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Abstract  
Epistasis has long been thought to contribute to the genetic aetiology of complex diseases, yet few 
robust epistatic interactions in humans have been detected. We have conducted exhaustive genome-
wide scans for pairwise epistasis in five independent celiac disease (CD) case-control studies, using 
a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 20 significant 
epistatic signals within the HLA region which achieved stringent replication criteria across multiple 
studies and were independent of known CD risk HLA haplotypes. The strongest independent CD 
epistatic signal corresponded to genes in the HLA class III region, in particular PRRC2A and 
GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early 
menopause, co-morbidities of celiac disease. Replicable evidence for epistatic variants outside the 
MHC was not observed. Both within and between European populations, we observed striking 
consistency of epistatic models and epistatic model distribution. Within the UK population, models 
of CD based on both epistatic and additive single-SNP effects increased explained CD variance by 
approximately 1% over those of single SNPs. Models of only epistatic pairs or additive single-SNPs 
showed similar levels of CD variance explained, indicating the existence of a substantial overlap of 
additive and epistatic components. Our findings have implications for the determination of genetic 
architecture and, by extension, the use of human genetics for validation of therapeutic targets. 
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Introduction 
The limited success of genome-wide association studies (GWAS) to identify common variants that 
substantially explain the heritability of many complex human diseases and traits has led researchers 
to explore other potential sources of heritability (in the wide sense), including the low/rare allele 
frequency spectrum as well as epistatic interactions between genetic variants [1,2]. Many studies 
are now leveraging high-throughput sequencing with initial findings beginning to elucidate the 
effects of low frequency alleles [3-6]. However, the characterization of the epistatic component of 
complex human disease has been limited, despite the availability of a multitude of statistical 
approaches for epistasis detection [7-13]. Large-scale systematic research into epistatic interactions 
has been hampered by several computational and statistical challenges mainly stemming from the 
huge number of variables that need to be considered in the analysis (>100 billion pairs for even a 
small SNP array), the subsequent stringent statistical corrections necessary to avoid being swamped 
by large number of false positive results, and the requirement of large sample size in order to 
achieve adequate statistical power. 
 
The strongest evidence for wide-ranging epistasis has so far come from model organisms [14,15] 
and recent evidence has demonstrated that epistasis is pervasive across species and is a major factor 
in constraining amino acid substitutions [16]. Motivated by the hypothesis that epistasis is 
commonplace in humans as well, recent studies have begun providing evidence for the existence of 
epistatic interactions in several human diseases, including psoriasis [17], multiple sclerosis [18], 
Behçet’s disease [19], type 1 diabetes [20], Crohn's disease [21], bipolar disorder [11] and 
ankylosing spondylitis [22], as well as complex traits such as serum uric acid levels [23] and the 
expression levels of multiple genes in human peripheral blood [24]. While these studies have been 
crucial in demonstrating that epistasis does indeed occur in human disease, several questions remain 
including how wide-ranging epistatic effects are, how well epistatic pairs replicate in other datasets, 
how the discovered epistatic effects can be characterized in terms of previously hypothesized 
models of interaction [25,26], whether it is possible to detect epistatic signal in the presence of 
strong marginal signals [27,28], and how much (if at all) epistasis contributes to disease heritability 
[29].  
 
Celiac disease (CD) is a complex human disease characterized by an autoimmune response to 
dietary gluten. CD has a strong genetic component largely concentrated in the MHC region, due to 
its dependence on the HLA-DQ2/DQ8 heterodimers encoded by the HLA class II genes HLA-
DQA1 and HLA-DQB1 [30]. The genetic basis of CD in terms of individual SNP associations has 
been well characterized in several GWAS [31-34], including the additional albeit smaller 
contribution of non-HLA variants to disease risk [35]. The success of GWAS for common variants 
in CD has recently been emphasized by the development of a genomic risk score that could prove 
relevant in the diagnostic pathway of CD [36]. Autoimmune diseases have so far yielded the most 
convincing evidence for epistatic associations [37], potentially due to power considerations since 
these diseases usually tend to depend on common variants of moderate to large effect within the 
MHC. Given these findings in conjunction with recent observations that rare coding variants may 
play a negligible role in common autoimmune diseases [3], we sought to determine whether robust 
epistasis is detectable in CD and whether it accounts for some of the unexplained disease variance. 
 
Here, we present a large-scale exhaustive study of pairwise epistasis in celiac disease. Leveraging 
Genome-Wide Interaction Search (GWIS), a highly efficient approach for epistasis detection [38], 
we conduct genome-wide scans for all epistatic pairs across five separate CD case/control datasets 
of European descent, finding thousands of statistically significant pairs despite stringent multiple 
testing corrections. Next, we show a high degree of concordance of these interactions across the 
datasets, demonstrating that they are highly robust and replicable. We characterize the common 
epistatic models found and compare them to previously proposed theoretical models. Further, given 
complex linkage disequilibrium patterns, we distil the epistatic pairs down to those that are 
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independent of known HLA risk haplotypes and independent of other epistatic pairs. Finally, we 
examine whether epistatic pairs add more predictive power and explain more disease variation than 
additive effects of single SNPs. 
 
 
 
 
 
 
Results 
Datasets are summarized in Table S1, these include five independent, previously published GWAS 
datasets of CD with individuals genotyped from four different European ethnicities: United 
Kingdom (UK1 and UK2), Finland (FIN), The Netherlands (NL) and Italy (IT) [32,33]. To limit the 
impact of genotyping error and other sources of non-biological variation, we implemented three 
stages of validation and quality control (QC): (i) standard QC within each dataset, (ii) independent 
exhaustive epistatic scans within each of the five datasets, and (iii) derivation of a validated list of 
epistatic interactions based on UK1. The study workflow is shown in Figure S1. 
 
Exhaustive epistatic scans and replication 
For each dataset, we implemented stringent sample and SNP level quality control (Methods), and 
then conducted an exhaustive analysis of all possible SNP pairs using the GWIS methodology [38]. 
Each pair was tested using the GSS statistic, which determines whether a pair of SNPs in 
combination provides significantly more discrimination of cases and controls than either SNP 
individually (Methods). Forty-five billion pairs were evaluated in the UK1 study (Illumina 
Hap300/Hap550) and 133 billion SNP pairs were evaluated in each of the four remaining cohorts 
(Illumina 670Quad and/or 1.2M-DuoCustom). Given this multiple testing burden, we adopted 
stringent Bonferroni-corrected significance levels of P = 1.1 x 10-12 for the UK1 and P = 3.75 × 10-

13 for the remaining datasets. Examination of the distribution of observed GSS p-values relative to 
the uniform p-value distribution showed some deviation (Figure S2), indicating the GSS statistic is 
overly liberal for p-values >10-5 yet overly conservative for p-values <10-5. We therefore used a 
permutation-based approach to adjust the observed p-values in a manner analogous to the widely 
used genomic control method (Methods). The resulting adjusted p-value distribution showed no 
test statistic inflation (Figure S2).  
 
To further ensure that the downstream results were robust to technological artefact and population 
stratification, we took two additional steps: (a) utilizing the raw genotype intensity data available 
for UK1 for independent cluster plot inspection of 696 SNPs comprising candidate epistatic pairs, 
and (b) replicating the epistatic interactions of the SNPs passing cluster plot inspection, where 
replication is defined as a SNP pair passing Bonferroni-adjusted significance both in UK1 and in at 
least one additional study. Using these criteria, we found that 5,454 SNP pairs (comprising 581 
unique SNPs) from the UK1 dataset passed both (a) and (b) above. We denote these pairs as 
'validated epistatic pairs' (VEPs) below. The full list of VEPs is given in Dataset S1. Notably, all 
VEPs fulfilling these robustness criteria were within the MHC.  
 
More than 134,000 unique pairs achieved Bonferroni-adjusted significance in at least one of the five 
studies, with the vast majority lying within the extended MHC region of chr 6 (Figure 1 and Table 
S2). Of the 35 epistatic pairs outside the MHC that were significant in at least one study, none 
passed Bonferroni-adjusted significance in at least one other study and were thus deemed not 
replicated. As expected, the number and significance of epistatic interactions increased with sample 
size. Interestingly, some of the strongest epistatic interactions tended to be in close proximity 
though few SNPs were in LD with only 1% of pairs having r2 >0.5 (Figure S3).  The heatmaps in 
Figure 1 also showed that epistasis was widely distributed with distances of >1Mb common 
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between epistatic pairs. While epistatic interactions were consistently located in and around HLA 
class II genes, further examination of the VEPs found that many of the strongest epistatic pairs were 
in HLA class III loci, >1Mb upstream of HLA-DQA1 and HLA-DQB1 (Figure S4). 
 
The extent of replication of the epistatic pairs was apparent from the high degree of similarity in the 
rankings when pairs were sorted by GSS significance (Figure S5), with the top 10,000 pairs 
exhibiting ~70-80% overlap between the UK1 and UK2 datasets and 40-60% overlap of the UK1 
with the pairs found in the NL and FIN datasets. Such high degrees of overlap have essentially zero 
probability of occurring by chance. The pairs found in the IT dataset showed lower levels of 
consistency with those detected in the UK1 dataset but overall were still far more than expected by 
chance with ~30% overlap at ~30,000 pairs. 
 
Independence of Validated Epistatic Pairs and known HLA risk haplotypes 
The large number of VEPs demonstrates that thousands of epistatic SNP pairs can reliably be found 
in the HLA region, however, while the GSS test is designed to select VEPs exhibiting epistatic 
effects, this does not a priori guarantee that these pairs are not tagging known HLA haplotypes or 
tagging the same causal signal. Due to the VEPs’ co-localization within a region of complex linkage 
disequilibrium and the presence of HLA-DQA1/DQB1 risk haplotypes, known to be instrumental in 
CD etiology, it is important to estimate the number of epistatic signals that are (a) independent of 
the known HLA risk haplotypes, and (b) independent of other epistatic signals. 
 
To determine whether VEPs were independent of known haplotypes we utilized a second filtering 
step in the form of a likelihood ratio test (LRT), testing whether adding a VEP to a logistic 
regression model of case/control status on the haplotypes increased model fit significantly, with the 
threshold for significance defined using a false discovery rate (FDR) of 5% (Methods). Due to the 
extensive LD in the region, it is inevitable that some VEPs will be fully captured by HLA risk 
haplotypes; as a subsequent filter to the GSS test, the LRT will identify these as well as determine 
whether each VEP contains significantly more independent information on CD risk than the HLA 
risk haplotype alone. After keeping the VEPs that were independent of risk haplotypes, we used an 
LD pruning based approach based on Hill's Q-statistic, a normalized chi-squared statistic for multi-
allelic loci [39], to estimate the number of haplotype-independent epistatic pairs that were also 
independent of each other. 
 
From the 5,454 VEPs, we found that 4,744 pairs (>88%) were independent of the known CD risk 
haplotypes (DQB1*0302, DQB1*0301, DQB1*0202, DQB1*0201 and DQA1*0301, DQA1*0505, 
DQA1*0501, DQA1*0201). From the 4,744 VEPs independent of risk HLA haplotypes, LD 
pruning using a cutoff of Hill's Q = 0.3 identified 20 VEPs in UK1 which represent independent 
epistatic signals (Methods and Table S3).  
 
We further demonstrated the independence of VEPs by employing a LRT evaluating whether the 
interaction effects for the VEPs holds using a logistic regression-based approach as well as 
conditioning on known celiac haplotypes and strong univariate associated SNPs (Methods). A 
logistic-regression based test for interaction will differ from the model-free GSS-based test, as it 
will only detect interactions relative to the log-odds scale while GSS may detect interactions 
regardless of scale. Nevertheless, we find 1041 VEPs are significant past Bonferroni correction (P < 
9.12 × 10-6) using a meta-analysis based approach (Methods, Figure S6) with many showing p-
values below 10-12.  Despite this approach testing for a different definition of interaction and 
potential loss of power due to overadjustment, many robust epistatic signals remain highly 
significant.  
 
Empirical epistatic model distributions 
Epistatic models, a subset of two-locus disease models, are typically represented as a table of 
penetrance values with one penetrance value for each genotype combination [7] and provide insight 
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into how disease risk is distributed. Such models are of interest due to their natural role in the 
inference of disease mechanism for two or more genes as well as inference of population specific, 
and therefore potentially evolutionary, effects thereof. Further, characterization of epistatic model 
frequencies also enables the development of more powerful statistical approaches that target 
frequent models. While Table S3 shows the models for each of the epistatic pairs chosen to 
represent the independent signals detected, we are interested in the overall model consistency and 
distribution across all cohorts and have therefore analysed epistatic models across all VEPs. 
Following the conventions of Li and Reich [25], we discretized the models for the VEPs to use 
fully-penetrant values where each genotype combination implies a complete susceptibility or 
protective effect on disease (Methods), simplifying the comparison of models between different 
SNP pairs.  
 
To establish model consistency, we first replicated the most frequent full penetrance VEP models in 
the other datasets (Figure 2). When considering the distribution of epistatic models we found 
striking consistency of the UK1 models with those from UK2 and the other Northern European 
populations (Finnish and Dutch). Only four models from the possible 50 classes [25] occurred 
with >5% frequency in the Northern European studies, and there was substantial variation in 
epistatic model as a function of the strength of the interaction. Amongst all VEPs in UK1, the four 
models corresponded to the threshold model (T; 38.3% frequency), jointly dominant-dominant 
model (DD; 31.1%), jointly recessive-dominant model (RD; 16.5%), and modifying effect model 
(Mod; 1.0%) [25,40]. The DD and RD models are considered multiplicative, the Mod model is 
conditionally dominant (i.e. one variant behaves like a dominant model if the other variant takes a 
certain genotype), and the T model is recessive. The T model was the most frequent model, 
especially amongst the strongest pairs.  
 
Interestingly, despite the consistency of MHC epistasis, the VEPs showed noticeable differences in 
epistatic model distribution in the IT dataset. This was in contrast to the other Northern European 
populations but consistent with the different ranking in GSS significance observed above. In the IT 
dataset, the distribution of models was altered such that there was a more even distribution. The 
four most frequent models were still the T model (16.2%), modifying effects (16.5%), DD (15.8%), 
and RD model (11.3%). But, we also observed that many of the strongest pairs within the IT dataset 
followed the M86 model, though M86 represented only a small proportion of models overall 
(1.2%). The other VEP models overall were relatively uniform amongst the remaining models. 
 
The cause(s) of the differences in epistatic model distribution for the IT data are not clear, however 
it is unlikely due to sample size. While cryptic technical factors cannot be ruled out at this stage, we 
speculate that there may be population specific epistatic variation that follows the known 
North/South European genetic gradient [41]. Such variation in epistasis has been previously shown 
in the evolution of complex genetic systems [42], however evidence of such phenomena in human 
genetics has not, to our knowledge, been uncovered. While the differences in epistatic model for the 
IT population relative to Northern Europeans are notable, further studies specifically evaluating the 
consistency of epistatic model variation between populations (and potentially between diseases) are 
required to validate its evolutionary basis.  
 
Contribution of epistatic pairs to celiac disease variance 
We next sought to estimate the CD variance explained by the detected epistatic pairs and single 
SNPs. To do this, we utilized a multivariable model framework which accounted for all SNPs 
and/or VEPs at once. To assess the contribution of epistatic pairs to CD prediction and thus genetic 
variance explained, we employed L1 penalized linear support vector machines (SVM, see 
Methods), an approach which models all variables concurrently (single SNPs and/or pairs) and 
which has been previously shown to be particularly suited for maximizing predictive ability from 
SNPs in CD and other autoimmune diseases [36,43]. We have previously shown that additive 
models of single SNPs explain substantially more CD variance than haplotype-based models [36], 
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thus we employ only the former to estimate the gain in CD variance explained here. 
 
We assessed CD variance explained by constructing three separate models: (a) genome-wide single 
SNPs only, (b) the VEPs only, and (c) a 'combined' model of both single SNPs and VEPs together. 
The models were evaluated in cross-validation on the UK1 dataset, and the best models in terms of 
Area Under the Curve (AUC) were then taken forward for external validation in the other four 
datasets without further modification. 
 
In UK1 cross-validation, the combined models led to an increase of ~1.6% in explained CD 
variance, from 32.6% to 34.2% (respective, AUC of 0.882 and 0.888) (Table 1). In external 
validation, the models based solely on VEPs had overall high predictive ability across all external 
validation datasets (AUC > 0.83), but slightly less than models based on single SNPs alone. The 
combined models yielded the highest externally validated AUC of all models, showing gains in 
AUC over single SNPs of +0.6% AUC in UK2 (Delong's 2-sided test P = 0.0016). In the IT dataset, 
average gains were higher at +1.2% AUC yet marginally significant (P = 0.0527), and the 
differences in FIN and NL were smaller (0.5% and 0.1%, respectively) and not significant.  
 
Combining the UK1 and UK2 into a single dataset (N=7,786 unrelated individuals) and retraining 
the models in cross-validation showed similar trends with the best models being the combined 
models (Table S4). The combined models from the larger UK1+UK2 dataset also showed higher 
AUC in external validation than the models trained on UK1 data only when validating the single 
SNP + VEP models on the FIN and NL datasets (AUCs +1.3% and +1%; P = 0.0007083 and P = 
0.01113, respectively); however, performance on the IT dataset did not differ significantly (−0.9% 
AUC, P= 0.09568  
 
 
 
 
 
 
Discussion 
This study has shown the robust presence of epistasis in celiac disease. The epistatic SNP pairs 
were mostly independent of HLA risk haplotypes for CD and strongly replicate across cohorts in 
terms of significance, ranking, and epistatic model. To our knowledge, this level of epistatic signal 
strength, number of epistatic pairs, and degree of replication has not been previously shown in a 
complex human disease. We also performed a large-scale empirical characterization of the epistatic 
models underlying the interactions in CD, with the majority of the VEPs approximately following 
the threshold model, and a smaller number following dominant-dominant, dominant-recessive, and 
recessive-recessive models. Further, these patterns were found to be strongly consistent across most 
of the datasets. 
 
Despite observations that epistatic interactions between SNPs within a locus are enriched for batch 
effects and poorly clustered genotype clouds [44], the stringent quality control and extensive 
replication in this study indicate that these SNPs are largely bona fide epistatic pairs. A large 
number of candidate epistatic SNP pairs that did not achieve Bonferroni significance criteria for 
replication were still highly statistically associated with CD consistently across datasets, indicating 
that our estimates of the degree of epistasis in CD may be conservative. 
 
For validated epistatic pairs (VEPs), we found that much of the strongest signal was >1Mb 
upstream of the well-known HLA-DQA1 and HLA-DQB1 risk loci and suggested a potentially 
important epistatic contribution from HLA class III genes. Indeed the strongest epistatic signal, 
which was independent of HLA risk haplotypes and other VEPs, was attributable to variants in 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2015. ; https://doi.org/10.1101/002485doi: bioRxiv preprint 

https://doi.org/10.1101/002485
http://creativecommons.org/licenses/by/4.0/


7 
 

PRRC2A and GPANK1/C6orf47. Given that individuals with celiac disease are at elevated risk of 
non-Hodgkin's lymphoma (NHL), it is intriguing that variants within PRRC2A are also associated 
with NHL [45]. However, for the top PRRC2A SNP for NHL (rs3132453) we did not observe a 
validated epistatic relationship nor linkage disequilibrium between rs3132453 and the epistatic 
PRRC2A SNP (rs2260000), which was low in the HapMap2 CEU (r2 = 0.05). There is also 
evidence to suggest that women with celiac disease are at increased risk of early menopause 
[46,47]. A recent genetic association study of menopausal age identified a missense variant within 
PRRC2A (rs1046089) which was predicted as both structurally damaging for PRRC2A as well as an 
expression QTL for multiple genes [48]. In our study, the PRRC2A SNP rs1046089 showed strong 
epistasis with another proximal variant in ABHD16A as well as several other variants in the MHC 
despite low LD with the strongest PRRC2A epistatic variant (r2 = 0.27). Overall, our findings 
indicate that, in addition to the known HLA risk haplotypes for CD, there is epistasis between HLA 
class III loci, which may have implications for CD co-morbidity. 
 
The epistatic variants were further shown to increase CD variance explained, findings which were 
replicated in external datasets. Interestingly, models of only epistatic pairs explained nearly as much 
CD variance as additive models of single SNPs. This observation adds to an increasing body of 
literature supporting the existence of shared information between additive and epistatic effects 
[24,49]. In explaining some of the controversy between the contribution of these apparently 
different classes of effects to a complex disease, our study emphasizes the difficulty in 
deconvoluting additivity and epistasis, and supports the development of more sophisticated 
statistical methods to jointly model these effects as well as larger and more powerful studies in 
which to do so.  
 
While the challenge of deconvoluting additivity and epistasis does not affect studies in the genomic 
prediction of complex diseases [36], it implies that determining causal genetic signals of CD, and 
perhaps other autoimmune/inflammatory diseases with substantial HLA-based effects, is more 
difficult than widely appreciated. Determining the true genetic effects is central to the identification 
of the molecular products involved in pathogenesis, thus the usage of genetic data in the discovery 
and validation of therapeutic targets [50] would benefit from the investigation and potential 
resolution of the epistatic and additive components of a given disease. While the increase in 
explainable variance from epistatic signals in this study was low, candidate interactions discovered 
through pairwise analysis may still provide important therapeutic targets [51]. Given this, and in 
conjunction with recent findings that support the evolutionary persistence of substantial non-
additive effects [27], our findings should also stimulate debate around whether the usage of the 
principle of parsimony (Occam's Razor) is an adequate rationale for models of exclusively additive 
effects [29]. 
 
These findings have implications for both the genetic architecture of celiac disease as well as the 
incorporation of epistasis into genetic models of complex disease. The limitations of the first 
generation GWAS approach to explain missing heritability has led to the development and 
application of more sophisticated approaches to resolve this problem, yet success has been elusive. 
Recent results suggest that rare variants add little to known heritability for a number of autoimmune 
diseases including celiac disease [52]. Epistasis may offer both additional explained (broad-sense) 
heritability as well as new biology, as evidenced by our findings for HLA class III epistasis. The 
genetic models of CD generated in this work indicate that while epistatic pairs explain substantial 
disease variance, overall this variance is largely shared with that of additive effects. Combined 
epistatic and additive models likely constitute the best solution.  
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Methods 
 
Quality control 
A range of quality-control measures were applied to all datasets to limit the impact of genotyping 
error. For all datasets, we removed non-autosomal SNPs, SNPs with MAF <1%, missingness >1% 
and those deviating from Hardy-Weinberg Equilibrium in controls with 𝑃 < 5 x 10-6. Samples were 
removed if data missingness was >1%. Cryptic relatedness was also stringently assessed by 
examining all pairs of samples using identity-by-descent in PLINK, and removing one of the 
samples if 𝜋 > 0.05. The cryptic relatedness filter removed 17 samples within the UK1 cohort that 
related to other UK1 samples, and 1208 samples from the UK2 cohort which were either related to 
other UK2 samples or UK1 samples. Dataset sizes in Table S1 are reported after the quality control 
steps above. Significant epistatic SNP pairs were further assessed by manually inspecting the 
genotyping cluster plots of both SNPs in the UK1 cohort. Intensity data for the other studies was 
not available. Cluster plot inspection removed 115 SNPs with poor genotyping assays. 
 
Epistasis detection  
The Gain in Sensitivity and Specificity (GSS) test was employed to detect epistasis. The test has 
been presented in detail in [38] and is summarized in the Supplementary Text. It is available at 
https://github.com/bwgoudey/gwis-stats. 
 
Analogously to odds ratios used for analyses of single SNPs, we define odds ratios for epistatic 
pairs based on the GSS statistic 

{1, } {0, }

{0, } {1, }

( )( )
,

( )( )
HR LR

GSS
HR LR

OR
π π

π π
=   

where π(i,j) denotes the proportion of samples with phenotype 𝑖, 1 for cases and 0 for controls, and 
carrying genotype combinations which are marked as 𝑗 with 𝐻𝑅  (high risk) indicating genotypes 
which are associated by GSS with cases and 𝐿𝑅 (low risk) indicating genotypes which are 
associated with controls (analogous  to MDR-style approaches in [12,53]]).  By relying on the 
model-free GSS approach, this odds ratio can be seen as a measure of association for the 
combination of genotypes from a given SNP pair which has the strongest improvement over the 
pair’s SNPs. 
 
Representation of the epistatic models  
We approximate the epistatic models for VEPs using two representations: balanced penetrance 
models and full penetrance models. Following Li and Reich [25] we employ the penetrance, that is, 
the probability of disease given the genotype, estimated from the data for each of the nine genotype 
combinations as (number of cases with combination) / (number of individuals with combination). 
Representing the epistatic model in terms of penetrance allows us to clearly see which genotype 
combinations contribute more to disease risk (or conversely, may be protective). We employ a 
standardization to ensure that the penetrance is comparable across datasets, termed balanced sample 
penetrance, and defined as  

Pbalanced =
p1v

p1v + p0v
,  

 
where 𝑝!" refers to the proportional frequency of genotype v in class i, where controls are 0 and 
cases are 1. The definition is easily extended to the case of pair of SNPs using the 3 × 3 = 9 possible 
genotype combinations from each SNP-pair. 
 
For comparison of models, we employ a coarse-grain approach where these values are discretized 
into binary values, so called “fully penetrant” models, similar to Li and Reich [25]. Unlike Li and 
Reich, we do not swap the high and low risk status, as we are interested in distinguishing between 
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protective and deleterious combinations. In addition, we do not swap risk status, therefore there will 
be 100 possible full-penetrance models. For rare genotype combinations we used a simple heuristic, 
denoting all cells with a frequency below 1% in both cases and controls as ‘low risk’. Experiments 
with this threshold revealed that altering this cut-off between 0% and 7% made little difference to 
the overall distribution of our models. 
 
Independence of epistatic signals from known risk haplotypes 
CD strongly depends on specific heterodimers, most notably HLA-DQ2.2, HLA-DQ2.5, and HLA-
DQ8, which are in encoded by haplotypes involving the HLA-DQA1 and HLA-DQB1 genes, with 
close to 100% of individuals with CD being positive for one of these molecules. To statistically 
impute unphased HLA haplotype alleles, we utilized HIBAG [54]. To evaluate whether each VEP 
was also independent of known CD risk haplotypes, we employed the likelihood ratio test, 
comparing two logistic regression models: (i) a logistic regression of the phenotype on the risk 
haplotypes (DQA1*0201, DQA1*0501, DQA1*0505, DQA1*0301, DQB1*0201, DQB1*0202, 
DQB1*0301, and DQB*0302) and (ii) a logistic regression including both the haplotypes and the 
VEP. The haplotypes were encoded as 8 allele dosages [43] and the VEP was encoded as 8 binary 
indicator variables. We considered an FDR threshold < 0.05, equivalent to p < 0.044, as statistically 
significant, indicating that adding the VEP to the model increased goodness-of-fit over the 
haplotypes alone (4,744 of the 5,454 tests were FDR-significant). 
 
In addition, we used a logistic regression-based test for bilinear interaction, conditioning on known 
HLA haplotypes. We compared two logistic regression models: (i) the marginal SNPs and their 
interaction and (ii) the marginal SNPs alone. As interactions can be induced if two SNPs are in 
partial linkage with strong univariately-associated SNPs [55], both models were conditioned on the 
8 known risk haplotypes and the top 3 associated SNPs found after conditioning on known risk 
haplotypes (rs3129763, rs2187668 and, rs3099844). Again, the haplotypes were encoded using a 
dosage encoding and VEPs were encoded as 8 binary indicator variables, while the associated 
individual SNPs were encoded using 2 binary indicator variables.  This regression-based test for 
interaction is different to the model-free GSS statistic as it will only be able to capture a subset of 
possible interactions due to scale dependencies [56].  We used meta-analysis (Fisher’s method) to 

determine significance across the five CD cohorts. This is calculated as 2

1
2 ln(p )
k

i
i

X
=

= − ∑ , where k 

is the number of independent studies (k=5) and pi is the significance of the LRT each of the cohorts.  
X!  is chi-squared distributed with 2k degrees of freedom and hence we can easily derive its 
significance. Using this meta-analysis approach, 1041 VEPs were significant (after Bonferroni 
correction  P= 9.12 × 10-6 = 0.05/5454) across the CD cohorts.  
 
Estimating the number of independent epistatic signals 
To determine the number of independent signals coming from the VEPs, we used an LD pruning 
based approach to filter out all SNP pairs that are in disequilibrium with each other. To ensure that 
the epistatic signals were not caused by haplotype effects, only SNP pairs that were deemed to be 
independent of HLA haplotypes were examined. Traditional measures of LD (such as r2 or 𝐷’) are 
designed for examining two binary loci whose frequencies can be reduced to a 2 × 2 table, whereas 
examining pairs of SNP pairs requires us to examine two multi-allelic loci, whose frequencies are 
naturally summarized by a 4 × 4 table. A widely used method dealing with this issue is the Hill's Q 
statistic, a multi-allelic extension of r2 [39].  It is well known that the r2 can be derived from the chi-
squared test of association, since  
 

r2 = 1
2n

χ 2  
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where n is the total number of samples and χ! is the chi-squared statistic over the haplotypes 
formed by the two SNPs. Motivated by this relationship, the Q statistic can be expressed as 
  

Q =
1
2n

(Oij −Eij )
2

Eijj=1

l

∑
i=1

k

∑ =
1
2n

χ 2  

 
where 𝑂!" and 𝐸!" are the observed and expected haplotype counts when there are k and l alleles 
respectively at the two loci. In the case of examining LD between pairs of SNP pairs k=l=4. Phase 
information was inferred using SHAPEIT [57], and LD was then computed directly on control 
samples only. While it is somewhat arbitrary what threshold constitutes independence, given the 
direct analogy between r2 and Q we utilized a more conservative threshold of Q ≤ 0.3 than that 
commonly used for LD-pruning and tagging procedures (r2 ≤ 0.5), for example in PLINK.  Such 
conservative thresholds may filter slightly less independent but still informative epistatic signals, 
thus for the predictive models discussed below, all VEPs were initially allowed to enter the model. 
 
The predictive models 
We have employed a sparse support vector machine (SVM) implemented in SparSNP [58]. This is a 
multivariable linear model where the degree of sparsity (number of variables being assigned a non-
zero weight) is tuned via penalization. The model is induced by minimizing the L1-penalized 
squared hinge loss  
 

(β*,β0
*) = argmin

β ,β0

1
2N

max{0,1− yi (xi
Tβ +β0 )}

2 +λ β j
j=1

p

∑
i=1

N

∑  

 
where  β and β0 are the model weights and the intercept, respectively, N is the number of samples, p 
is the number of variables (SNPs and/or encoded pairs), xi is the ith vector of p variables (genotypes 
and/or encoded pairs), yi is the ith case/control status {+1, −1}, and λ ≥ 0 is the L1 penalty.  To find 
the optimal penalty, we used a grid of 100 penalty values within 10 replications of 10-fold cross-
validation, and found the model/s that maximized the average area under the receiver-operating 
characteristic curve (AUC). For models based on single SNPs, we used minor allele dosage {0, 1, 
2} encoding of the genotypes. For models based on SNP pairs, the standard dosage model is not 
applicable; hence, we transformed the variable representing each pair (encoded by integers 1 to 9) 
to 9 indicator variables, using a consistent encoding scheme across all datasets. The indicator 
variables were then analyzed in the same way as single SNPs. 
 
Evaluation of predictive ability and explained disease variance 
To maximize the number of SNPs available for analysis, we imputed SNPs in the UK2, FIN, NL, 
and IT datasets to match those that were in the UK1 dataset but not in former, using IMPUTE 
v2.3.0 [59]. Post QC this left 290,277 SNPs common to all five datasets. Together with 9×5,454 
pairs=49,086 indicator variables, this led to a total of 338,508 markers in the combined 
singles+pairs dataset. Models trained in cross-validation on the UK1 dataset were then applied 
without any further tuning to the four other datasets, and the external-validation AUC for these 
models was then estimated within the validation datasets. To derive the proportion of phenotypic 
variance explained by the model (on the liability scale), we used the method of Wray et al. [60], 
assuming a population prevalence of 1%. 
 
 
Acknowledgements 
MI was supported by a Career Development Fellowship co-funded by the Australian NHMRC and 
Heart Foundation (#1061435). MI and GA were also supported by University of Melbourne 
funding. BG, EK, QW, DR, FS, IH and AK were supported by National ICT Australia (NICTA).  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2015. ; https://doi.org/10.1101/002485doi: bioRxiv preprint 

https://doi.org/10.1101/002485
http://creativecommons.org/licenses/by/4.0/


11 
 

 
We thank David van Heel and Cisca Wijmenga for providing the celiac disease data. We thank 
Karen A. Hunt for cluster plot inspection. We thank Rami Mukhtar for technical advice and 
Andrew Kowalczyk and Leon Gor for assistance with development of software. We also thank 
Justin Bedo for helping develop an efficient GSS implementation and Herman Ferra for profiling 
and processing of statistics. We also thank Armita Zarnegar for assistance with data processing and 
John Markham, Justin Bedo and Geoff Macintyre for insightful discussions and comments. 
 
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2015. ; https://doi.org/10.1101/002485doi: bioRxiv preprint 

https://doi.org/10.1101/002485
http://creativecommons.org/licenses/by/4.0/


12 
 

 

References 
 
1. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009) Finding the missing 

heritability of complex diseases. Nature 461: 747-753. 
2. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, et al. (2010) Missing heritability and strategies 

for finding the underlying causes of complex disease. Nat Rev Genet 11: 446-450. 
3. Hunt KA, Mistry V, Bockett NA, Ahmad T, Ban M, et al. (2013) Negligible impact of rare 

autoimmune-locus coding-region variants on missing heritability. Nature 498: 232-235. 
4. Huyghe JR, Jackson AU, Fogarty MP, Buchkovich ML, Stancakova A, et al. (2013) Exome array 

analysis identifies new loci and low-frequency variants influencing insulin processing and 
secretion. Nat Genet 45: 197-201. 

5. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, et al. (2012) A mutation in APP 
protects against Alzheimer's disease and age-related cognitive decline. Nature 488: 96-99. 

6. Styrkarsdottir U, Thorleifsson G, Sulem P, Gudbjartsson DF, Sigurdsson A, et al. (2013) 
Nonsense mutation in the LGR4 gene is associated with several human diseases and other 
traits. Nature 497: 517-520. 

7. Cordell HJ (2002) Epistasis: what it means, what it doesn't mean, and statistical methods to detect 
it in humans. Hum Mol Genet 11: 2463-2468. 

8. Wan X, Yang C, Yang Q, Xue H, Fan X, et al. (2010) BOOST: A fast approach to detecting 
gene-gene interactions in genome-wide case-control studies. Am J Hum Genet 87: 325-340. 

9. Hu X, Liu Q, Zhang Z, Li Z, Wang S, et al. (2010) SHEsisEpi, a GPU-enhanced genome-wide 
SNP-SNP interaction scanning algorithm, efficiently reveals the risk genetic epistasis in 
bipolar disorder. Cell Res 20: 854-857. 

10. Hemani G, Theocharidis A, Wei W, Haley C (2011) EpiGPU: exhaustive pairwise epistasis 
scans parallelized on consumer level graphics cards. Bioinformatics 27: 1462-1465. 

11. Prabhu S, Pe'er I (2012) Ultrafast genome-wide scan for SNP-SNP interactions in common 
complex disease. Genome Res 22: 2230-2240. 

12. Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, et al. (2006) A flexible computational 
framework for detecting, characterizing, and interpreting statistical patterns of epistasis in 
genetic studies of human disease susceptibility. J Theor Biol 241: 252-261. 

13. Zhang Y, Liu JS (2007) Bayesian inference of epistatic interactions in case-control studies. Nat 
Genet 39: 1167-1173. 

14. Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev 
Genet 5: 618-625. 

15. Corbett-Detig RB, Zhou J, Clark AG, Hartl DL, Ayroles JF (2013) Genetic incompatibilities are 
widespread within species. Nature 504: 135-137. 

16. Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA (2012) Epistasis as the 
primary factor in molecular evolution. Nature 490: 535-538. 

17. Genetic Analysis of Psoriasis C, the Wellcome Trust Case Control C, Strange A, Capon F, 
Spencer CC, et al. (2010) A genome-wide association study identifies new psoriasis 
susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42: 985-990. 

18. Lincoln MR, Ramagopalan SV, Chao MJ, Herrera BM, Deluca GC, et al. (2009) Epistasis 
among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis 
susceptibility. Proc Natl Acad Sci U S A 106: 7542-7547. 

19. Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, et al. (2013) Genome-wide 
association analysis identifies new susceptibility loci for Behcet's disease and epistasis 
between HLA-B [ast] 51 and ERAP1. Nature genetics 45: 202-207. 

20. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, et al. (2009) Genome-wide 
association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. 
Nature genetics 41: 703-707. 

21. Liu Y, Xu H, Chen S, Chen X, Zhang Z, et al. (2011) Genome-Wide Interaction-Based 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2015. ; https://doi.org/10.1101/002485doi: bioRxiv preprint 

https://doi.org/10.1101/002485
http://creativecommons.org/licenses/by/4.0/


13 
 

Association Analysis Identified Multiple New Susceptibility Loci for Common Diseases. 
PLoS Genet 7: e1001338. 

22. Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, et al. (2011) Interaction between ERAP1 
and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for 
HLA-B27 in disease susceptibility. Nat Genet 43: 761-767. 

23. Wei WH, Guo Y, Kindt AS, Merriman TR, Semple CA, et al. (2014) Abundant local 
interactions in the 4p16.1 region suggest functional mechanisms underlying SLC2A9 
associations with human serum uric acid. Hum Mol Genet 23: 5061-5068. 

24. Hemani G, Shakhbazov K, Westra HJ, Esko T, Henders AK, et al. (2014) Detection and 
replication of epistasis influencing transcription in humans. Nature 508: 249-253. 

25. Li W, Reich J (2000) A complete enumeration and classification of two-locus disease models. 
Hum Hered 50: 334-349. 

26. Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci 
that influence complex diseases. Nat Genet 37: 413-417. 

27. Hemani G, Knott S, Haley C (2013) An evolutionary perspective on epistasis and the missing 
heritability. PLoS Genet 9: e1003295. 

28. Wei W, Gyenesei A, Semple CA, Haley CS (2013) Properties of local interactions and their 
potential value in complementing genome-wide association studies. PLoS One 8: e71203. 

29. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic 
variance for complex traits. PLoS Genet 4: e1000008. 

30. van Heel DA, Hunt K, Greco L, Wijmenga C (2005) Genetics in coeliac disease. Best Pract Res 
Clin Gastroenterol 19: 323-339. 

31. Trynka G, Hunt Ka, Bockett Na, Romanos J, Mistry V, et al. (2011) Dense genotyping 
identifies and localizes multiple common and rare variant association signals in celiac 
disease. Nature Genetics 43: 1193-1201. 

32. van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, et al. (2007) A genome-wide 
association study for celiac disease identifies risk variants in the region harboring IL2 and 
IL21. Nature Genetics 39: 827-829. 

33. Dubois PCA, Trynka G, Franke L, Hunt Ka, Romanos J, et al. (2010) Multiple common variants 
for celiac disease influencing immune gene expression. Nature Genetics 42: 295-302. 

34. Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L, et al. (2008) Newly identified genetic 
risk variants for celiac disease related to the immune response. Nat Genet 40: 395-402. 

35. Romanos J, Rosen A, Kumar V, Trynka G, Franke L, et al. (2014) Improving coeliac disease 
risk prediction by testing non-HLA variants additional to HLA variants. Gut 63: 415-422. 

36. Abraham G, Tye-Din JA, Bhalala OG, Kowalczyk A, Zobel J, et al. (2014) Accurate and robust 
genomic prediction of celiac disease using statistical learning. PLoS Genet 10: e1004137. 

37. Mitchison NA, Rose AM (2011) Epistasis: The key to understanding immunological disease? 
European journal of immunology 41: 2152-2154. 

38. Goudey B, Rawlinson D, Wang Q, Shi F, Ferra H, et al. (2013) GWIS--model-free, fast and 
exhaustive search for epistatic interactions in case-control GWAS. BMC Genomics 14 
Suppl 3: S10. 

39. Hill WG (1975) Linkage disequilibrium among multiple neutral alleles produced by mutation in 
finite population. Theor Popul Biol 8: 117-126. 

40. Neuman RJ, Rice JP (1992) Two-locus models of disease. Genet Epidemiol 9: 347-365. 
41. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, et al. (2008) Genes mirror geography 

within Europe. Nature 456: 98-101. 
42. Phillips PC (2008) Epistasis--the essential role of gene interactions in the structure and 

evolution of genetic systems. Nat Rev Genet 9: 855-867. 
43. Abraham G, Kowalczyk A, Zobel J, Inouye M (2013) Performance and robustness of penalized 

and unpenalized methods for genetic prediction of complex human disease. Genetic 
Epidemiology 37: 184-195. 

44. Lee SH, Nyholt DR, Macgregor S, Henders AK, Zondervan KT, et al. (2010) A simple and fast 
two-locus quality control test to detect false positives due to batch effects in genome-wide 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2015. ; https://doi.org/10.1101/002485doi: bioRxiv preprint 

https://doi.org/10.1101/002485
http://creativecommons.org/licenses/by/4.0/


14 
 

association studies. Genet Epidemiol 34: 854-862. 
45. Nieters A, Conde L, Slager SL, Brooks-Wilson A, Morton L, et al. (2012) PRRC2A and 

BCL2L11 gene variants influence risk of non-Hodgkin lymphoma: results from the 
InterLymph consortium. Blood 120: 4645-4648. 

46. Sher KS, Mayberry JF (1994) Female Fertility, Obstetric and Gynaecological History in Coeliac 
Disease. Digestion 55: 243-246. 

47. Sher KS, Mayberry JF (1996) Female fertility, obstetric and gynaecological history in coeliac 
disease: a case control study. Acta Pædiatrica 85: 76-77. 

48. Stolk L, Perry JRB, Chasman DI, He C, Mangino M, et al. (2012) Meta-analyses identify 13 
loci associated with age at menopause and highlight DNA repair and immune pathways. Nat 
Genet 44: 260-268. 

49. Mackay TF (2014) Epistasis and quantitative traits: using model organisms to study gene-gene 
interactions. Nat Rev Genet 15: 22-33. 

50. Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human 
genetics. Nat Rev Drug Discov 12: 581-594. 

51. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: Genetic 
interactions create phantom heritability. Proc Natl Acad Sci U S A 109: 1193-1198. 

52. Hunt Ka, Mistry V, Bockett Na, Ahmad T, Ban M, et al. (2013) Negligible impact of rare 
autoimmune-locus coding-region variants on missing heritability. Nature 498: 232-235. 

53. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, et al. (2001) Multifactor-
dimensionality reduction reveals high-order interactions among estrogen-metabolism genes 
in sporadic breast cancer. Am J Hum Genet 69: 138-147. 

54. Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, et al. (2014) HIBAG--HLA genotype 
imputation with attribute bagging. Pharmacogenomics J 14: 192-200. 

55. Wood AR, Tuke MA, Nalls MA, Hernandez DG, Bandinelli S, et al. (2014) Another 
explanation for apparent epistasis. Nature 514: E3-5. 

56. Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev 
Genet 10: 392-404. 

57. Delaneau O, Marchini J, Zagury JF (2012) A linear complexity phasing method for thousands 
of genomes. Nat Methods 9: 179-181. 

58. Abraham G, Kowalczyk A, Zobel J, Inouye M (2012) SparSNP: Fast and memory-efficient 
analysis of all SNPs for phenotype prediction. BMC Bioinformatics 13: 88. 

59. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method 
for the next generation of genome-wide association studies. PLoS Genet 5: e1000529. 

60. Wray NR, Yang J, Goddard ME, Visscher PM (2010) The genetic interpretation of area under 
the ROC curve in genomic profiling. PLoS Genetics 6: e1000864. 

 
 
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2015. ; https://doi.org/10.1101/002485doi: bioRxiv preprint 

https://doi.org/10.1101/002485
http://creativecommons.org/licenses/by/4.0/


15 
 

Figures 
 
Figure 1: Epistatic interactions and LD patterns within the extended MHC region   
SNP pairs within 30KB of each other are shown as a single point on each heatmap. The colour of 
each point in the upper left half of the graph represents the most significant -log10(P-value) returned 
by the GSS statistic for SNPs pairs within each point. The adjusted -log10(P-value) is capped at 30 
to increase contrast of lower values. The bottom right half of the graph shows the maximum r2 
obtained for any SNP pair within a given 30Kb block, demonstrating the strong LD patterns known 
to exist within this region. 
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Figure 2: Variation in epistatic models within and between populations 
Distribution of epistatic models for VEPs in different studies as increasingly less significant SNP 
pairs are examined. Different colours represent a different subset of epistatic models. The “other” 
group represents the remaining set of models. Models have been simplified using the rules provided 
in [25]. 
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Tables 
 
Table 1: Disease variance explained by models with additive and epistatic genetic effects 
 

   Single SNPs Combined Validated epistatic 
pairs 

 
 
 

 Variance 
explained 

AUC Variance 
explained 

AUC Variance 
explained 

AUC 

Cross 
validation 

UK1 0.326 0.882 
 

0.342	
   0.888	
   0.337	
   0.886	
  

External 
validation 

UK2 0.269 0.855 0.282	
   0.861	
   0.250	
   0.845	
  

Finn 0.324 0.880 0.334 0.885	
   0.293	
   0.867	
  

IT 0.265	
   0.853 0.290 0.865	
   0.237	
   0.837	
  

NL 0.274 0.858 0.277 0.859 0.255 0.847	
  

 
Predictive power and disease variance explained by single SNPs and VEPs in cross-validation and in external 
validation, using SparSNP models. Models were optimized on the UK1 dataset (n=2183 samples) in cross-validation 
(290K SNPs), and tested without modification on the other datasets. The proportion of disease variance explained (on 
the liability scale) assumes a population prevalence of 1%. Two-sided DeLong significance tests for AUC of single 
SNPs+pairs difference from AUC of single SNPs: UK2 P=0.001651, FIN P=0.2743, IT P=0.05271, NL P=0.695. 
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