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Abstract  
Epistasis has long been thought to contribute to the genetic aetiology of complex diseases, yet few 
robust epistatic interactions in humans have been detected. We have conducted exhaustive genome-
wide scans for pairwise epistasis in five independent celiac disease (CeD) case-control studies, 
using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 
extensive epistasis within the MHC region with 7,270 statistically significant pairs achieving 
stringent replication criteria across multiple studies. These robust epistatic pairs partially tagged 
CeD risk HLA haplotypes, and replicable evidence for epistatic SNPs outside the MHC was not 
observed. Both within and between European populations, we observed striking consistency of 
epistatic models and epistatic model distribution, thus providing empirical estimates of their 
frequencies in a complex disease. Within the UK population, models of CeD comprised of both 
epistatic and additive single-SNP effects increased explained CeD variance by approximately 1% 
over those of single SNPs. Further analysis showed that additive SNP effects tag epistatic effects 
(and vice versa), sometimes involving SNPs separated by a megabase or more. These findings show 
that the genetic architecture of CeD consists of overlapping additive and epistatic components, 
indicating that the genetic architecture of CeD, and potentially other common autoimmune diseases, 
is more complex than previously thought.  
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Author Summary 
There are few bona fide examples of interactions between genetic variants (epistasis) which affect 
human disease risk. Here, we assess multiple genome-wide genotyped case-control datasets to 
investigate the role that epistasis plays in celiac disease, a common immune-mediated illness. We 
find thousands of replicable, statistically significant pairs of SNPs exhibiting epistasis and, 
interestingly, all of these fall within the well-known Major Histocompatibility Complex (MHC) 
region on chromosome 6. We investigate the underlying distribution of epistatic models and further 
assess the amount of celiac disease variance that can be explained by epistatic pairs, single SNPs 
and a combination thereof. Our results indicate that there is a substantial amount of shared disease 
variance between single SNPs and epistatic pairs, but also that a combination of the effects gives a 
better model of disease. These findings support powerful and routine epistasis scans for the next 
generation of genome-wide association studies and indicate that the genetic architecture of celiac 
disease, and potentially other immune-mediated diseases, is more complex than currently 
appreciated. 
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Introduction 
The limited success of genome-wide association studies (GWAS) to identify common variants that 
substantially explain the heritability of many complex human diseases and traits has led researchers 
to explore other potential sources of heritability, including the low/rare allele frequency spectrum as 
well as epistatic interactions between genetic variants [1,2]. Many studies are now leveraging high-
throughput sequencing with initial findings beginning to elucidate the effects of low frequency 
alleles [3-6]. However, the characterization of the epistastic component of complex human disease 
has been limited, despite the availability of a multitude of statistical approaches for epistasis 
detection [7-13]. Large-scale systematic research into epistatic interactions has been hampered by 
several computational and statistical challenges mainly stemming from the huge number of 
variables that need to be considered in the analysis (>100 billion pairs for even a small SNP array), 
the subsequent stringent statistical corrections necessary to avoid being swamped by large number 
of false positive results, and the requirement of large sample size in order to achieve adequate 
statistical power. 
 
The strongest evidence for wide-ranging epistasis has so far come from model organisms [14,15], 
and recent evidence has demonstrated that epistasis is pervasive across species and is a major factor 
in constraining amino acid substitutions [16]. Motivated by the hypothesis that epistasis is 
commonplace in humans as well, recent studies have begun providing evidence for the existence of 
epistatic interactions in several human diseases, including psoriasis [17], multiple sclerosis [18], 
type 1 diabetes [19], and ankylosing spondylitis [20]. While these studies have been crucial in 
demonstrating that epistasis does indeed occur in human disease, several questions remain including 
how wide-ranging epistatic effects are, how well epistatic pairs replicate in other datasets, how the 
discovered epistatic effects can be characterized in terms of previously hypothesized models of 
interaction [21,22], and how much (if at all) epistasis contributes to disease heritability [23].  
 
Celiac disease (CeD) is a complex human disease characterized by an autoimmune response to 
dietary gluten. CeD has a strong heritable component largely concentrated in the MHC region, due 
to its dependence on the HLA-DQ2/DQ8 heterodimers encoded by the HLA class II genes HLA-
DQA1 and HLA-DQB1 [24]. The genetic basis of CeD in terms of individual SNP associations has 
been well-characterized in several GWAS [25-28], including the additional albeit smaller 
contribution of non-HLA variants to disease risk [29]. The success of GWAS for common variants 
in CeD has recently been emphasized by the development of a genomic risk score that could prove 
relevant in the diagnostic pathway of CeD [30]. Autoimmune diseases have so far yielded the most 
convincing evidence for epistatic associations, potentially due to power considerations since these 
diseases usually tend to depend on common variants of moderate to large effect within the MHC. 
Given these findings in conjunction with recent observations that rare coding variants may play 
only a negligible role in common autoimmune diseases [3], we sought to determine whether robust 
epistasis is detectable in CeD and whether it accounts for some of the unexplained disease 
heritability. 
 
Here, we present the first large-scale exhaustive study of pairwise epistasis in celiac disease. 
Leveraging GWIS, a highly efficient approach for epistasis detection [31], we conduct genome-
wide scans for all epistatic pairs across five separate CeD case/control datasets of European descent, 
finding thousands of statistically significant pairs despite stringent multiple testing corrections. 
Next, we show a high degree of concordance of these interactions across the datasets, demonstrating 
that they are highly robust and replicable. We characterize the common epistatic models found and 
compare them to previously proposed theoretical models. Finally, we examine the issue of whether 
epistasic pairs add more predictive power and explain more disease variation than do single SNPs. 
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Results 
Datasets are summarized in Table 1, these include five independent, previously published GWAS 
datasets of CeD with individuals genotyped from four different European ethnicities: United 
Kingdom (UK1 and UK2), Finland (FIN), The Netherlands (NL) and Italy (IT) [26,27]. To limit the 
impact of genotyping error and other sources of non-biological variation, we implemented three 
stages of validation and quality control (QC): (i) standard QC within each dataset, (ii) independent 
exhaustive epistatic scans within each of the five datasets, and (iii) derivation of a validated list of 
epistatic interactions based on UK1. The study workflow is shown in Figure 1. 
 
Exhaustive epistatic scans and replication 
For each dataset, we implemented stringent sample and SNP level quality control (Methods), and 
then conducted an exhaustive analysis of all possible SNP pairs using the GWIS methodology [31]. 
Each pair was tested using the GSS statistic, which determines whether a pair of SNPs in 
combination provides significantly more discrimination of cases and controls than either SNP 
individually (Methods). Forty-five billion pairs were evaluated in the UK1 study (Illumina 
Hap300/Hap550) and 133 billion SNP pairs were evaluated in each of the four remaining cohorts 
(Illumina 670Quad and/or 1.2M-DuoCustom). Given this multiple testing burden, we adopted 
stringent Bonferroni-corrected significance levels of P = 1.1 x 10-12 for the UK1 and P = 3.75 x 10-13 
for the remaining datasets. 
 
To further ensure that the downstream results were robust to technological artefact and population 
stratification, we took two additional steps: (a) utilizing the raw genotype intensity data available 
for UK1 for independent SNP cluster plot inspection (performed by Karen A. Hunt, QMUL), and 
(b) replicating the epistatic interactions of the SNPs passing cluster plot inspection, where 
replication is defined as a SNP pair exhibiting Bonferroni-adjusted significance both in UK1 and in 
at least one additional study. Using these criteria, we found that 7,270 SNP pairs (654 unique SNPs) 
from the UK1 dataset passed both (a) and (b) above. We denote these pairs as 'validated epistatic 
pairs' (VEPs) below. Table 2 presents the top 10 validated pairs, after pruning redundant pairs 
(pairs of pairs with at least two SNPs in perfect LD); the full list of VEPs is given in 
Supplementary Table 1. Notably, all VEPs fulfilling these robustness criteria were within the 
MHC.  
 
More than 128,000 unique pairs achieved Bonferroni-adjusted significance across all five studies, 
with the vast majority lying within the extended MHC region of chr6 (Figure 2 and 
Supplementary Table 2). Of the 131 epistatic pairs outside the MHC that were significant in at 
least one study, none passed Bonferroni-adjusted significance in at least one other study and were 
thus deemed not replicated. As expected, the number and strength of epistatic interactions increased 
as sample size increased. Interestingly, some of the strongest epistatic interactions tended to be in 
close proximity and in moderate LD, though only 1% of pairs had r2 >0.5 (Supplementary Figure 
1).  The heatmaps in Figure 2 also showed that epistasis was widely distributed with distances of 
>1Mb common between epistatic pairs. Across all studies, epistatic interactions were consistently 
located in and around HLA class II genes, however further examination of the VEPs found that 
many of the top pairs were proximal to HLA class III genes, >1Mb upstream of HLA-DQA1 and 
HLA-DQB1, the strongest known risk loci (Supplementary Figure 2).  
 
The extent of replication of the epistatic pairs was apparent from the high degree of similarity in the 
rankings when pairs were sorted by GSS significance (Figure 3a), with ~70-80% overlap between 
the UK1 and UK2 datasets extending all the way to the top 10,000 pairs, and 40-60% overlap with 
the pairs found in the NL and FIN datasets. Such high degrees of overlap have essentially zero 
probability of occurring by chance (P < 10-600 for ~80% overlap between the UK1 and UK2 top 50 
pairs, hypergeometric test). The pairs found in the IT dataset showed lower levels of consistency 
with those detected in the UK1 dataset but overall were still much more than expected by chance 
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with ~30% overlap at ~30,000 pairs (P < 10-1000). 
 
Empirical epistatic model distributions 
The epistatic model provides insight into how disease risk is distributed across the nine pairwise 
genotype combinations. Following the conventions of Li and Reich [21], we discretized the models 
for the VEPs to use fully-penetrant values where each genotype combination implies a 
susceptibility or protective effect on disease (Methods), simplifying the comparison of models 
between different SNP pairs.  
 
To establish model consistency, we first replicated the most frequent full penetrance VEP models in 
the other datasets (Figure 4). When considering the distribution of epistatic models we found 
striking consistency of the UK1 models with those from UK2 and the other Northern European 
populations (Finnish and Dutch) (Figure 4). Only four models from the possible 50 classes [21] 
occurred with >5% frequency in the Northern European studies, and there was substantial variation 
in epistatic model as a function of the strength of the interaction. Amongst all VEPs in UK1, the 
four models corresponded to the threshold model (T; 34.7% frequency), jointly dominant-dominant 
model (DD; 31.1%), jointly recessive-dominant model (RD; 17.9%), and modifying effect model 
(Mod; 14.73%) [21,32]. The DD and RD models are considered multiplicative, the Mod model is 
conditionally dominant (i.e. one variant behaves like a dominant model if the other variant takes a 
certain genotype), and the T model is recessive. The T model was the most frequent model, 
especially amongst the strongest pairs.  
 
To our knowledge, the frequencies of these epistatic models have not previously been determined in 
a complex human disease. Interestingly, despite the consistency of MHC epistasis, the VEPs 
showed noticeable differences in epistatic model distribution in the IT population. This was in 
contrast to the other Northern European populations but consistent with the different ranking in 
GSS significance observed above. In the IT population, the distribution of models was altered such 
that there was a more even distribution. The four most frequent models were still the T model 
(13.6%), DD (13.45%), modifying effects (13.45%), and RD model (11.55%). But, we also 
observed that many of the strongest pairs within the IT cohort followed the M86 model, though 
M86 represented only a small proportion of models overall (0.98%). In IT, the remaining 50% of 
the VEP models overall consisted of many low-frequency models.  
 
The cause(s) of these differences is unclear. While cryptic technical factors cannot be ruled out at 
this stage, it may be the case that there is population specific epistatic variation that follows the 
known North/South European genetic gradient [33]. 
 
Contribution of epistatic pairs to celiac disease heritability 
We next sought to estimate the CeD heritability explained by the VEPs and single SNPs. The GSS 
test selects each epistatic pair based on it being more predictive than either of its constituent 
individual SNPs. However, the procedure does not a priori guarantee that a given pair is a better 
predictor of disease than all other individual SNPs not included in the pair; this requires a further 
step to determine which pairs and/or single SNPs provide the most predictive power overall. This 
task is further complicated by the fact that, like linkage disequilibrium for individual SNPs, many 
pairs are highly correlated and thus may not add substantial predictive power after accounting for 
the most predictive pair. These issues can naturally be addressed within the framework of a 
multivariable model, accounting for all SNPs and/or pairs at once. Hence, to better assess the 
contribution of epistatic pairs to CeD prediction and thus heritability explained, we employed L1 
penalized linear support vector machines (SVM, see Methods), an approach which models all 
variables concurrently (SNPs and/or pairs) and which has been previously shown to be particularly 
suited for maximizing predictive ability from SNPs in CeD and other autoimmune diseases [30,34]. 
While we find that VEPs, as expected, are associated with the HLA-DQA1 and HLA-DQB1 risk 
haplotypes (Supplementary Figure 3), we have previously found that additive models of single 
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SNPs explain substantially more CeD variance than haplotype-based models [30]. We therefore 
employ the former to estimate the gain in heritability here. 
 
We assessed CeD variance explained by constructing three separate models: (a) genome-wide 
single SNPs only, using the 290,277 SNPs present across all datasets, (b) the VEPs only, i.e. the 
7270 VEPs encoded as 65,430 indicator variables, and (c) a 'combined' model of both single SNPs 
and VEPs together. The models were evaluated in cross-validation on the UK1 dataset, and the best 
models in terms of Area Under the Curve (AUC) were then taken forward for external validation in 
the other four datasets without further modification. 
 
In UK1 cross-validation, the VEPs and combined models led to an increase in maximum AUC of 
0.5% over single SNPs alone (0.883 to 0.888), corresponding to an additional ~1.5% in explained 
CeD variance, from 32.6% to 34.1% (Table 3). External validation of these models showed that the 
VEPs and combined models showed similar and significant gains in AUC over the single SNPs for 
the UK2 and IT dataset at +1% for IT (P=0.0163) and +0.9% for UK2 (P=0.0066), but the 
differences in FIN and NL were smaller and not significant. In external validation, the VEPs model 
was highly predictive yet slightly less predictive than that based on single SNPs, with the combined 
model yielding the highest AUC. The increased sample size of a combined UK1 and UK2 dataset in 
cross-validation did not yield better AUCs nor corresponding CeD variance (Supplementary Table 
3). 
 
 
Discussion 
This study has shown the robust presence of epistasis in celiac disease. Epistatic interactions were 
observed within the extended MHC, most strongly between neighbouring SNPs in low to moderate 
LD, indicating that these interactions may play a role in segregating specific haplotype classes. We 
have shown that these epistatic SNP pairs strongly replicate across cohorts in terms of significance, 
ranking, and epistatic model. To our knowledge, this level of epistatic signal strength, number of 
epistatic pairs, and degree of replication has not been previously shown in a complex human 
disease. 
 
Despite observations that epistatic interactions between SNPs within a locus are enriched for batch 
effects and poorly clustered genotype clouds [37], the stringent quality control and extensive 
replication of the analyses in this study indicate that these SNPs are largely bona fide epistatic pairs. 
When considering those pairs not achieving the Bonferroni significance criteria for replication, a 
large number of epistatic pairs were still highly statistically associated with CeD consistently across 
datasets, indicating that our estimates of epistasis may be conservative. For validated epistatic pairs 
(VEPs), we found that much of strongest epistatic signal is over 1MB upstream of the well-known 
HLA-DQA1 and HLA-DQB1 risk loci, suggesting a potentially important contribution of HLA class 
III genes. We also performed a large-scale empirical characterization of the epistatic models 
underlying the interactions in CeD, with the majority of the VEPs approximately following the 
threshold model, and a smaller number following dominant-dominant, dominant-recessive, and 
recessive-recessive models. Further, these patterns were found to be strongly consistent across most 
of the datasets. 
 
We have previously found that penalized predictive models based on individuals SNPs similar to 
those used here are able to extract more predictive ability from the MHC region than models based 
on coarse-grain HLA types [30]. Here, we have found that combined models of both epistatic SNP 
pairs and single SNPs achieve slightly improved accuracy over models created with single SNPs 
alone, and that models of only epistatic SNP pairs explained similar amounts of CeD variance as 
single SNPs. Examining this redundancy more closely, the epistatic SNP pairs are highly correlated 
with single SNPs that are usually located near one of the pair (see Supplementary Figure 7). This 
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correlation between single SNPs and combinations of SNPs appears to have been previously hinted 
at in a study by de Bakker et al examining the effectiveness of SNPs to tag HLA genotypes, where 
groups of SNPs were found to be more highly correlated with HLA genes than single SNPs [38]. 
The shared information between these single SNP and epistatic effects implies that determining the 
causal signal will be more difficult than previously thought. Just as the redundancy between single 
SNPs in LD has affected the resolution of causal genetic variants, our findings indicate that a 
similar, though currently unexplored, sharing of information may exist between epistatic variants 
and single variants. Such an observation is supported by previous literature [39] and may help to 
explain some of the controversy around epistatic versus additive genetic effects. 
 
Celiac disease has a strong HLA signal, is highly heritable and is thought to conform to the 
Common-Disease, Common-Variant  (CDCV) model [24]. Yet within this 'model disease' [25], our 
results suggest the presence of a previously unexplored level of complexity. Given their similar 
disease etiologies [40], we predict that these observations may hold true for other 
autoimmune/inflammatory diseases and other diseases that approximate the CDCV model. It is less 
likely that these observations affect our understanding of complex diseases that are unlikely to 
approximate CDCV, such as coronary artery disease, though it has been proposed that epistasis 
plays a role for these types of conditions as well [1].   
 
The limitations of the first generation GWAS approach to explain missing heritability has led to the 
development and application of more complex approaches to resolve this problem, yet success has 
been elusive. Recent results suggest that rare variants add little to known heritability for a number 
of autoimmune diseases including celiac disease [26]. The predictive models generated in this work 
indicate that while epistatic pairs have substantial predictive power, their overall explained 
heritability is not substantially more than that for additive effects. Combined models of epistatic and 
additive effects are likely to constitute the best solution, however it is unlikely that these alone with 
resolve missing heritability.  
 
These findings have implications for how next generation GWAS should be analysed and 
interpreted. While epistatic analyses have increasingly been advocated [27], this study demonstrates 
the usefulness of such an approach alongside that of traditional genome-wide analysis of additive 
effects. Many challenges remain in conducting this type of analysis. While we found strong 
epistasis within the MHC, future advances in statistical methods could uncover additional epistasis 
with weaker effects or involving rare variants, and it is currently unknown how weaker and rare 
variant epistatic effects interact with additive effects in humans. A main challenge of genetic 
association studies, the inference of genetic architecture, may very well be complicated by the 
shared information between epistatic and additive effects and it may be that targeted perturbation 
experiments will be required to identify the true causal signal.  
 
 
 
Methods 
 
Quality control 
A range of quality control measures were applied to all datasets to limit the impact of genotyping 
error. For all datasets, we removed non-autosomal SNPs, SNPs with MAF <1%, missingness >1% 
and those deviating from Hardy Weinberg Equilibrium in controls with 𝑃 < 5 x 10-6. Samples were 
removed if data missingness was >1%. Cryptic relatedness was also stringently assessed by 
examining all pairs of samples using identity-by-descent in PLINK, and removing one of the 
samples if 𝜋 > 0.05. The cryptic relatedness filter removed 17 samples within the UK1 cohort that 
related to other UK1 samples, and 1208 samples from the UK2 cohort which were either related to 
other UK2 samples or UK1 samples. Dataset sizes in Table 1 are reported after the quality control 
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steps above. Significant epistatic SNP pairs were further assessed by manually inspecting the 
genotyping cluster plots of both SNPs in the UK1 cohort. Intensity data for the other studies was 
not available thus epistatic pairs discovered in these datasets were not classified as robust and were 
not used in heritability estimates, however the consistency of the statistics and epistatic model 
across independent datasets indicated that many likely represent bona fide epistasis. Cluster plot 
inspection removed 115 SNPs with poor genotyping assays. 
 
Statistical tests for epistasis 
Here, we briefly describe the intuition behind the Gain in Sensitivity and Specificity (GSS) test we 
employ to detect epistasis, and later we present several approximations we employ in analyzing 
epistasis across datasets. The test has been presented in detail in [31] and, currently, a web server 
implementing the GSS test is at http://bioinformatics.research.nicta.com.au/software/gwis/. 
 
There is a long history of discussion around the exact definition of epistasis, or gene-gene 
interaction [41]. Here, we use a definition that is closely aligned with the multifactor dimensionality 
reduction (MDR) family of gene-gene interaction methods [42]: an epistatic interaction is defined 
as a significant improvement of a SNP-pair in classifying cases from controls over what is possible 
using each SNP individually. There are two main differences between our approach and similar 
approaches for detecting epistasis [8,22]. First, our approach is “model-free”, as it makes no 
assumptions about the way in which genotypes combine to affect the phenotype [7,43], but 
considers all possible pairwise interactions for each pair, making it potentially more powerful to 
detect unknown epistatic forms, as empirical knowledge about epistasis in humans is currently 
lacking. Second, instead of measuring the deviation from additive effects (for example, using a 
likelihood ratio test), our approach focuses on the utility of the test in case/control classification, 
quantified using the receiver-operating characteristic (ROC) curve, and measuring the deviation in 
the curve from that induced by the additive model. 
 
The main principle behind the GSS is quantification of the gain in predictive power afforded by a 
putative epistatic pair over and above the predictive power due to each of its constituent SNPs. The 
difference in predictive power is assessed in terms of the ROC curves induced by the pair and each 
of the SNPs. The ROC curve is formed by considering each possible genotype (or pair of 
genotypes), and measuring the sensitivity (true positive rate, TPR) and specificity (1 – false positive 
rate, FPR) at that point, and ordering them in decreasing order by the ratio TPR/FPR; hence the 
curve is piecewise linear. Since the two ROC curves induced by the individual SNPs may intersect, 
we represent them using a convex hull, which is the best ROC curve that can be produced by any 
linear combination of the two individual SNPs, and represents a conservative estimate of the 
predictive power of the individual SNPs. The GSS then assigns a p-value to each point in the pair’s 
ROC curve, based on the probability of observing a combination of genotypes with a higher or 
equal TPR and a lower or equal FPR, under the null hypothesis that the true TPR and FPR reside 
below the convex hull. We employ a highly efficient minimax-based implementation, maximizing 
the probability for each point on the ROC curve (worst case scenario) against all points of the 
convex hull, and returning the minimum probability over all points [31]; this is done using an exact 
procedure rather than relying on approximations based on the normal distribution. Finally, the best 
p-value is assigned as the overall p-value for the pair, allowing the pairs to be ranked and corrected 
for multiple testing as is standard practice in GWAS. Those SNPs that are significant after multiple 
testing correction are deemed significant epistatic pairs. 
 
Analogously to odds ratios used for analyses of single SNPs, we can estimate odds ratios for 
epistatic pairs based on the GSS statistic 

ORGSS =
(π{0,HR} )(π{1,LR} )
(π{1,HR} )(π{0,LR} )

,   
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where 𝜋 !,!  denotes the proportion of samples with phenotype 𝑖, 0 for cases and 1 for controls, and 
carrying genotype combinations which are marked as 𝑗 with 𝐻𝑅  (high risk) indicating genotypes 
which are associated by GSS with cases and 𝐿𝑅 (low risk) indicating genotypes which are 
associated with controls.  By relying on the model-free GSS approach, this odds ratio can be seen as 
deriving the specific model maximizing the level of improvement over that of the individual SNPs 
in the pair. 
 
Approximate representation of the epistatic models  
While the GSS approach is the basis for detecting epistatic pairs, the models it produces can be hard 
to visually interpret and categorize into broad groups. To simplify interpretation, we approximate 
the models for the statistically significant pairs found via GSS using two representations: balanced 
penetrance models and full penetrance models. 
 
Balanced penetrance models  
Following Li and Reich [21] we employ the penetrance, that is, the probability of disease given the 
genotype, estimated from the data for each of the nine genotype combinations as (number of cases 
with combination)/(number of individuals with combination). Representing the epistatic model in 
terms of penetrance allows us to clearly see which genotype combinations contribute more to 
disease risk (or conversely, may be protective). 
 
One limitation of the penetrance is that it is typically considered in isolation of the disease 
background rate (the prevalence), which may be misleading when comparing penetrance levels 
across datasets with widely varying proportions of cases. For example, a penetrance of 50% for a 
given SNP would be considered very high in a dataset consisting of 1% cases and 99% controls, but 
no better than random guessing in datasets with 50%/50% cases and controls. Hence, we employ a 
standardization to ensure that the penetrance is comparable across datasets, termed balanced sample 
penetrance, and defined as  

Pbalanced =
p1v

p1v + p0v
,  

 
where 𝑝!" refers to the proportional frequency of genotype v in class i, where controls are 0 and 
cases are 1 (0=controls, 1 = cases). The balanced sample penetrance ranges between 0 and 1, where 
0 means that the genotype only occurs in controls, 1 means that the genotype only occurs in cases 
and 0.5 means the genotype occurs evenly between the two classes. Balanced penetrance can be 
related to either standard penetrance or relative risk in the data via monotonic transformations. The 
definition is easily extended to the case of pair of SNPs. The only difference is the use of the 3 x 3 = 
9 possible genotype combinations from each SNP-pair rather than the 3-value set of genotypes from 
an individual SNP. 
 
Simplification to full penetrance models 
The balanced-penetrance epistatic models provide fine-grained insight into the relative effects of 
each genotype combination. In addition, we employ a coarse-grain approach where these values are 
discretized into binary values (0/1), so called “fully penetrant” models, an approach analogous to 
that of Li and Reich [21]. These binary models forgo some detail but make it easier to categorize 
epistatic models into broad classes based on their patterns of interaction, such as the classic XOR 
pattern [8] or the threshold model [22]. Swapping major and minor alleles, and swapping the SNP 
ordering in the contingency table, can reduce the number of fully penetrant models. Unlike Li and 
Reich, we do not swap the high and low risk status, as we are interested in distinguishing between 
protective and deleterious combinations. Furthermore, Li and Reich also excluded models with all 
high or low risk genotypes. Such models can not exist within the set we are analyzing as they would 
show no association with disease. Li and Reich were able to show that there are only 51 possible 
fully penetrant disease models after accounting for symmetries. However, as we do not swap risk 
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status, there will be 100 possible full-penetrance models that can appear within the analysis 
conducted here [22]. 
  
Given that some genotype combinations in certain SNP pairs are rare, there may be insufficient 
evidence to determine whether they have a substantial effect on disease risk. As such, we have used 
a simple heuristic for such entries, denoting all cells with a frequency below 2% in both cases and 
controls as ‘low risk’. Experiments with this threshold revealed that altering this cutoff between 0% 
and 7% made little difference to the overall distribution of our models. 
 
The predictive models 
We employed a sparse support vector machine (SVM) implemented in SparSNP [44]. This is a 
multivariable linear model where the degree of sparsity (number of variables being assigned a non-
zero weight) is tuned via penalization. The model is induced by minimizing the L1-penalized 
squared hinge loss  

(β*,β0
*) = argmin

β ,β0

1
2N

max{0,1− yi (xi
Tβ +β0 )}

2 +λ β j
j=1

p

∑
i=1

N

∑  

 
where  β and β0 are the model weights and the intercept, respectively, N is the number of samples, p 
is the number of variables (SNPs and/or encoded pairs), xi is the ith vector of p variables (genotypes 
and/or encoded pairs), yi is the ith case/control status {+1, −1}, and λ ≥ 0 is the L1 penalty.  To find 
the optimal penalty, we used a grid of 100 penalty values within 10 replications of 10-fold cross-
validation, and found the model/s that maximized the average area under the receiver-operating 
characteristic curve (AUC). For models based on single SNPs, we used minor allele dosage {0, 1, 
2} encoding of the genotypes. For models based on SNP pairs, the standard dosage model is not 
applicable; hence, we transformed the variable representing each pair (encoded by integers 1 to 9) 
to 9 indicator variables using the Python library scikit-learn [45], using a consistent encoding 
scheme across all datasets. The indicator variables were then analyzed in the same way as single 
SNPs. Results were analyzed in R [46] with the packages ROCR [47] and pROC [48], and plotted 
using the ggplot2 [49] package. 
 
Evaluation of predictive ability and explained disease variance 
To maximize the number of SNPs available for analysis, we imputed SNPs in the UK2, FIN, NL, 
and IT dataset to match those that were in the UK1 dataset but not in former, using IMPUTE v2.3.0 
[50]. Post QC this left 290,277 SNPs common to all five datasets. Together with 9×7270 
pairs=65,430 indicator variables, this led to a total of 355,707 variables in the combined 
singles+pairs dataset. Models trained in cross-validation on the UK1 dataset were then applied 
without any further tuning to the four other datasets, and the external-validation AUC for these 
models was then estimated within the validation datasets. To derive the proportion of phenotypic 
variance explained by the model (on the liability scale), we used the method of Wray et al. [51], 
assuming a population prevalence of 1%. 
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Tables 
 
 
Table 1: Datasets 
 

  Celiac cases Controls  

  SNPsa Samplesa Platformb Samplesa Platformb Ref 

UK1 UK 301546 763 Illumina Hap300v1-1 1420 Illumina Hap550 (van Heel, et al., 
2007)	
  

UK2 UK 515413 1826 Illumina670-Quad 3777 Illumina 1.2M-Duo (Dubois, et al., 
2010)	
  

FIN Finland 513952 647 Illumina670-Quad 1829 Illumina 610-Quad (Dubois, et al., 
2010)	
  

NL Netherlands 515169 803 Illumina670-Quad 846 Illumina 670-Quad (Dubois, et al., 
2010)	
  

IT Italy 515641 497 Illumina670-Quad 543 Illumina 670-Quad (Dubois, et al., 
2010)	
  

Overlapping SNPs 286938      
 

a. The number of samples/SNPs is reported after quality control procedures were applied. 
b. All platforms contain a common set of Hap300 markers; the Hap550 and 610-Quad contain a common set of 

Hap550 markers. 
 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2014. ; https://doi.org/10.1101/002485doi: bioRxiv preprint 

https://doi.org/10.1101/002485
http://creativecommons.org/licenses/by/4.0/


13 
 

Table 2: Top 10 epistatic signals detected in UK1 cohort within the extended MHC region and 
their properties in the remaining four cohorts 
 
 
    UK1univariate   UK1 UK2 FIN NL IT 
Rank SNP Chr Position (bp)f MAFc 𝑋2 LDd GSSa ORb GSSa ORb GSSa ORb GSSa ORb GSSa ORb 
1 rs2260000 6 31701455 0.28 40.9 0.68 58.2 14.2 108.3 10.8 95.4 20.5 27.0 10.1 12.6 6.7 
 rs805262 6 31736712 0.47 24.7           
2 rs2535315 6 31160106 0.30 16.3 0.50 51.4 8.9 98.3 7.4 74.8 14.2 30.8 7.7 6.6 5.7 
 rs2517452 6 31168141 0.43 29.5            
3 rs805303 6 31724345 0.47 69.3 0.61 50.5 14.3 97.6 10.7 77.0 20.1 29.1 16.1 9.8 7.0 
 rs805274 6 31773173 0.23 6.9            
4 rs2269426 6 32184477 0.31 31.3 0.23 48.3 11.7 90.9 9.6 56.2 12.2 25.0 11.5 8.5 3.8 
 rs394657 6 32295001 0.48 54.9            
5 rs9357152 6 32772938 0.19 47.8 0.13 46.8 9.3 94.1 8.0 17.2 7.7 13.3 6.3 5.7 3.4 
 rs9276644 6 32853021 0.42 38.7            
6 rs241440 6 32905339 0.20 20.2 0.58 46.2 7.72 104.3 7.4 80.1 15.9 28.1 7.0 12.3 4.0 
 rs241437 6 32905662 0.45 25.7            
7 rs3117098 6 32466491 0.24 14.5 0.59 44.7 10.3 92.2 8.8 43.0 12.0 23.3 7.5 9.2 3.1 
 rs6932542 6 32488240 0.45 42.7            
8 rs2395488 6 31553888 0.42 56.2 0.47 44.5 11.9 95.1 9.8 74.9 18.9 29.5 8.9 14.9 5.8 
 rs2523647 6 31557757 0.16 12.5            
9 rs2269426 6 32184477 0.31 31.3 0.42 42.1 12.4 71.4 8.9 47.8 10.0 24.4 11.9 10.2 5.4 
 rs2269423 6 32253685 0.32 35.7            
10 rs7192 6 32519624 0.47 43.1 0.57 40.6 10.3 81.8 8.9 47.3 12.0 24.5 7.9 7.3 3.6 
 rs2395182 6 32521295 0.17 15.7            

 
a. GSS indicates the –log10(p-value) of improvement of the pair over each of the SNPs involved measured by the GSS 

filter described further in the Methods section  
b. Odds Ratios are calculated directly from the GSS rather than via logistic regression, discussed further in Methods.  
c. Minor Allele Frequency measured in the Control samples in the UK1 cohort 
d. r2 was taken from HAPMAP release 2 using the CEU population 
e. Each signal represents the strongest of any pairs that show an r2> 0.7 with both of the SNPs in the pair 
f. SNP positions were extracted from build 36 

X2 indicates log10(p-value) for the standard 𝜒2 test of association   (𝜒2 statistics with 2 degrees of freedom). 
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Table 3: Variance explained by models with additive and epistatic genetic effects 
 

   Single SNPS Single SNPs + Pairs Pairs 

 
 
 

 Variance 
explained 

AUC (95% CI) Variance 
explaine
d 

AUC (95% CI) Variance 
explaine
d 

AUC (95% CI) 

Cross 
validation 

UK1 290K 
SNPs (best 
model) 

0.326 0.882 [0.880, 0.883] 0.341 0.888 [0.886, 0.889] 0.342 0.888 [0.887, 0.889] 

External 
validation 

UK2 0.269 0.855 [0.844, 0.865] 0.279 0.860 [0.850, 0.870] 0.249 0.845 [0.834, 0.855] 

Finn 0.325 0.880 [0.865, 0.896] 0.330 0.884 [0.870, 0.898] 0.297 0.868 [0.853, 0.884] 

IT 0.267 0.853 [0.830, 0.876] 0.290  0.867 [0.844, 0.889] 0.243 0.841 [0.817, 0.865] 

NL 0.275 0.858 [0.839, 0.876] 0.273 0.858 [0.840, 0.876] 0.254 0.847 [0.828, 0.866] 

 
Predictive power of single SNPS and pairs in cross-validation and in external validation, using SparSNP models. 
Models were optimized on the UK1 dataset (n=2183 samples) in cross-validation (290K SNPs), and tested without 
modification on the other datasets. The proportion of heritability explained (on the liability scale) assumes a population 
prevalence of 1%. The 95% CI for AUC in UK1 was computed over the 10x10 cross-validation, and in external 
validation was computed using DeLong’s method (R package pROC). Two-sided DeLong significance tests for AUC of 
single SNPs+pairs difference from AUC of single SNPs: UK2 P=0.006592, FIN P=0.3409, IT P=0.01626, NL 
P=0.8966. 
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Figure Legends 
 
Figure 1: Study workflow 
 
Figure 2: Epistatic interactions within the extended MHC region  
SNP pairs within 30KB of each other are shown as a single point on each heatmap. The colour of 
each point represents the most significant -log10(P-value) returned by the GSS statistic for SNPs 
pairs within each point. The -log10(P-value) is capped at 30 to increase contrast of lower values. The 
distribution of higher values in these datasets is shown in Supplementary Figure 4. The 
differences in the number of significant pairs detected in each cohort are clearly associated with the 
relative power of each study. 
 
 
Figure 3: Replication of epistatic pairs and corresponding epistatic models between datasets 
and populations 
Panel (a) shows the overlap of significant epistatic pairs as a percentage between UK1 and 
remaining cohorts in order of decreasing GSS significance. Vertical dotted lines indicate the 
Bonferroni-adjusted significance for each study. Panel (b) shows the occurrence of genotype 
combinations for the top pair from UK1. Colouring of cells provides an indication of the epistatic 
model occurring in each cohort, explained further in the Methods section. Further examples are 
shown in Supplementary Figure 5. 
 
 
Figure 4: Variation in epistatic models within and between populations 
Distribution of epistatic models in different studies as increasing less significant SNP pairs are 
examined, where the models were selected based on the UK1 dataset. Different colours represent a 
different subset of epistatic models. The “other” group represents the set of models that occur less 
than 5% of the time. Models have been simplified using the rules provided in (Li & Reich, 2000). 
Supplementary Figure 6 examines the distribution of models for pairs where at least one genotype 
combination does not occur in the data.  
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Figures 
 
Figure 1: Study workflow 
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Figure 2: Epistatic interactions within the extended MHC region 
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Figure 3: Replication of epistatic pairs and corresponding epistatic models between datasets 
and populations 
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Figure 4: Variation in epistatic models within and between populations 
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