known structures, with varying degrees of separation (a) and number of clusters 
(K).  However, to limit the scope of our analysis we had to make some specific assumptions: (1) 
Samples in cluster boundaries are assigned to a single cluster; no partial memberships are used, 
(2) clusters are viewed as co-equal, without any hierarchy, and (3) clusters are simulated with 
similar sizes, with no outliers added. These complicating factors need to be explored in future 
studies. 

A choice of null distribution depends on the two distinct tasks of class discovery: first, to 
determine if there is evidence for structure; second, when it is shown that substructure does exist, 
to determine the optimal number of clusters.  For the first task, a global null should be 
constructed to test the "structure vs. no-structure" hypotheses, and needs to account for the gene-
gene correlation structure in the original dataset as it affects the shape of the sample distribution 
in the high-dimensional space, potentially driving the apparent cluster stability. Here we refrain 
from using the terms “random” and “homogeneous” to describe this type of global null, because 
the gene-gene correlations can be considered as a form of innate data structure.  For the second 
task, a set of study-specific null datasets for alternative K's should be used, because K cannot be 
reported as optimal unless the null hypotheses of K−1 and K+1 are both rejected.  

In summary, CC can be a powerful tool for identifying clusters, but it needs to be applied with 
caution as it is prone to over-interpretation. If clusters are not well separated, CC could lead one 
to conclude apparent structure when there is none, or declare cluster stability when it is subtle.  
To reduce false positive in the exploratory phase of a new study, we recommend the following: 

• Do not rely solely on the consensus matrix heatmap to declare the existence of clusters, 
or to estimate optimal K.  

• Do a formal test of cluster strength using simulated unimodal data with the same gene-
gene correlation as in the empirical data.  

• Apply the proportion of ambiguous clustering (PAC) as a simple yet powerful method to 
infer optimal K. 

• Do not use the most discriminant genes for K clusters in the test dataset to validate K in a 
new dataset. 
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Materials and Methods 
 
Datasets 
 
This study covered three cohorts of GBM samples. GBM1 is the cohort analyzed by the TCGA 
pilot study [9,10].  Gene expression data were downloaded from http://tcga-
data.nci.nih.gov/docs/publications/gbm_exp/. Most of our analyses were based on 
"unifiedScaledFiltered.txt", which contains processed data for 1740 most variable genes for 202 
GBM samples. A second cohort was subsequently analyzed by TCGA and was called GBM2. 
Gene expression data for GBM2 were downloaded from the TCGA Data Matrix webpage 
(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm). This dataset contains 175 samples, and 
we focused on the same 1740 genes as in GBM1. The third cohort was the validation dataset used 
in [10] and is a collection of samples from four previous studies [15-18]. This dataset, called 
"validation" in this work, contains 260 samples, and the number of genes in common between 
GBM1 and validation is 1676. This dataset was also downloaded from http://tcga-
data.nci.nih.gov/docs/publications/gbm_exp/. 

Generating null distributions based on empirical gene-gene correlations 
 
By using PCA we decomposed the GBM1 data of 202 samples and 1740 genes into (1) the 202x202 
principal component score matrix and (2) the 202x1740 eigenvector matrix. When simulating new 
datasets, in order to preserve the relative magnitude of the PC scores for different PCs in GBM1, we 
constructed 202x202 random PC score matrices by populating each column with random draws from a 
univariate Gaussian distribution with mean = 0 and standard deviation equal to that of the corresponding 
column in the original GBM1’s score matrix. Multiplying this random score matrix with the 202x1740 
eigenvector matrix yields a null 202x1740 dataset in which it is known that no cluster exists. We repeated 
this procedure 50 times to generate a null collection of pcNormal datasets. Each dataset in the collection 
forms an ellipsoid in the 1740-dimensional space.  
 
The steps for this procedure are as follows: 
 

1. Using principal component analysis, we obtain the orthogonal matrix 𝐴 of GBM1 eigenvectors. 
𝑌!"!  !  !"!   =   𝐺𝐵𝑀1!"!  !  !"#$  ×  𝐴!"#$  !  !"!  

𝑌 is the PC score matrix for GBM1. A is the PC vector matrix. 
2. Next, we simulate a random score matrix 𝑌! where column i is distributed normally with zero 

mean and standard deviation equal to that of column i in Y. 
𝑌.!!~𝑁(0, 𝑠!) 

where 𝑠! is the standard deviation of 𝑌.! and 𝑖 = 1,… ,202 . 
3. Multiplying 𝑌! with the transpose of 𝐴 yields 𝑄!, one of the pcNormal simulations. 

𝑄!"!  !  !"#$! =   𝑌!"!  !  !"!!   ×  𝐴!"!  !  !"#$!      
4. We repeat steps 2 and 3 50 times to obtain a collection of 50 pcNormal simulations. 

(𝑄!)! = (𝑌!)!×𝐴!       ,      𝑗 = 1,… ,50  
 
Choosing a representative null dataset from pcNormal 
 
A representative dataset, called Sim25, is chosen from pcNormal as having clustering signals closest to 
the median of the 50 datasets, as measured by the average of positive silhouette widths and the fraction of 
negative silhouette widths. Let 

𝑓𝑁 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑜𝑓  𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆  𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒  𝑤𝑖𝑑𝑡ℎ𝑠 
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𝑎𝑃 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑜𝑓  𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆  𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒  𝑤𝑖𝑑𝑡ℎ𝑠 
𝑆𝑖𝑚25 =   𝑎𝑟𝑔min

!
𝑑( 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑁 ,𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑃     , 𝑓𝑁!   ,𝑎𝑃!   ) 

where    𝑓𝑁!   , 𝑎𝑃!  is the silhouette width statistics for simulation 𝑖   ∈ 1,… ,50  and 𝑑 is the Euclidean 
distance function in the [fN, aP] space. 
 
Choosing nine pcNormal simulations for validation by most discriminant genes 
 
The Euclidean distance of the (aP,fN) pair to the median of these quantities in the cohort was computed 
for each of the 50 simulations and ranked from lowest to highest. Every 5th dataset was selected among 
the ranked simulations, such that the [6, 11, 16, 21, 26, 31, 36, 41, 46] datasets were chosen. This ensures 
that nine datasets cover the entire range of clustering strength in pcNormal. 
 
Generating positive datasets for performance comparison 
 
To generate a positive dataset with K clusters, we first ran k-means on Sim25 with the desired K value. 
Then, we computed the centroids of the PC scores for each of the K clusters, and added a known fraction 
of the centroid coordinates (i.e. the pull-apart degree, denoted as a positive scalar, "a") to the original PC 
scores of samples in the corresponding cluster. Next, we multiplied the resulting PC scores from all 
clusters by the original principal component vectors of Sim25 so that the pull-apart datasets preserve the 
initial gene-gene correlation structure (with the caveat that increasing a values would gradually increase 
the gene-gene correlation). 
 
Algorithmically, we execute the following steps for this procedure: 

1. Use principal component analysis to obtain the eigenvector matrix 𝐴 as before. 
𝑌!"!  !  !"!   =   𝑆𝑖𝑚25!"!  !  !"#$  ×  𝐴!"#$  !  !"!  

2. Use a partitioning method such as k-means to find K clusters in Sim25, assign each sample 
𝑠!   (𝑖 = 1,… ,202) into one of K classes. The set of samples in class 𝑘  (𝑘 = 1,… ,𝐾) is denoted as 
𝐸!. 

3. For each class  𝐸!, compute the centroid 𝐶! of PC scores 𝑌!!. 
4. For each class 𝐸! and for a given pull-apart degree 𝑎, compute pulled-apart score matrix 𝑌!!

! . 
𝑌!!
! = 𝑌!! + (𝑎  ×  𝐶!) 

5.  Multiply 𝑌! with 𝐴! to obtain the pulled-apart dataset 𝑋!. 
𝑋!"!  !  !"#$
! =   𝑌!"!  !  !"!

!   ×  𝐴!"!  !  !"#$!      
 
Base methods for consensus clustering: K-means 
 
Given a set of observations (𝒙𝟏, 𝒙𝟐,… , 𝒙𝒏) where each observation is a d-dimensional real vector, k-
means clustering aims to partition the n observations into k sets (𝑘 ≤ 𝑛), 𝑺 = 𝑆!, 𝑆!,… , 𝑆!  so as to 
minimize the within-cluster dispersion: 

argmin
𝑺

𝑥!   − 𝜇!  
!

!!  ∈!!

!

!!!

 

where 𝜇!   is the mean of points in 𝑆!   [20]. 
The method starts with k arbitrary cluster centers. Each step consists of labeling data points with their 
nearest cluster center, and updating the centers of the new clusters. The procedure stops when the clusters 
formed at two consecutive steps are the same. 
 
Five ways to measure clustering signals 
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Empirical CDF  
For a given consensus matrix M, the corresponding empirical cumulative distribution (CDF) can be 
defined over the range [0, 1] as follows: 

𝐶𝐷𝐹 𝑐 =   
𝟏 𝑀 𝑖, 𝑗 ≤ 𝑐!!!

𝑁(𝑁 − 1) 2
 

where 𝟏{… } denotes the indicator function, M(i, j) denotes entry (i, j) of the consensus matrix M, 
N is the number of rows (and columns) of M, and c is the consensus index value [8]. 
 
Proportional area change under CDF (Δ(K)) 
The changes of CDF as K increases provide evidence for finding the optimal number of clusters. A CDF 
curve that closely describes a three-phase step function as mentioned before is indicative of a higher 
cluster stability. A method for using this information is to select the largest K that induces a large enough 
increase in the area under the CDF [8]which is defined as: 

𝐴 𝐾 = [𝑥! − 𝑥!!!]𝐶𝐷𝐹(𝑥!) 
The progression, in turn, can be visualized by plotting the proportion increase ∆(𝐾) in the CDF area as K 
increases. ∆(𝐾) is computed as follows: 

∆ 𝐾 =
𝐴 𝐾                                                         𝑖𝑓  𝐾 = 2
𝐴 𝐾 − 𝐴 𝐾 − 1

𝐴 𝐾 − 1
  𝑖𝑓  𝐾 > 2

 

 
Silhouette width 
The silhouette widths of a clustering result [14] have been applied to report clustering strength and to find 
the optimal number of clusters K. For an object i in the dataset, let A denote the cluster to which it is 
assigned, and define 

a(i) = average dissimilarity of i to all other objects of A 
For each of the clusters 𝐶 ≠ 𝐴, calculate 

d(i,C) = average dissimilarity of i to all objects of C 
Then select the smallest of d. 

𝑏  (𝑖) = min
!!!

𝑑(𝑖,𝐶) 
The silhouette width of object i is defined as: 

𝑆 𝑖 =
(𝑏 𝑖 − 𝑎(𝑖))
max  {𝑎 𝑖 , 𝑏(𝑖)} 

It can be seen that S(i) lies between -1 and +1. 
 
We chose to compare GBM1 with the null simulations according to two summary statistics derived from 
silhouette widths. One is the "fraction of samples with negative silhouette widths". A negative silhouette 
width indicates that the sample is likely to have been assigned to the wrong cluster. The second statistic is 
the "average of positive silhouette widths". Higher values of this statistic indicate stronger cluster 
separation. 
 
GAP-statistic 
The GAP-statistic provides an estimate for the number of clusters in a dataset by comparing the within-
cluster dispersion 𝑊!  with that expected under an appropriate reference null distribution (𝑊!

! where 
𝑏   ∈    1,2,… ,𝐵  ) [19]. We first computed 𝑊!  for each number of clusters 𝐾 ≥ 2. We have not included 
K=1 to ensure comparability across all methods tested here; methods such as CDF and silhouette width 
do not allow an inference of K=1.  
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For the reference distribution, there are two alternative algorithms: GAP-unif and GAP-PC. For the 
former, the null datasets are generated from a uniform distribution over the range of each observed 
feature; and for the latter, they are generated from a uniform distribution over a box aligned with the 
principal components of the centered design matrix. The first approach has the advantage of simplicity, 
but the second can factor in the shape of the data distribution [19].  
 
In this study, we generated 𝐵 = 40 reference datasets according to the GAP-PC algorithm as it can take 
into account the shape of the data distribution. Next, we computed the within-cluster sum of squares 
𝑊!

!,⋯ ,𝑊!
! for each reference dataset and estimated the 𝑔𝑎𝑝! statistic with the formula: 

𝑔𝑎𝑝! =
1
𝐵

log𝑊!
!

!

!!!

− log𝑊!   

The standard error for this quantity, 𝑠!, was then computed as 𝑠! = 𝑠𝑑! 1 + (1 𝐵) where 𝑠𝑑! is the 
uncorrected sample standard deviation of the log𝑊!

! quantities with 𝑏   ∈    1,2,… ,𝐵 . 
 
Finally, we chose the number of clusters via: 

𝑜𝑝𝑡𝑖𝑚𝑎𝑙  𝐾 = smallest K such that 𝑔𝑎𝑝!   ≥   𝑔𝑎𝑝!!! − 𝑠!!!  [19] 
 
Modified GAP-PC: The original GAP-PC decision rule for the optimal K is to choose the 
smallest K where the 𝑔𝑎𝑝! score is larger than the lower bound for K+1. A more intuitive 
decision rule is to declare the K value with the highest 𝑔𝑎𝑝! score as the optimal K.  

CLEST 
CLEST [7] is a resampling-based method that randomly partitions the original dataset into a learning set 
and a test set. The former is used to build a K-cluster classifier, which is applied to partition the latter (the 
test set) in supervised assignment (such as DLDA [21]). The test set is also partitioned independently with 
an unsupervised clustering algorithm (such as k-means). The concordance between the supervised and 
unsupervised partitions is summarized by measures such as the Fowlkes-Mallows (FM) index, for which 
a higher value indicates a stronger agreement of clustering results. CLEST computes concordance scores 
for a range of K, and compares these to those obtained from null simulations to determine the optimal K. 
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Figure Legends 

Figure 1.  Different ways to visualize the clustering signal in GBM1. (a) gene-subsampling consensus 
heatmap with K=4, (b) sample-subsampling consensus heatmap with K=4, (c) sample-sample correlation 
heatmap, (d) four k-means clusters visualized along PC1-PC2-PC3 (x-axis, z-axis and y-axis). The 
variances explained by PC1-PC2-PC3 are 21.6%, 9.9%, and 7.9% respectively. The color scale on 
consensus heatmaps ranges from 0 to 1, where 0 corresponds to blue, 1 corresponds to red, and 0.5 
corresponds to white. The same color scale is used throughout the paper unless otherwise stated. 

Figure 2. GBM1 sample-sample correlation matrix ordered three different ways. The order of 
samples is obtained from (a) average-linkage HCLUST on the K = 2 gene subsampling consensus matrix 
(b) average linkage HCLUST on the K = 3 gene subsampling consensus matrix (c) decreasing PC1 
scores. It is easy to re-order the same sample-sample matrix in different ways to support different 
hypotheses about structuredness. 

Figure 3. Consensus heatmaps can show apparent clusters even in unimodal distributions.             
Top panels in (a-g) show Circle1 k-means partitioning for K=2-8 displayed on PC1 (17.7%) on the x-axis 
vs PC2 (15.1%) on the y-axis. Bottom panels show consensus heatmaps for K=2-8 with 80% sample 
subsampling and k-means as the base method. Visual evidence alone can be misleading; hence formal 
approaches are needed to test validity. 

Figure 4. Consensus heatmaps show apparent clusters for certain K values in the unimodal Square1 
distribution. Top panels in (a-d) show Square1 k-means partitioning for K=2-5 displayed on PC1 
(21.8%) on the x-axis vs PC2 (19.1%) on the y-axis. Bottom panels in (a-d) show consensus heatmaps for 
K=2-5 with 80% sample subsampling and k-means as the base method. In (c), the four corners of the data 
cloud act as anchors and make the clusters look more stable on consensus heatmaps. 

Figure 5. CC shows stable clusters in Sim25 even though Sim25 lacks structure. (a1-a4) sample-
sample correlation heatmaps, (b1-b4) 80% gene-subsampling consensus heatmaps, (c1-c4) 80% sample-
subsampling consensus heatmaps. Sim25 is chosen as a characteristic random dataset from the pcNormal 
null distribution. For each K in 2-5, the order of samples on all three heatmaps is the one obtained from 
average-linkage hierarchical clustering on the gene-subsampling consensus matrix of the relevant K 
value. The base clustering method for CC is k-means.  

Figure 6. CLEST and silhouette width analysis. (a) CLEST results for GBM1, GBM2, Validation, and 
pcNormal null datasets in the range K=2-10. (b) K=4 silhouette width analysis for GBM1, GBM2, 
Validation, pcNormal null datasets, and pull-apart positive datasets. (c) Silhouette width analysis for 
GBM1 in the range K=2-6. In (a), GBM1’s FM-score from CLEST beats those of pcNormal simulations 
at as early as K=3. In (b) the x-axis shows the average of positive silhouette widths, and the y-axis shows 
the fraction of negative silhouette widths. GBM1 is within the range of 50 pcNormal simulations (shown 
with hollow circles) along the y-axis. However, it appears as an outlier along the x-axis when compared 
with these null datasets. The pull-apart degree for positive datasets ranges from 0 to 0.5 (shown with blue 
plus symbols). Along the x-axis, GBM1 is close to the positive dataset with pull-apart degree 0.2. In (c), it 
is not possible to declare K=4 as optimal. 
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Figure 7. ∆(K) plots are inadequate for revealing the optimal K. The four columns in this 
dataset, from left to right, belong to (1) a randomly generated unimodal dataset, (2) a 2-way pull-
apart dataset with degree of pull-apart = 0.08, (3) a 3-way pull-apart dataset with degree of pull-
apart = 0.12, and (4) a 4-way pull-apart dataset with degree of pull-apart = 0.12. First row (a1-
a4): CDF plots from the consensus matrices. CDF curves for K = 2-6 are shown with black, red, 
green, blue and cyan lines respectively. For the pull-apart datasets in (a2,a3,a4), the CDF curve 
for true K shows perfect 0s and 1s while the unimodal dataset in (a1) does not have such a curve. 
Second row (b1-b4): ∆(K) plots across K=2-6. An elbow occurs at K=4 in all of these plots 
suggesting an optimal K value of 3. Third row (c1-c4): GAP plots across K=2-6. In all four 
figures, the optimal K value according to the original interpretation is 3. Fourth row (d1-d4): 
CLEST plots across K=2-6. 𝑑! (y-axis) is the difference between the observed similarity statistic 
and its estimated expected value under the null hypothesis of K=1. The decision criterion 
involving 𝑑!   suggest an optimal K of 1, 2, 3, and 5 in these four pull-apart cases respectively. 

Figure 8. The identifiability zone for PAC is drastically better than other measures/methods. 
Identifiability graphs for (a) PAC (probability of ambiguous clustering), (b) ∆(K), (c) CLEST, (d) GAP-
PC with the original decision rule, (e) GAP-PC with a modified decision rule, and (f) silhouette width. 
The x-axis shows the strength of the real pull-apart signal, denoted with a. The y-axis shows the true 
number of pull-apart clusters in the dataset, denoted with K. The colors in the bars indicate estimated K 
values for the corresponding (K,a) pair. The length of each color in a given bar is proportional to the 
frequency of that particular K value in the set of 50 simulations.  

Figure 9. The gene signature from Sim25 is preserved even when the new data are random. (a) The 
heatmap of most discriminant genes (groups A-D) for k-means clustering of Sim25 with K=4. (b) 
Heatmaps for nine datasets similarly simulated as Sim25. The x-axis shows samples as partitioned into 4 
clusters with k-means, and the y-axis shows the same ‘most discriminant genes’ from Sim25. These nine 
datasets, although they are null, were able to show the same visual placement for the gene signature 
blocks in Sim25. 
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a)	  CLEST	  scores	  for	  GBM	  cohorts	  and	  
null	  simula:ons	  at	  K=2-‐10	  	  
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b)	  SilhoueBe	  width	  sta:s:cs	  for	  GBM	  
cohorts	  and	  simula:ons	  at	  K=4	  
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c)	  SilhoueBe	  width	  sta:s:cs	  for	  
GBM1	  at	  K=2-‐6	  
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(7)	  pcNormal45	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (8)	  pcNormal48	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (9)	  pcNormal50	  
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