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Abstract 

Expression quantitative trait locus (eQTL) mapping on tissue, organ or whole organism data 

can detect associations that are generic across cell types. We describe a new method to 

focus upon specific cell types without first needing to sort cells. We applied the method to 

whole blood data from 5,683 samples and demonstrate that SNPs associated with Crohn’s 

disease preferentially affect gene expression within neutrophils. 

Introduction 

In the past seven years, genome-wide association studies (GWAS) have identified thousands 

of genetic variants that are associated with human disease (Hindorff et al. 2009). The 

realization that many of the disease-predisposing variants are non-coding and that single 

nucleotide polymorphisms (SNPs) often affect the expression of nearby genes (i.e. cis-

expression quantitative trait loci; cis-eQTLs) (Fehrmann et al. 2011) suggests these variants 

have a predominantly regulatory function. Recent studies have shown that disease-

predisposing variants in humans often exert their regulatory effect on gene expression in a 

cell-type dependent manner (Brown et al. 2013; Fairfax et al. 2012; Fu et al. 2012). 

However, most human eQTL studies have used sample data obtained from mixtures of cell 

types (e.g. whole blood) or a few specific cell types (e.g. lympoblastoid cell lines) due to the 

prohibitive costs and labor required to purify subsets of cells from large samples (by cell 

sorting or laser capture micro-dissection). In addition, the method of cell isolation can 

trigger uncontrolled processes in the cell, which can cause biases. In consequence, it has 

been difficult to identify in which cell types these disease-associated variants exert their 

effect. Here we describe a generic approach that deepens our interpretation of GWAS data 

to the level of individual cell types (Figure 1). Our strategy was to: (i) collect gene expression 

data from an entire tissue; (ii) predict the abundance of its constituent cell types (i.e. the 

cell counts) by using expression levels of genes that serve as proxies for these cell types; (iii) 

run an association analysis with a term for interaction between the SNP marker and the 

proxy for cell count to detect cell-type-mediated or -specific associations, and (iv) test 
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whether known disease associations are enriched for SNPs that show the cell-type-

mediated or -specific effects on gene expression (i.e. eQTLs). 

Results 

We applied this method to 5,863 unrelated, whole blood samples from seven cohorts: 

EGCUT(Metspalu 2004), InCHIANTI (Tanaka et al. 2009), Rotterdam Study (Hofman et al. 

2013), Fehrmann (Fehrmann et al. 2011), SHIP-TREND (Völzke et al. 2011), KORA F4 (Mehta 

et al. 2013), and DILGOM (Inouye et al. 2010). Blood contains many different cell types that 

originate from either the myeloid (e.g. neutrophils and monocytes) or lymphoid lineage (e.g. 

B-cells and T-cells). Even though neutrophils comprise ~62% of all white blood cells, no 

neutrophil eQTL data have been published to date, because this cell type is particularly 

difficult to purify or culture in the lab (Grisham et al. 1985).  

For the purpose of illustrating our new cell-type specific analysis in the seven whole blood 

cohorts, we focused on neutrophils. Direct neutrophil cell counts and percentages were only 

available in the EGCUT and SHIP-TREND cohorts, requiring us to infer neutrophil 

percentages for the other five cohorts. We used the EGCUT cohort as a training dataset to 

identify a list of 58 Illumina HT12v3 probes that correlated positively with neutrophil 

percentage (Spearman’s correlation coefficient R > 0.55). We then summarized the gene 

expression levels of these 58 individual probes into a single neutrophil percentage estimate, 

by applying principal component analysis (PCA) and using the first principal component (see 

Figure 2 for confirmation of the accuracy of prediction in the SHIP-TREND cohort; Spearman 

R = 0.81). We then used this procedure in the other cohorts to predict the neutrophil 

percentage. 

Here we limit our analysis to 13,124 previously discovered cis-eQTLs (Westra et al. 2013), 

(although a genome-wide application of our method might result in the detection of 

additional cell-type-specific cis-eQTLs, that we might have missed by assuming a generic 

effect across cell types). We performed the eQTL association analysis with a term for 

interaction between the SNP marker and the proxy for cell count within each cohort, 

followed by a meta-analysis (weighted for sample size) across all the cohorts. We identified 
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1,117 cis-eQTLs with a significant interaction effect (8.5% of all cis-eQTLs tested; false 

discovery rate (FDR) < 0.05; 1,037 unique SNPs and 836 unique probes; Supplementary 

Tables 1 and 2). Out of the total number of cis-eQTLs tested, 909 (6.9%) had a positive 

direction of effect, which indicates that these cis-eQTLs show stronger effect sizes in 

neutrophils (‘neutrophil-mediated cis-eQTLs’; 843 unique SNPs and 692 unique probes). 

Another 208 (1.6%) had a negative direction of effect (196 unique SNPs and 145 unique 

probes), indicating a stronger cis-eQTL effect size in lymphoid cells (‘lymphocyte-mediated 

cis-eQTLs’; since lymphocyte percentages are strongly negatively correlated with neutrophil 

percentages, Figure 1). Overall, the directions of the significant interaction effects were 

consistent across the different cohorts, indicating that our findings are robust 

(Supplementary Figure 1). 

We validated the neutrophil- and lymphoid-mediated associations we detected in six small, 

purified cell-type gene expression datasets that had not been used in our meta-analysis. We 

generated new eQTL data from two lymphoid cell types (CD4+ and CD8+ T-cells) and one 

myeloid cell type (neutrophils, see online methods) and used previously generated eQTL 

data on two lymphoid cell types (lymphoblastoid cell lines and B-cells) and another myeloid 

cell type (monocytes, Supplementary Table 3). As expected, compared to cis-eQTLs without 

a significant interaction term (‘generic cis-eQTLs’, n = 12,007) the 909 neutrophil-mediated 

cis-eQTLs did indeed show very strong cis-eQTL effects in both of the myeloid datasets 

(Wilcoxon P-value ≤ 4.9 x 10
-31

), and small effect sizes in the lymphoid datasets. Conversely, 

the 208 lymphoid-mediated cis-eQTLs had a pronounced effect in each of the lymphoid 

datasets (Wilcoxon P-value ≤ 7.8 x 10
-14

; Figure 3A), while having small effect sizes in the 

myeloid datasets. These results indicate that our method is able to reliably predict whether 

a cis-eQTL is mediated by a specific cell type. Unfortunately, the cell type that mediates the 

cis-eQTL is not necessarily the one in which the cis-gene has the highest expression (Figure 

3B), making it impossible to identify of cell-type-specific eQTLs directly on the basis of 

expression levels. 

Myeloid and lymphoid blood cell types provide crucial immunological functions. Therefore, 

we assessed five immune-related diseases for which genome-wide association studies 

previously identified at least 20 loci with a cis-eQTL in our meta-analysis. We observed a 

significant enrichment only for Crohn’s disease (CD), (binomial test, one-tailed P = 0.002, 
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Supplementary Table 4): out of 49 unique CD-associated SNPs showing a cis-eQTL effect, 11 

(22%) were neutrophil-mediated. These 11 SNPs affect the expression of 14 unique genes 

(ordered by size of interaction effect: IL18RAP, CPEB4, RP11-514O12.4, RNASET2, NOD2, 

CISD1, LGALS9, AC034220.3, SLC22A4, HOTAIRM2, ZGPAT, LIME1, SLC2A4RG, and PLCL1). CD 

is a chronic inflammatory disease of the intestinal tract, and neutrophils are essential for 

killing microbes that translocate through the mucosal layer of the intestine. The mucosal 

layer is affected in CD, but also in monogenic diseases with neutropenia and defects in 

phagocyte bacterial killing, such as chronic granulomatous disease, glycogen storage disease 

type I, and congenital neutropenia, leading to various CD phenotypes (Uhlig 2013). In 

addition, pharmacological interventions for the treatment of CD have been developed to 

specifically target neutrophils, including Sagramostim (Korzenik et al. 2005) and 

Natalizumab (Ghosh et al. 2003). Our new analysis shows clear neutrophil-mediated eQTL 

effects for many of the known CD genes, including the archetypal NOD2 gene, and our 

results provide deeper insight into the role of neutrophils in CD pathogenesis. 

Large sample sizes are essential in order to find cell-type-mediated cis-eQTLs (Figure 4): 

when we repeat our study on fewer samples (ascertained by systematically excluding more 

cohorts from our study), the number of significant cell-type-mediated eQTLs decreased 

rapidly. This was particularly important for the lymphoid-mediated cis-eQTLs, because 

myeloid cells are approximately twice as abundant as lymphoid cells in whole blood. 

Consequently, detecting lymphoid-mediated cis-eQTLs is more challenging than detecting 

neutrophil-specific cis-eQTLs. As whole blood eQTL data is easily collected, we were able to 

gather a sufficient sample size in order to detect cell-type-mediated or -specific associations 

without requiring the actual purification of cell types.  

Discussion 

Here we have shown that it is possible to infer in which blood cell-types cis-eQTLs are 

operating from a whole blood dataset. Cell-type proportions were predicted and 

subsequently used in a G x E interaction model. Hundreds of cis-eQTLs showed stronger 

effects in myeloid than lymphoid cell-types and vice versa.  
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These results were replicated in 6 individual purified cell-type eQTL datasets (two reflecting 

the myeloid and four reflecting the lymphoid lineage). This indicates our G x E analysis 

provides important additional biological insights for many SNPs that have previously been 

found to be associated with complex (molecular) traits.  

Here, we concentrated on identifying cis-eQTLs that are preferentially operating in either 

myeloid or lymphoid cell-types. We did not attempt to assess this for specialized cell-types 

within the myeloid or lymphoid lineage. However, this is possible if cell-counts are available 

for these cell-types, or if these cell-counts can be predicted by using a proxy for those cell-

counts. As such, identification of cell-type mediated eQTLs for previously unstudied cell-

types is possible, without the need to generate new data. However, it should be noted that 

these individual cell-types typically have a rather low abundance within whole blood (e.g. 

natural killer cells only comprise ~2% of all circulating white blood cells). As a consequence, 

in order to have sufficient statistical power to identify eQTLs that are mediated by these 

cell-types, very large whole blood eQTL sample-sizes are required, specific cell types should 

be variable between individuals (which is analogous to the difference in the number of 

identified lymphoid mediated cis-eQTLs, as compared to the number of neutrophil mediated 

cis-eQTLs, which is likely caused by their difference in abundance in whole blood). 

We confined our analyses to a subset of cis-eQTLs for which we had previously identified a 

main effect in whole peripheral blood (Westra et al. 2013): for each cis-eQTL gene, we only 

studied the most significantly associated SNP. Considering that for many cis-eQTLs multiple, 

unlinked SNPs exist that independently affect the gene expression levels, it is possible that 

we have missed myeloid or lymphoid mediation of these secondary cis-EQTLs. 

We anticipate that the (pending) availability of large RNA-seq based eQTL datasets, 

statistical power to identify cell-type mediated eQTLs will improve: since RNA-seq enables 

very accurate gene expression level quantification and is not limited to a set of preselected 

probes that interrogate well known genes (as is the case for microarrays), the detection of 

genes that can serve as reliable proxies for individual cell-types will improve. Using RNA-seq 

data, it is also possible to assess whether SNPs that affect the expression of non-coding 

transcripts, affect splicing (Lappalainen et al. 2013) or result in alternative polyadenylation 

(Zhernakova et al. 2013a) are mediated by specific cell-types. 
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Although we applied our method to whole blood gene expression data, our method can be 

applied to any tissue, alleviating the need to sort cells or to perform laser capture micro 

dissection. The only prerequisite for our method is the availability of a relatively small 

training dataset with cell count measurements in order to develop a reliable proxy for cell 

count measurements. Since the number of such training datasets is rapidly increasing and 

meta-analyses have proven successful (Westra et al. 2013; Fehrmann et al. 2011), our 

approach provides a cost-effective way to identify cell-type-mediated or -specific 

associations, and it is likely to reveal major biological insights. 
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Methods 

Setup of study 

This eQTL meta-analysis is based on gene expression intensities measured in whole blood 

samples. RNA was isolated with either PAXgene Tubes (Becton Dickinson and Co., Franklin 

Lakes, NJ, USA) or Tempus Tubes (Life Technologies). To measure gene expression levels, 

Illumina Whole-Genome Expression Beadchips were used (HT12-v3 and HT12-v4 arrays, 

Illumina Inc., San Diego, USA). Although different identifiers are used across these different 

platforms, many probe sequences are identical. Meta-analysis could thus be performed if 

probe-sequences were equal across platforms. Integration of these probe sequences was 

performed as described before (Westra et al. 2013). Genotypes were harmonized using 

HapMap2-based imputation using the Central European population (The International 

HapMap Consortium 2003). In total, the eQTL genotype x environment interaction meta-

analysis was performed on seven independent cohorts, comprising a total of 5,863 

unrelated individuals. Mix-ups between gene expression samples and genotype samples 

were corrected using MixupMapper (Westra et al. 2011). Gene expression normalization 

was performed as described before (Westra et al. 2013), removing up to 40 principal 

components (PCs). Additionally, we corrected for possible confounding factors due to arrays 

of poor RNA quality, by correlating the sample gene expression measurements against the 

first PC that was determined from the sample correlation matrix. Samples with a correlation 

< 0.9 were removed from further analysis.  

Discovery cohorts 

Fehrmann 

The Fehrmann dataset consists of whole peripheral blood samples of 1,240 unrelated 

individuals from the UK and the Netherlands (Fehrmann et al. 2011; Dubois et al. 2010). 

Some of these individuals are patients, while others are healthy controls. Individuals were 

genotyped using Illumina HumanHap300, HumanHap370 or the 610 Quad platform. 

Genotypes were imputed using Impute v2 (Howie et al. 2009), using the phased genotypes 
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of the CEU subpopulation of HapMap2 release 24 as reference (The International HapMap 

Consortium 2003). RNA levels were quantified using the HT12v3 platform (N = 1,240), as has 

been described before (Fehrmann et al. 2011). As sample mix-up correction was performed 

prior to the participation in this study, the total number of samples with both genotype and 

gene-expression data, was equal to 1,240. After removing the gene expression samples 

which showed a poor RNA quality (correlation with PC1 < 0.9), 1,220 samples remained. 

SHIP-TREND 

SHIP (Study of Health in Pomerania, Northeastern Germany) is a population-based project 

consisting of two independent cohorts, SHIP and SHIP-TREND. The study design of SHIP has 

been previously described in detail (Völzke et al. 2011). For this eQTL analysis, a part of the 

the SHIP-TREND cohort was used. The SHIP-TREND probands (N=986) were genotyped using 

the Illumina HumanOmni2.5-Quad arrays. Genotypes were imputed to HapMap v2 (The 

International HapMap Consortium 2003) using IMPUTE (Howie et al. 2009). RNA was 

prepared from whole blood collected under fasting conditions in PAXgene tubes (Becton 

Dickinson) using the PAXgene Blood miRNA Kit (Qiagen, Hilden, Germany). For SHIP-TREND 

this was done on a QIAcube according to protocols provided by the manufacturer (Qiagen). 

RNA was amplified (Ambion TotalPrep RNA), and hybridized to Illumina HumanHT-12 v3 

Expression BeadChip. After sample mix-up correction both imputed genotypes and whole-

blood gene expression data were available for a total of 963 SHIP-TREND samples. No 

samples had to be removed due to poor RNA quality (correlation with PC1 < 0.9). 

Rotterdam Study 

The Rotterdam Study (RS) is a large prospective, population-based cohort study in the 

district of Rotterdam, the Netherlands, investigating the prevalence, incidence, and risk 

factors of various chronic disabling diseases among elderly Caucasians aged 45 years and 

over. The initial cohort, named the Rotterdam Study I (or RS-I) was started in 1989, and 

consisted of 7,983 persons aged 55 years or over, living in the well-defined Ommoord 

district. In 1999, a second cohort, named the Rotterdam Study II (or RS-II) was started and 

consisted of 3,011 participants who had reached the age of 55 years since 1989 or who had 

moved into the study district. In 2006, the cohort was further extended with 3,932 subjects 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2014. ; https://doi.org/10.1101/002600doi: bioRxiv preprint 

https://doi.org/10.1101/002600
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
11

who were aged 45 years or over; this is called the Rotterdam Study III (RS-III). The 

Rotterdam Study has been described in detail (Hofman et al. 2011, 2013). Informed consent 

was obtained from each participant, and the medical ethics committee of the Erasmus 

Medical Center Rotterdam approved the study.  

For this eQTL analysis, we used the RS-III cohort was used. The RS participants (n=3,054) 

were genotyped using the Illumina 610K quad arrays, and genotypes were imputed using 

MACH (Li et al. 2010) with the HapMap CEU Phase 2 genotypes (release #22, build 36) as a 

reference (The International HapMap Consortium 2003). Whole blood of 768 samples was 

collected (PAXgene Tubes, Becton Dickinson) and total RNA was isolated (PAXgene Blood 

RNA kit, Qiagen). RNA was amplified, labeled (Ambion TotalPrep RNA), and hybridized to the 

Illumina Whole-Genome Expression Beadchips (Human HT-12v4). The total number of RS-III 

samples with both imputed genotypes and whole-genome expression data is equal to 768 

(before sample mix-up correction). After sample mix-up correction, 762 samples remained. 

After removing the gene expression samples which showed a poor RNA quality (correlation 

with PC1 < 0.9), 755 samples remained. 

EGCUT 

The Estonian Gene Expression Cohort (Metspalu 2004) is composed of 899 samples (Mean 

age 37 [16.6] years; 50% females) from the Estonian Genome Center, University of Tartu 

(EGCUT) biobank cohort of 53,000 samples. Genotyping was performed using Illumina 

Human370CNV arrays (Illumina Inc., San Diego, USA), and imputed using Impute v2 (Howie 

et al. 2009), using the HapMap CEU phase 2 (The International HapMap Consortium 2003) 

genotypes (release #24, build 36). Whole peripheral blood RNA samples were collected 

using the Tempus Blood RNA Tubes (Life Technologies), and RNA was extracted using 

Tempus Spin RNA Isolation Kit (Life Technologies). Quality was measured by NanoDrop 1000 

Spectrophotometer (Thermo Fisher Scientific, DE, USA) and Agilent 2100 Bioanalyzer 

(Agilent Technologies, CA, USA). Whole-Genome gene-expression levels were obtained by 

Illumina Human HT12v3 arrays (Illumina Inc, San Diego, CA, USA) according to the 

manufacturer’s protocols. After sample mix-up correction, 8 samples were excluded, and 

891 samples remained. We did not have to remove any gene expression samples because of 

poor RNA quality (correlation with PC1 < 0.9), 891 samples remained.  
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DILGOM 

The Finnish study samples included a total of 513 unrelated individuals aged 25–74 years 

from the Helsinki area, recruited during 2007 as part of the Dietary, Lifestyle, and Genetic 

determinants of Obesity and Metabolic syndrome (DILGOM) study, an extension of the 

FINRISK 2007 study (Inouye et al. 2010). Study participants were asked to fast overnight (at 

least 10 hours) prior to giving a blood sample. DNA was extracted from 10 ml EDTA whole 

blood samples with salt precipitation method using Autopure (Qiagen GmbH, Hilden, 

Germany). DNA purity and quantity were assessed with PicoGreen (Invitrogen, Carlsbad, CA, 

USA) and genotyping used 250 ng of DNA which proceeded on the Illumina 610-Quad SNP 

array (Illumina Inc., San Diego, CA, USA) using standard protocols. SNPs were imputed with 

MACH version 1.0.10 (Li et al. 2010) using HapMap2 release 22 (The International HapMap 

Consortium 2003) as a reference panel. To obtain stabilized total RNA, we used the PAXgene 

Blood RNA System (PreAnalytiX GMbH, Hombrechtikon, Switzerland). It included collection 

of 2.5 ml peripheral blood into PAXgene Blood RNA Tubes (Becton Dickinson and Co., 

Franklin Lakes, NJ, USA) and total RNA extraction with PAXgene Blood RNA Kit (Qiagen 

GmbH, Hilden, Germany). Protocol recommended by the manufacturer was used. The 

integrity and quantity of the RNA samples were evaluated with the 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA). Biotinylated cRNA was produced from 200 ng 

of total RNA with Ambion Illumina TotalPrep RNA Amplification Kit (Applied Biosystems, 

Foster City, CA, USA), using the protocol specified by the manufacturer. 750 ng of 

biotinylated cRNA were hybridized onto Illumina HumanHT-12v3 Expression BeadChips 

(Illumina Inc., San Diego, CA, USA), using standard protocol. After sample mix-up correction, 

509 samples were included for further analysis in this cohort. After removing one gene 

expression sample which showed a poor RNA quality (correlation with PC1 < 0.9), 508 

samples remained. 

InCHIANTI 

InCHIANTI (Tanaka et al. 2009) is a population-based, prospective study in the Chianti area 

(Tuscany) of Italy. The participants were enrolled in 1998-2000, and were interviewed and 

examined every three years. Ethical approval was granted by the Instituto Nazionale Riposo 

e Cura Anziani institutional review board in Italy. Participants gave informed consent. 
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Genome-wide genotyping was performed using the Illumina Infinium HumanHap550 

genotyping chip. We used MACH 1.0.16 (Li et al. 2010) to impute using the HapMap r22 

build-36 reference panel (The International HapMap Consortium 2003). In the InCHIANTI 

study, peripheral blood specimens were taken using the PAXgene system (PreAnalytiX 

GMbH, Hombrechtikon, Switzerland), to preserve transcript expression levels. Samples were 

collected in 2008/9 (wave 4) from 712 participants and mRNA was extracted using the 

PAXgene Blood mRNA kit (Qiagen, Crawley, UK) according to the manufacturer’s 

instructions. Whole genome expression profiling of the samples was conducted using the 

Illumina Human HT-12 v3 microarray (Illumina, San Diego, CA, USA) as previously described 

(Gibbs et al. 2010). Sample mix-up analysis on 620 samples passing QC and having both 

genotype and gene-expression data, revealed a total of 9 possible sample mix-ups. The total 

number of InCHIANTI samples with both imputed genotypes and whole-genome expression 

data included in this analysis was 611. After removing the gene expression samples which 

showed a poor RNA quality (correlation with PC1 < 0.9), 606 samples remained. 

KORA F4 

KORA F4 (Cooperative Heath Research in the Region of Augsburg, Southern Germany) is a 

follow-up survey (2006-2008) of the population-based KORA S4 survey that was conducted 

in the region in 1999-2001. The expression analysis in this study was based on whole blood 

samples of the KORA F4 participants aged 62 to 81 year (Rathmann et al. 2009; Mehta et al. 

2013). RNA was isolated from whole blood using PAXgene Blood miRNA Kit (Qiagen, Hilden, 

Germany). Purity and integrity of the RNA was analyzed using the Agilent Bioanalyzer with 

the 6000 Nano LabChip reagent set (Agilent Technologies, Germany). RNA was reverse 

transcribed with TotalPrep-96 RNA Amp Kit (Ambion, Germany) and hybridized to the 

Illumina HumanHT-12 v3 Expression BeadChip (Mehta et al. 2013). The samples were 

genotyped on the Affymetrix 6.0 GeneChip array (Marzi et al. 2010). The SNPs were imputed 

with MACH (v1.0.15) (Li et al. 2010) and the HapMap CEU version 22 (The International 

HapMap Consortium 2003) was used as reference population for calling and imputation. 

Altogether there were 740 samples with gene expression and genotype data available for 

analysis. We did not have to remove any gene expression samples because of poor RNA 

quality (correlation with PC1 < 0.9). 
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Replication cohorts 

Stranger LCL  

The Stranger Lymphoblastoid Cell Line (LCL) dataset consists of 608 individuals from 

HapMap3 (Stranger et al. 2012), which were hybridized to Illumina WG6v2 bead chips. As 

genotypes, we used HapMap3 release 2 and gene expression measurements were 

normalized per population, using log2 transformation, quantile normalization, and principal 

component (PC) correction. PC correction was limited to 10 PCs because of the small sample 

size of each individual population. The LCL cis-eQTLs were subsequently meta-analyzed over 

all populations. 

CD4+ and CD8+ T-cells 

Genotypes of this replication cohort are part of the EGCUT study (which is one of the 

discovery cohorts). As such, they have been generated using the same protocol and quality 

control measures. 

Purification of CD4+ and CD8+ T cells 

Peripheral blood was obtained from healthy donors of the Estonian Genome Center of the 

University of Tartu. Peripheral blood mononuclear cells (PBMC) were extracted using Ficoll-

Paque (GE Healthcare) gradient centrifugation. CD4
+
 T cells and CD8

+
 T cells were extracted 

from the PBMCs by consecutive positive separation using microbeads (CD4+ #130-045-101; 

CD8+ #130-045-201) and AutoMACS technology (Miltenyi Biotec) according to the 

manufacturer's protocol. The study was approved by the Ethics Review Committee on 

Human Research of the University of Tartu, and all of the participants have signed a written 

informed consent. 

RNA extraction, labelling and hybridization 

RNA was extracted using the miRNeasy Mini Kit combined with a recommended RNase-free 

DNase I treatment (both from Qiagen) according to the manufacturer’s protocol. The RNA 

was labeled and amplified using the TargetAmp Nano Labeling Kit for Illumina Expression 

BeadChip (Epicentre Biotechnologies) with SuperScript III Reverse Transcriptase (Life 
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Technologies) according to the manufacturer's protocol, followed by purification with the 

RNeasy MinElute Cleanup Kit (Qiagen). The labelled RNA samples were hybridized to 

HumanHT-12 v4 Expression BeadChips (Illumina) according to the manufacturer's 

instructions. The final number of individuals for this study was 309. 

Singapore Chinese functional genomics cohort 

The Singapore Chinese cohort used for the neutrophil specific eQTL dataset is part of a 

larger epidemiological cohort described previously (Andiappan et al. 2011). The individuals 

gave fresh whole blood which was used to isolate neutrophils and frozen down immediately 

in Trizol to -80°C. RNA was then extracted from this pure neutrophil population using the 

Ambion RNA exaction kit. The extracted RNA was then hybridized onto Illumina HumanHT-

12 whole-genome gene expression chips. To avoid batch effects the RNA samples were 

randomly placed onto Illumina HumanHT-12 arrays such that each chip contains a number 

of samples from the various RNA extraction batches. Illumina microarray data was then 

normalized in Genome Studio using quantile normalization with no background subtraction. 

The log2 transformed expression values were then used for subsequent analysis. 

Additionally whole genome genotyping was done on these individuals using the Human 

Illumina Omni 5M chip. Samples were then checked for any pair of samples identified as 

first-degree relatives, and if found, these were removed. SNPs which were monomorphic in 

the population and those, which failed a call rate of 95% were also removed. This resulted in 

a total of 4.28 million SNPs with a good call rate that was taken forward for further 

statistical analysis. Thus, this batch of 114 samples was used to validate that the predicted 

eQTLs were indeed neutrophil specific.  

  

Statistical analysis 

Each significant SNP-probe pair in the discovery cohort was analyzed for significance in the 

validation cohort using a linear regression model. Array address IDs were matched to 

Illumina probe IDs using the annotation file HumanHT-12 v3. Linear regression was 

performed using the python function linregress from the library SciPy, coding the genotypes 

based on allele counts (0, 2 for homozygous genotypes and 1 for heterozygous genotypes). 

Samples with missing genotypes for a particular SNP were excluded from the analysis of the 
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corresponding SNP-probe pair. 1000 genomes Illumina SNP IDs were mapped to rs IDs based 

on their annotated position on the chromosome. 

Oxford 

Oxford cell-specific eQTL analysis has been described previously (Fairfax et al. 2012). In the 

initial analysis peripheral blood mononuclear cell fractions were purified from 50ml of 

freshly collected EDTA anti-coagulated blood from 288 healthy European volunteers using 

Ficoll gradients. CD14+ monocytes and CD19+ B-cells were subsequently positively selected 

from this fraction using magnetic beads (MACS, Miltenyi-Bitotec, Bergisch Gladbach, 

Germany) with all steps performed on ice as per the manufacterer’s protocol. Individuals 

were genotyped at 730,525 markers using Illumina OmniExpress Beadchips and, after 

controlling for population outliers, 283 individuals were used in the final analysis. Genotypes 

were imputed using the CEU panel of HapMap2 release 24 (The International HapMap 

Consortium 2003) using BEAGLE v2 (Browning and Browning 2009). The final sample size for 

B-cells was 282 and the final sample size for monocytes was 283. 

Gene expression normalization 

Each cohort performed gene expression normalization individually: gene expression data 

was quantile normalized to the median distribution then log2 transformed. The probe and 

sample means were centered to zero. Gene expression data was then corrected for possible 

population structure by removing four multi-dimensional scaling components (MDS 

components obtained from the genotype data using PLINK) using linear regression. Because 

normalized gene-expression data still contains large amounts of non-genetic variation 

(Schurmann et al. 2012; Fehrmann et al. 2011), principal component analysis (PCA) was 

performed on the sample correlation matrix, and up to 40 principal components (PCs) were 

then removed from the gene expression data using linear regression (Westra et al. 2013).  

In order to improve statistical power to detect cell-type mediated eQTLs, we corrected the 

gene expression for technical and batch effects (here we applied principal component 

analysis and removed per cohort the 40 strongest principal components that affect gene 

expression). Such procedures are commonly used when conducting cis-eQTL mapping 

(Dubois et al. 2010; Fehrmann et al. 2011; Fu et al. 2012; Zhernakova et al. 2013b; Westra et 
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al. 2013; Lappalainen et al. 2013). To minimize the amount of genetic variation removed by 

this procedure, we performed QTL mapping for each principal component, to ascertain 

whether genetic variants could be detected that affected the PC. If such an effect was 

detected, we did not correct the gene expression data for that particular PC (Westra et al. 

2013). We chose to remove 40 PCs based on our previous study results, which suggested 

that this was the optimum for detecting eQTLs (Westra et al. 2013). The PC-corrected gene 

expression data was then used as the predicted variable in our model. 

Creating a proxy for neutrophil cell percentage from gene expression 

data 

To be able to determine whether a cis-eQTL is mediated by neutrophils, we reasoned that 

such a cis-eQTL would show a larger effect size in individuals with a higher percentage of 

neutrophils than in individuals with a lower percentage. However, this required the 

percentage of neutrophils in whole blood to be known, and cell-type percentage 

measurements were not available for all of the cohorts. We therefore created a proxy 

phenotype that reflected the actual neutrophil percentage that would also be applicable to 

datasets without neutrophil percentage measurements. In the EGCUT dataset, we first 

quantile normalized and log2 transformed the raw expression data. We then correlated the 

gene expression levels of individual probes with the neutrophil percentage, and selected 58 

gene expression probes showing a high positive correlation (r
2
 > 0.3).  

In each independent cohort, we corrected for possible confounding factors due to arrays 

with poor RNA quality, by correlating the sample gene expression measurements against 

the first PC determined from the sample correlation matrix. Only samples with a high 

correlation (r ≥ 0.9) were included in further analyses. Then, for each cohort, we calculated 

a correlation matrix for the neutrophil proxy probes (the probes selected from the EGCUT 

cohort). The gene expression data used was quantile normalized, log2 transformed and 

corrected for MDS components. Applying PCA to the correlation matrix, we then obtained 

PCs that described the variation among the probes selected from the EGCUT cohort. As the 

first PC (PC1) contributes the largest amount of variation, we considered PC1 as a proxy-

phenotype for the cell type percentages.  
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Determining cell-type mediation using an interaction model 

Considering the overlap between the cohorts in this study and our previous study, we 

limited our analysis to the 13,124 cis-eQTLs having a significant effect (false discovery rate, 

FDR < 0.05) in our previous study (Westra et al. 2013). This included 8,228 unique Illumina 

HT12v3 probes and 10,260 unique SNPs (7,674 SNPs that showed the strongest effect per 

probe, and 2,586 SNPs previously associated with complex traits and diseases, as reported 

in the Catalog of Published Genome-Wide Association Studies (Hindorff et al. 2009), on 23
rd

 

September, 2013). 

We defined the model for single marker cis-eQTL mapping as follows: 

Y ≈ I + β1*G + e 

where Y is the gene expression of the gene, β1 is the slope of the linear model, G is the 

genotype, I is the intercept with the y-axis, and e is the general error term for any residual 

variation not explained by the rest of the model. 

We then extended the typical linear model for single marker cis-eQTL mapping to include a 

covariate as an independent variable, and captured the interaction between the genotype 

and the covariate using an interaction term: 

Y ≈ I + β1*G + β2*P + β3*P:G + e 

where P (cell-type proxy) is the covariate, and P:G is the interaction term between the 

covariate and the genotype. We used gene expression data corrected for 40 PCs as the 

predicted variable (Y). The interaction terms were then meta-analyzed over all cohorts using 

a Z-score method, weighted for the sample size (Whitlock 2005). 

Multiple testing correction 

Since the gene-expression data has a correlated structure (i.e. co-expressed genes) and the 

genotype data also has a correlated structure (i.e. linkage disequilibrium between SNPs), a 

Bonferroni correction would be overly stringent. We therefore first estimated the effective 

number of uncorrelated tests by using permuted eQTL results from our previous cis-eQTL 
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meta-analysis (Westra et al. 2013). The most significant P-value in these permutations was 

8.15 x 10
-5

, when averaged over all permutations. As such, the number of effective tests = 

0.5 / 8.15 x 10
-5

 ≈ 6134, which is approximately half the number of correlated cis-eQTL tests 

that we conducted (=13,124). Next, we controlled the FDR at 0.05 for the interaction 

analysis: for a given P-value threshold in our interaction analysis, we calculated the number 

of expected results (given the number of effective tests and a uniform distribution) and 

determined the observed number of eQTLs that were below the given P-value threshold 

(FDR = number of expected p-values below threshold / number of observed p-values below 

threshold). At an FDR of 0.05, our nominal p-value threshold was 0.009 (corresponding to an 

absolute interaction effect Z-score of 2.61).  

Cell-type specific cis-eQTLs and disease 

For each trait in the GWAS catalog, we pruned all SNPs with a GWAS association P-value 

below 5 x 10
-8

, using an r
2
 threshold of 0.2. We only considered traits that had more than 20 

significant eQTL SNPs after pruning (irrespective of cell-type mediation). Then, we 

determined the proportion of pruned neutrophil-mediated cis-eQTLs for the trait relative to 

all the neutrophil-mediated cis-eQTLs. The difference between both proportions was then 

tested using a binomial test. 

Data Access 

The source code and documentation for this type of analysis are available as part of the 

eQTL meta-analysis pipeline at https://github.com/molgenis/systemsgenetics 

Summary results are available from http://www.genenetwork.nl/celltype 

Accession numbers  

Discovery cohorts: Fehrmann (GSE 20142), SHIP-TREND (GSE 36382), Rotterdam Study (GSE 

33828), EGCUT (GSE 48348), DILGOM (E-TABM-1036), InCHIANTI (GSE 48152), KORA F4 (E-

MTAB-1708). 

Replication Cohorts: Stranger (E-MTAB-264), Oxford (E-MTAB-945). 
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Figure legends 

Figure 1 Method overview, power analysis and validation 

A) Overview of the method to detect cell-type-mediated cis-eQTL in compound tissues. 

I) Starting with a dataset that has cell count measurements, determine a set of probes that 

have a strong positive correlation to the cell count measurements. Calculate the correlation 

between these specific probes in the other datasets, and apply principal component analysis 

to combine them into a single proxy for the cell count measurement. II) Apply the prediction 

to other datasets lacking cell count measurements. III) Use the proxy as a covariate in a 

linear model with an interaction term in order to distinguish cell-type-mediated from non-

cell-type-mediated eQTL effects. 
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Figure 2 Validation of neutrophil proxy 

There is a strong correlation between the neutrophil proxy and the actual neutrophil 

percentage measurements in the training dataset (EGCUT, r = 0.74). Validation of neutrophil 

prediction in the SHIP-TREND cohort shows a strong correlation (r = 0.81) between the 

neutrophil proxy and actual neutrophil percentage measurements in this dataset.  

Figure 3 Validation of neutrophil and lymphoid specific cis-eQTLs in 

purified cell type eQTL datasets 

A) We validated the neutrophil- and lymphoid-mediated cis-eQTL effects in four purified cell 

type datasets from the lymphoid lineage (B-cells, CD4+ T-cells, CD8+ T-cells and 

lymphoblastoid cell lines) and in two datasets from the myeloid lineage (monocytes and 

neutrophils). Compared to generic cis-eQTLs, large effect sizes were observed for 

neutrophil-mediated cis-eQTLs in myeloid lineage cell types, and small effect sizes in the 

lymphoid datasets. Conversely, lymphoid-mediated cis-eQTL effects had large effect sizes 

specifically in the lymphoid lineage datasets, while having smaller effect sizes in myeloid 

lineage datasets. These results indicate that our method is able to reliably predict whether a 

specific cis-eQTL is mediated by cell type. 

B) Comparison between average gene expression levels between different purified cell type 

eQTL datasets shows that neutrophil mediated cis-eQTLs have, on average a lower 

expression in cell types derived from the lymphoid lineage, and a high expression in myeloid 

cell types, while the opposite is true for lymphocyte mediated cis-eQTLs. 

Figure 4 Effect of sample size on power to detect cell type specific cis-

eQTLs 

We systematically excluded datasets from our meta-analysis in order to determine the 

effect of sample size on our ability to detect significant interaction effects. The number of 

significant interaction effects was rapidly reduced when the sample size was decreased (the 

number of unique significant probes given a Bonferroni corrected P-value < 8.1 x 10
-6 

is 
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shown). In general, due to their low abundance in whole blood, lymphoid-mediated cis-

eQTL effects are harder to detect than neutrophil-mediated cis-eQTL effects. 

 

Supplementary Figure 1 Comparison of effect sizes and effect direction 

between datasets 

Comparison of interaction effect Z-scores shows a high consistent direction of effect 

between datasets and with the meta-analysis for those interaction effects significant at FDR 

< 0.05. 

Supplementary Table 1 

Summary statistics for the interaction analysis. 

Supplementary Table 2 

Results of the interaction analysis. 

Supplementary Table 3 

Summary statistics showing the effect size (correlation coefficient) in each of the tested 

replication datasets. 

Supplementary Table 4 

Results of the neutrophil mediated cis-eQTL disease enrichment analysis. 
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Figures 

Figure 1 
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Figure 2 

 

Figure 3 
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Figure 4 
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