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Abstract

Tlusty’s topological analysis of the genetic code suggests
ecosystem changes in available metabolic free energy that pre-
dated the aerobic transition enabled a punctuated sequence
of increasingly complex genetic codes and protein translators.
These coevolved via a ‘Cambrian explosion’ until, very early
on, the ancestor of the present narrow spectrum of protein
machineries became evolutionarily locked in at a modest level
of fitness reflecting a modest embedding metabolic free en-
ergy ecology. Similar biochemical ‘Cambrian singularities’
must have occurred at different scales and levels of organiza-
tion on Earth, with competition or chance-selected outcomes
frozen at a far earlier period than the physical bauplan Cam-
brian explosion. Other examples might include explosive vari-
ations in mechanisms of photosynthesis and subsequent oxy-
gen metabolisms. Intermediate between Cambrian bauplan
and genetic code, variants of both remain today, even after
evolutionary pruning, often protected in specialized ecological
niches. This suggests that, under less energetic astrobiological
ecologies, a spectrum of less complicated reproductive codes
may also survive in specialized niches.

Key Words: amino acids; astrobiology; evolutionary dy-
namics; information theory; punctuated evolution

1 Introduction

Wallace [1] argues that ‘Cambrian explosions’ are standard
features of blind evolutionary process, representing outliers
in the ongoing routine of evolutionary punctuated equilib-
rium. Most such explosions, however, will be severely pruned
by selection and chance extinction. That work suggested,
in passing, that the evolution of the genetic code, involving
the transmission of information between codon machinery and
amino acid machinery, is likely to have undergone just such an
‘explosion’ as significant levels of chemical free energy became
available to metabolic process. Here, we make that argument
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Figure 1: Adapted from fig. 1.8 of [2]. Modern protein syn-
thesis; the anticodon at one end of a tRNA molecule binds
to its complementary codon in mRNA derived directly from
the genome. Sequence-to-sequence translation is not highly
parallel, in this model, and the process can be characterized
in terms of the Shannon uncertainty in the transmission of
information between codon machinery and amino acid ma-
chinery.

explicit.
See figure 1, taken from [2], for a schematic of the present

highly evolved system relating code to protein component. In
modern protein synthesis, the anticodon at one end of a tRNA
molecule binds to its complementary codon in mRNA derived
directly from the genome. Sequence-to-sequence translation is
not highly parallel, in this model, and the process can be char-
acterized in terms of the Shannon uncertainty in the trans-
mission of information between codon machinery and amino
acid machinery.

To paraphrase Tlusty [3], the genetic code emerges as a
transition in a noisy information channel, using the Rate Dis-
tortion Theorem: the optimal code is described by the mini-
mum of a ‘free energy’-like functional, which leads naturally to
the possibility of describing the code’s emergence as a transi-
tion akin to a phase transition in statistical physics. The basis
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for this is the observation that a supercritical phase transi-
tion is known to take place in noisy information channels (e.g.,
[4]). The noisy channel is controlled by a temperature-like pa-
rameter that determines the balance between the information
rate and the distortion ‘in the same way that physical tem-
perature controls the balance between energy and entropy’ in
a physical system. Following Tlusty’s equation (2), the ‘free
energy’ functional has the form D−TS where D is the average
‘error load’, equivalent to average distortion in a rate distor-
tion problem, S is the ‘entropy due to random drift’, and T
measures the strength of random drift relative to the selec-
tion force that pushes towards fitness maximization. This is
essentially a Morse function, in the sense of the Mathemati-
cal Appendix. According to Tlusty’s analysis, at high T the
channel is totally random and it conveys zero information. At
a certain critical temperature Tc the information rate starts to
increase continuously. In subsequent work, Tlusty [5] expands
the analysis to include the interplay of accuracy, diversity, and
the cost of the coding machinery.

More specifically, as Tlusty [3] puts it,

To discuss the topology of errors we portray
the codon space as a graph whose verticies are the
codons... Two codons... are linked by an edge if they
are likely to be confused by misreading... We assume
that two codons are most likely to be confused if all
their letters except for one agree and therefore draw
an edge between them. The resulting graph is nat-
ural for considering the impact of translation errors
on mutations because such errors almost always in-
volve a single letter difference, that is, a movement
along an edge of the graph to a neighboring vertex.

The topology of a graph is characterized by its
genus γ, the minimal number of holes required for a
surface to embed the graph such that no two edges
cross. The more connected that a graph is the more
holes are required for its minimal embedding... [T]he
highly interconnected 64-codon graph is embedded
in a holey, γ = 41 surface. The genus is somewhat
reduced to γ = 25 if we consider only 48 effective
codons.

Tlusty further concludes that the topology of the code sets
an upper limit to the number of low modes – critical points
– of his free energy-analog functional, and this is also the
number of amino acids. The low modes define a partition of
the codon surface into domains, and in each domain a single
amino acid is encoded. The partition optimizes the average
distortion by minimizing the boundaries between the domains
as well as the dissimilarity between neighboring amino acids.

Tlusty states:

The maximum [of the functional] determines a
single contiguous domain where a certain amino acid
is encoded... Thus every mode corresponds to an
amino acid and the number of modes is the num-
ber of amino acids. This compact organization is
advantageous because misreading of one codon as

another codon within the same domain has no dele-
terious impact. For example, if the code has two
amino acids, it is evident that the error-load of an
arrangement where there are two large contiguous
regions, each coding for a different amino acid, is
much smaller than a ‘checkerboard’ arrangement of
the amino acids.

This, Tlusty [6] points out, is analogous to the well-known
topological coloring problem: “in the coding problem one de-
sires maximal similarity in the colors of neighboring ‘coun-
tries’, while in the coloring problem one must color neighbor-
ing countries by different colors”. After some development
[5], the number of possible amino acids in this scheme is de-
termined by Heawood’s formula [7]:

chr(γ) = Int(
1

2
(7 +

√
1 + 48γ)) (1)

where chr(γ) is the number of color domains of a surface with
genus γ, and Int(x) is the integer value of x.

However, from Morse Theory [8]:

γ = 1− 1

2
χ (2)

where χ is the Euler characteristic of the underlying topo-
logical manifold. For a manifold having a Morse function f ,
χ can be expressed as the alternating sum of the function’s
Morse numbers: The Morse numbers µi(i = 0, 1, ...,m) of f
on the manifold are the number of critical points (df(xc) = 0)
of index i, the number of negative eigenvalues of the matrix
Hi,j = ∂f2/∂xi∂xj . Then χ =

∑m
i=0(−1)iµi.

This holds true for any Morse function on the manifold M .
See the Mathematical Appendix for a summary of material
on Morse Theory.

We reproduce part of Table 1 of [3], showing the topological
limit to the number of amino acids for different codes:

Code # Codons Max. # AA’s
4-base singlets 4 4
3-base doublets 9 7
4-base doublets 16 11
16 codons 32 16
48 codons 48 20
4-base triplets 64 25

This is the fundamental topological decomposition, to
which Morse-theoretic ‘free energy’ functionals are to be fit.
Note, however, that, while the scheme limits underlying code
bauplan, for the current coding a simple combinatorial argu-
ment shows there are 1084 possible alternative code tables if
each of the 20 amino acids and the stop signal are assigned
at least one codon. Smaller, but still astronomical, numbers
can be associated with the less complicated codes, permitting
a later statistical mechanics-like model driven by available
metabolic free energy.

Tlusty [3] concludes:

[This] suggests a pathway for the evolution of
the present-day code from simpler codes, driven
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by the increasing accuracy of improving transla-
tion machinery. Early translation machinery corre-
sponds to smaller graphs since indiscernible codons
are described by the same vertex. As the accu-
racy improves these codons become discernible and
the corresponding vertex splits. This gives rise to
a larger graph that can accommodate more amino
acids... [P]resent-day translation machinery with a
four-letter code and 48-64 codons (no discrimina-
tion between U and C in the third position) gave
rise to 20-25 amino acids. One may think of future
improvement that will remove the ambiguity in the
third position (64 discernible codons). This is pre-
dicted to enable stable expansion of the code up to
25 amino acids.

The underlying model is that of phase transitions in phys-
ical systems. Following Landau’s group symmetry shifting
arguments [9, 10], higher temperatures enable higher system
symmetries, and, as temperature changes, punctuated shifts
to different symmetry states that occur in characteristic man-
ners. Extension of this argument in terms of information
transmission between codons and proteins, in the context of
metabolic energy measures, seems direct, particularly involv-
ing the groupoids constructed by the disjoint union of the
homology groups representing the different coding topologies
that Tlusty identifies. A more complete mathematical treat-
ment of some of these and related matters can be found in
[11, 12].

It is worth noting that Tlusty’s method can be applied as
well to large-scale globular protein folding [13]. Equation (1),
most simply, produces the table

γ (# network holes) chr(γ) (# classes)
0 4
1 7
2 8
3 9
4 10
5 11

6, 7 12
8, 9 13

In Tlusty’s scheme, the second column represents the max-
imal possible number of product classes that can be reliably
produced by error-prone codes having γ holes in the underly-
ing coding error network.

Normal irregular protein symmetries were first classified by
Levitt and Chothia [14], following a visual study of polypep-
tide chain topologies in a limited dataset of globular proteins.
Four major classes emerged; all α-helices; all β-sheets; α/β;
and α+ β, with the latter two having the obvious meaning.

While this scheme strongly dominates observed irregular
protein forms, Chou and Maggiora [15], using a much larger
data set, recognize three more ‘minor’ symmetry equivalence
classes; µ (multi-domain); σ (small protein); and ρ (peptide),
and a possible three more subminor groupings.

We infer that the normal globular ‘protein folding code er-

ror network’ is, essentially, a large connected ‘sphere’ – pro-
ducing the four dominant structural modes – having one mi-
nor, and possibly as many as three more subminor attachment
handles, in the Morse Theory sense [8], a matter opening up
other analytic approaches.

From Tlusty’s perspective, then, four-fold protein folding
classification produces the simplest possible large-scale ‘pro-
tein folding code’, a sphere limited by the four-color problem,
and the simplest cognitive cellular regulatory system would
thus be constrained to pass/fail on four basic flavors, as it
were, of folded proteins.

Here we will reconsider the evolutionary trajectories of ge-
netic codes in the context of intensive measures of available
metabolic free energy, taking the perspective that the avail-
ability of metabolic free energy is central to the evolution of
complex phenomena of biological communication. That is,
the ‘temperature’ analog is the chemical free energy available
to early anaerobic metabolisms, in the sense of Canfield et al.
[16]. For example, the proposed hydrogen/sulfur reaction

H2 +
1

2
S2 → H2S

produces something like M = 21 KJ/mol, while the aerobic
reaction

H2 +
1

2
O2 → H2O

produces about M = 241 KJ/mol, more than an order of
magnitude greater. The genetic code, however, was locked in
by evolutionary path dependence well before oxygen became
widely available for metabolic process.

Figure 2, taken from [16] shows a range of possible electron
donors and acceptors available to early anaerobic metabolisms
on earth.

We begin with a restatement of a few central ideas from [1].

2 Information theory

A genetic code, translating codons into proteins, implies the
existence of an information source using that code, and the be-
havior of such sources is constrained by the asymptotic limit
theorems of information theory. Thus, the interaction be-
tween biological subsystems associated with a code can be
formally restated in communication theory terms. Wallace
and Wallace [17, 18] use an elaborate cognitive paradigm for
gene expression to infer such information sources, i.e., cogni-
tion implies ‘language’, in a large sense, but the focus here on
codes condenses the argument because a code directly implies
existence of an information source using it.

Here we think of the machinery listing a sequence of codons
as communicating with machinery that produces amino acids,
allowing definition of an information source embedded in an
environment whose regularities themselves imply the exis-
tence of an information source.

Following [1], assume there are n possible genetic code
‘species’ interacting with an embedding environment repre-
sented by an information source Z. The processes associated
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Figure 2: From Canfield et al., [16], Possible electron donors
and acceptors for early-Earth ecosystems.

with each code species i are represented as information sources
Xi. These information sources undergo a ‘coevolutionary’ in-
teraction in the sense of [19], producing a joint information
source uncertainty [20] for the full system as

H(X1, ..., Xn, Z) (3)

Feynman’s [21] insight that information is a form of free
energy allows definition of an entropy-analog as

S ≡ H −Qj

∑
j

∂H/∂Qj (4)

The Qi are taken as driving parameters that may include,
but are not limited to, the Shannon uncertainties of the un-
derlying information sources.

Again following Wallace (2014), we can characterize the dy-
namics of the system in terms of Onsager-like nonequilibrium
thermodynamics in the gradients of S as the set of stochastic
differential equations [22],

dQi
t = Li(∂S/∂Q

1...∂S/∂Qm, t)dt+∑
k

σi
k(∂S/∂Q1...∂S/∂Qm, t)dBk (5)

where the Bk represent noise terms having particular forms
of quadratic variation. See [23] or other standard references
on stochastic differential equations for details.

This can be more simply written as

dQi
t = Li(Q, t)dt+

∑
k

σi
k(Q, t)dBk (6)

where Q ≡ (Q1, ..., Qm).
Following the arguments of Champagnat et al., this is a co-

evolutionary structure, where fundamental dynamics are de-
termined by component interactions:

1. Setting the expectation of equations (5) equal
to zero and solving for stationary points gives at-
tractor states since the noise terms preclude unstable
equilibria. These are analogous to the evolutionarily
stable states of evolutionary game theory.

2. This system may, however, converge to limit
cycle or pseudorandom ‘strange attractor’ behaviors
similar to thrashing in which the system seems to
chase its tail endlessly within a limited venue – the
‘Red Queen’.

3. What is ‘converged’ to in any case is not
a simple state or limit cycle of states. Rather it
is an equivalence class, or set of them, of highly
dynamic information sources coupled by through
crosstalk and other mutual interactions. Thus ‘sta-
bility’ in this structure represents particular patterns
of ongoing dynamics rather than some identifiable
static configuration, that is, at best, a nonequilib-
rium steady state.

4. Applying Ito’s chain rule for stochastic dif-
ferential equations to the (Qj

t )
2 and taking expec-

tations allows calculation of variances. These may
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depend very powerfully on a system’s defining struc-
tural constants, leading to significant instabilities
[24].

3 Large deviations: iterating the
model

As Champagnat et al. note, shifts between the quasi-
equilibria of a coevolutionary system can be addressed by the
large deviations formalism. The dynamics of drift away from
trajectories predicted by the canonical equation can be inves-
tigated by considering the asymptotic of the probability of
‘rare events’ for the sample paths of the diffusion.

‘Rare events’ are the diffusion paths drifting far away from
the direct solutions of the canonical equation. The probability
of such rare events is governed by a large deviation principle,
driven by a ‘rate function’ I that can be expressed in terms
of the parameters of the diffusion.

This result can be used to study long-time behavior of the
diffusion process when there are multiple attractive singular-
ities. Under proper conditions, the most likely path followed
by the diffusion when exiting a basin of attraction is the one
minimizing the rate function I over all the appropriate tra-
jectories.

An essential fact of large deviations theory, however, is that
the rate function I almost always has the canonical form

I = −
∑
j

Pj log(Pj) (7)

for some probability distribution, i.e., the uncertainty of an
information source [25].

The argument directly complements equation (5), now seen
as subject to large deviations that can themselves be described
as the output of an information source LD defining I, driving
or defining Qj-parameters that can trigger punctuated shifts
between quasi-stable nonequilibrium steady states.

Not all large deviations are possible: only those consistent
with the high probability paths defined by the information
source LD will take place.

Recall from the Shannon-McMillan Theorem [26] that the
output streams of an information source can be divided into
two sets, one very large that represents nonsense statements
of vanishingly small probability, and one very small of high
probability representing those statements consistent with the
inherent ‘grammar’ and ‘syntax’ of the information source.
For example, whatever higher-order multicellular evolution
takes place, some equivalent of backbone and blood remains.

Thus we could now rewrite equation (3) as

HL(X1, ..., Xn, Z, LD) (8)

where we have explicitly incorporated the ‘large deviations’
information source LD that defines high probability evolu-
tionary excursions for this system.

Again carrying out the argument leading to equation (5),
we arrive at another set of quasi-stable modes, but possibly

very much changed in number; either branched outward in
time by a wave of speciation or quasi-speciation, or decreased
through a wave of extinction. Iterating the models backwards
in time constitutes a cladistic or coalescent analysis.

4 Evolution of genetic codes under
relaxed path-dependence

Following the arguments of [1], in general, for current organ-
isms, the number of quasi-equilibria available to the system
defined by equation (5), or to its generalization via equation
(7), will be quite small – indeed, at most a handful – a con-
sequence of code lock-in by path dependent evolutionary pro-
cess. The same cannot be said, however, for earlier species or
quasi-species, to which can be applied more general methods
that may represent key processes acting three or four billion
years in the past.

Under such a relaxation assumption, the specia-
tion/extinction large deviations information source LD is far
less constrained, and there will be very many possible quasi-
stable nonequilibrium steady states available for transition,
analogous to an ensemble in statistical mechanics. Again, for
the current genetic code, involving 20 possible amino acids,
following the arguments of Table 1, there are some 1084 pos-
sible alternative codings.

The metabolic free energy index in KJ/mol, which we write
as M , can, from the arguments of the Introduction, then be
interpreted as a kind of temperature measure so that higher
values permit higher equivalence class groupoid symmetries.
This leads to a relatively simple statistical mechanics analog
built on the HL of equation (7).

Define a pseudoprobability for quasi-stable mode j as

Pj =
exp[−Hj

L/κM ]∑
i exp[−Hi

L/κM ]
(9)

where κ is a scaling constant and M is a reaction energy
intensity, typically measured as KJ/mol.

Next, define a Morse Function F as

exp[−F/κM ] ≡
∑
i

exp[−Hi
L/κM ] (10)

Apply Pettini’s topological hypothesis to F . Then M is
seen as a very general temperature-like intensity measure
whose changes drive punctuated topological alterations in the
underlying ecological and coevolutionary structures associ-
ated with the Morse Function F .

Such topological changes, following Pettini’s arguments,
can be far more general than indexed by the simple Landau-
type critical point phase transition in an order parameter.

Thus, the results of [27], regarding the complexity of the
genetic code, can be directly reframed in terms of available
metabolic free energy intensity leading to equations (9) and
(10). Then M is a measure of metabolic free energy intensity,
and the Hj

L represent the Shannon uncertainties in the trans-
mission of information between codon machinery and amino
acid machinery.
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Increasing M then leads to the possibility of more complex
genetic codes, i.e., those having higher measures of symmetry,
in the Landau sense, as calculated by Tlusty’s methods, until
competition, selection, and chance extinction leading to evo-
lutionary lock-in took place at a relatively low level of coding
efficiency. Canfield et al. [16] speculate that the most active
early ecosystems were probably driven by the cycling of H2

and Fe2+, providing relatively low free energy intensities for
metabolic process.

5 Discussion and conclusions

Marshall [28] characterizes the ‘Cambrian explosion’ in animal
physical bauplan that took place 500 myr ago as follows:

With the advent of ecological interactions be-
tween macroscopic adults... especially... preda-
tion..., the number of needs each organism had to
meet must have increased markedly: Now there
were myriad predators to contend with, and a myr-
iad number of ways to avoid them, which in turn
led to more specialized ways of predation as differ-
ent species developed different avoidance strategies,
etc... The combinatoric richness already present in
the Ediacaran genome was extracted through the
richness of biotic interaction as the Cambrian ‘ex-
plosion’ unfolded...

Here we argue that, in analogous fashion, the availability
of myriad biochemical electron donor/acceptor cycles accord-
ing to the schema of [16] in figure 2 created a rich chemical
ecology. The explosive combinatoric richness present in the
possible variety of genetic codes was, however, in this case ex-
tracted through the richness of biotic interaction downward
in scale by the efficiency, effectiveness, or chance survival, of a
single code that emerged at a modest level of available chem-
ical free energy to persist as the present dominant genetic
code.

Wallace [29] makes a similar argument for the evolution of
homochirality, formally invoking the standard groupoid ap-
proach to stereochemistry in a thermodynamic context that
likewise generalizes Landau’s spontaneous symmetry break-
ing arguments. On Earth, limited metabolic free energy
density may have served as a low temperature-analog to
‘freeze’ the system in the lowest energy state, i.e., the set
of simplest homochiral transitive groupoids representing re-
productive chemistries. These engaged in Darwinian compe-
tition until a single configuration survived. Subsequent path-
dependent evolutionary process locked-in this initial condi-
tion. Astrobiological outcomes, in the presence of higher ini-
tial metabolic free energy densities, could well be considerably
richer, for example, of mixed chirality. One result would be
a complicated distribution of biological chirality across a sta-
tistically large sample of extraterrestrial stereochemistry, in
marked contrast with recent published analyses predicting a
racemic average.

The essential insight is that ‘Cambrian singularities’ at dif-
ferent scales and levels of organization are inherently path de-

pendent, with the evolutionarily or chance-selected outcomes
of basic biochemical explosions likely to be locked in at a
far earlier period than physical bauplan explosions. Possible
examples include explosive evolutionary variations in photo-
synthesis and mechanisms of tissue oxidation. Different forms
of both remain today, even after evolutionary pruning, partic-
ularly variants in the ‘bauplan’ of oxidizer metabolism (e.g.,
[30, 31]).

This suggests that, under less energetic astrobiological
ecologies, a spectrum of less complex reproductive codes may
survive, likely across a set of characteristic ecosystem niches.
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7 Mathematical Appendix

Morse theory examines relations between analytic behavior of
a function – the location and character of its critical points
– and the underlying topology of the manifold on which the
function is defined. Here we follow closely [10].

The essential idea of Morse theory is to examine an n-
dimensional manifold M as decomposed into level sets of some
function f : M → R where R is the set of real numbers. The
a-level set of f is defined as

f−1(a) = {x ∈M : f(x) = a}

the set of all points in M with f(x) = a. If M is compact,
then the whole manifold can be decomposed into such slices
in a canonical fashion between two limits, defined by the min-
imum and maximum of f on M . Let the part of M below a
be defined as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}

These sets describe the whole manifold as a varies between
the minimum and maximum of f .

Morse functions are defined as a particular set of smooth
functions f : M → R as follows. Suppose a function f has
a critical point xc, so that the derivative df(xc) = 0, with
critical value f(xc). Then f is a Morse function if its critical
points are nondegenerate in the sense that the Hessian matrix
of second derivatives at xc, whose elements, in terms of local
coordinates are given by Hi,j = ∂2f/∂xi∂xj , has rank n,
which means that it has only nonzero eigenvalues, so that
there are no lines or surfaces of critical points and, ultimately,
critical points are isolated.

The index of the critical point is the number of negative
eigenvalues of H at xc.

A level set f−1(a) of f is called a critical level if a is a
critical value of f , that is, if there is at least one critical point
xc ∈ f−1(a).

The essential results of Morse theory are:
1. If an interval [a, b] contains no critical values of f , then

the topology of f−1[a, v] does not change for any v ∈ (a, b].
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Importantly, the result is valid even if f is not a Morse func-
tion, but only a smooth function.

2. If the interval [a, b] contains critical values, the topology
of f−1[a, v] changes in a manner determined by the properties
of the matrix H at the critical points.

3. If f : M → R is a Morse function, the set of all the
critical points of f is a discrete subset of M , i.e., critical
points are isolated. This is Sard’s Theorem.

4. If f : M → R is a Morse function, with M compact, then
on a finite interval [a, b] ⊂ R, there is only a finite number of
critical points p of f such that f(p) ∈ [a, b]. The set of critical
values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse
functions on M is an open dense set in the set of real functions
of M of differentiability class r for 0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that
are the same for all the manifolds that have the same topology
as M , can be estimated and sometimes computed exactly once
all the critical points of f are known: Let the Morse numbers
µi(i = 0, ...,m) of a function f on M be the number of critical
points of f of index i, (the number of negative eigenvalues of
H). The Euler characteristic of the complicated manifold M
can be expressed as the alternating sum of the Morse numbers
of any Morse function on M ,

χ =

m∑
i=0

(−1)iµi

The Euler characteristic reduces, in the case of a simple
polyhedron, to

χ = V − E + F

where V,E, and F are the numbers of vertices, edges, and
faces in the polyhedron.

7. Another important theorem states that, if the interval
[a, b] contains a critical value of f with a single critical point
xc, then the topology of the set Mb defined above differs from
that of Ma in a way which is determined by the index, i, of
the critical point. Then Mb is homeomorphic to the manifold
obtained from attaching to Ma an i-handle, i.e. the direct
product of an i-disk and an (m− i)-disk.

Again, [8, 10] contain both mathematical details and fur-
ther references.
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