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Abstract 
 
Identifying a small subset of discriminate genes is important for predicting clinical 
outcomes and facilitating disease diagnosis. Based on the model population analysis 
framework, we present a method, called PHADIA, which is able to output a phase 
diagram displaying the predictive ability of each variable, which provides an intuitive 
way for selecting informative variables. Using two publicly available microarray 
datasets, it’s demonstrated that our method can selects a few informative genes and 
achieves significantly better or comparable classification accuracy compared to the 
reported results in the literature. The source codes are freely available at: 
www.libpls.net. 
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Introduction 

High throughput experiments such as DNA microarray allow quantifying the 
expression levels of thousands of genes simultaneously and provide a large amount of 
data of potential clinical use such as disease risk prediction and classification 
[8,9,12,14,22,31]. The goal of disease/cancer classification includes, but is not limited 
to, predicting prognosis, proposing therapy according to the clinical situation, 
advancing therapeutic studies etc. Thus, it is critical for physicians/clinicians to 
establish the rule for accurate classification of tumor before any treatment is 
administered to the patient in order to avoid unnecessary treatment or propose the 
most appropriate therapies. The study of gene expression data based cancer 
classification has been extensively reported [21,25,26,29,30,34]  

Due to many factors such as high cost, expression data are usually measured for a 
large number of genes on a small number of samples, giving rise to a measurement 
data matrix of a few rows and many columns. Predictive modeling and variable 
selection for such data is known as the a “large p, small n” problem[4,10,35], which is 
very challenging and has received a lot of attention in bioinformatics and statistics. So 
far, many methods have been proposed to identify potential genes which are relevant 
to cancer classification, e.g., t-scores, class distinction correlation[12], support vector 
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machines (SVM) [11,24], Gaussian process[7], sparse logistic regression[6], , 
regularized ROC method[22,23]， entropy-based method [20], graph based feature 
classification[13] and the MIA approach [18]. In predictive modeling, it is our opinion 
that a variable or gene is predictive performance should be assessed in terms of two 
aspects: (1) the expectation and (2) variance of predictive performance of a variable. 
The former shows how a variable improves a model’s performance when included 
and the latter reflects how a variable affects the confidence interval (stability) of a 
model. These two factors are essential for quality assessment of variables but 
seemingly have not been addressed by existing methods. 

In our previous work [18], we proposed the MIA (margin influence analysis) 
method that can computationally assess the expectation of predictive performance of 
variables using a population of sub-models [16,17,19]. However, the MIA method is 
only applicable to support vector machines [15] and does not consider the prediction 
variance of variables. Based on model population analysis [16,17,19], here we report 
a computational approach which can output a phase diagram displaying quality of 
variables in a two-dimensional plot. The algorithm was termed PHADIA. The phase 
diagram provides an intuitive tool for variable selection. Though our algorithm is 
implemented with PLS-LDA (Partial least squares - linear discriminant analysis), the 
PHADIA can be applied in combination with any other classifiers such as support 
vector machines and Bayesian network classifier. We applied PHADIA to two 
publicly available gene datasets and evaluated its performance for gene selection. 

Methods 

As mentioned above, PHADIA is proposed based on MPA[5,16], which is a 
general framework for developing new methods by analyzing the interesting 
model-related parameters, e.g. prediction errors and variable coefficients, of a number 
of sub-models based on Monte Carlo Sampling (MCS). An MPA algorithm consists 
mainly of three steps: (1) sampling N sub-datasets randomly, (2) building a sub-model 
using each sub-dataset, and (3) statistically analyzing some interesting output, e.g. 
prediction errors, of all the N sub-models. The third step is the key point of MPA. In 
the following section, the PHADIA algorithm will be described according to these 
three steps. 

Sub-dataset sampling in the variable space 
 
Given a dataset (X, y), where X of size n×p has n samples and p variables and y of 
size n×1 records the class label of each sample, valued 1 or -1 in the binary 
classification situation. The sub-dataset sampling in the variable space is described in 
the following (Figure 1). The number of Monte Carlo sampling (MCS) is set to N 
(e.g. 10,000). At each sampling, Q out of the p variables will be randomly sampled, 
giving rise to a sub-dataset of size n×Q. Repeating this procedure for N times, N 
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sub-datasets in total can be obtained, which are denoted (Xsub, ysub)i, i = 1, 2, 3, …N. 
In Figure 1, the filled squares stand for the sampled variables. 
 

( insert Figure 1) 

Sub-model building using PLS-LDA 

For each sub-dataset, a PLS-LDA model is built with the number of latent variables 
optimized by cross validation [2,32]. The reason to choose PLS-LDA is that (1) PLS 
has the potential to deal with high dimensional data and (2) linear classifier is easy to 
interpret compared to the nonlinear methods. N PLS-LDA classifiers are established 
in this step. 5-fold cross validation[3,28] is used to assess the performance of each 
sub-model. So each model is associated with a prediction error. 
 
Statistical analysis of prediction errors for computing phase diagram 
 
Without loss of generality, we take the ith variable for example to illustrate the 
procedure for computing a phase diagram. 
  First, we partition all the previously computed N PLS-LDA models into two groups, 
say Group A and Group B. Group A collects all the models including the ith variable. 
The remaining models not including the ith variable belong to Group B. Assuming 
that the numbers of the models in Group A and B are NA and NB, respectively, the sum 
of NA and NB is equal to N. So we have NA prediction errors for Group A and NB 
prediction errors for Group B. Then, the mean and standard deviation of the NA and 
NB prediction errors can hence be easily calculated, denoted MEANA, SDA, MEANB 
and SDB, respectively. Finally, two statistics are can be computed for assessing the ith 
variable’s prediction ability. The first is defined as the difference between MEANA 
and MEANB, which is denoted and computed using the following formulae. 
 
DMEANi=MEANi,B – MEANi,A                                        (1) 
 
  Clearly, DMEANi measures the increment of prediction performances of model 
including the ith variable over models without it. So, if DMEANi >0, one may infer 
that the prediction ability could be improved if a model contains the ith variable, and 
vice versa. To judge whether the mean errors of Group A and Group B are different, 
the nonparametric Mann-Whitney U test is employed to calculate a p-value which in 
combination with DMEAN is able to tell whether a variable can significantly improve 
prediction performance or not. In analogy to DMEAN, another statistic is defined as: 
 
DSDi= SDi,B – SDi,A                                                  (2) 
 
  By definition, DSDi can be thought as an criterion describing whether the inclusion 
of the ith variable will increase the variance of a model or not. It could be expected 
that the ith variable has the potential to stabilize a model if DSDi >0. 
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( insert Figure 2) 

 
   After computing DMEAN and DSD for each variable, one can plot DSD against 
DMEAN for all the variables. Such a plot is called a phase diagram in our work which 
intuitively displays the quality of all variables together. The phase diagram is 
illustrated in Figure 2. In this figure, all the variables are grouped into four regions. 
Phase 1: DMEAN>0, DSD>0, containing informative variables that can reduce 
prediction errors and also reduce prediction variance; Phase 2: DMEAN<0, DSD>0, 
housing variables which can will increase prediction variances; Phase 3: DMEAN<0, 
DSD<0, corresponding to variables that decrease model performance but can reduce 
prediction variances; Phase 4: DMEAN>0, DSD<0, including the “worst” variables 
which not only increase prediction errors but also increase prediction variances. Based 
on p-value of each variable, the shadow region with DMEAN close to 0 indicates 
variables which will not have significant influence on a model’s prediction error. In 
general, variables in Phase 1 are best performing and those in Phase 2 can also be 
considered to be included into a model. However, the variables in Phase 3 and 4 are 
not suggested to be used for building a model. 

Results and discussion 

Colon data 
 
This dataset contains the expression values of 6500 human genes measured on 40 
tumor and 22 normal colon tissues using the Affymetrix gene chip. 2000 genes with 
the highest minimal intensity across samples were selected by Alon et al. [1]. Gene 
expression values were log2 transformed before modeling. 
  The parameter N, the number of Monte Carlo samplings, for PHADIA is fixed 
10,000. Four Q values [20, 50, 100, 200] were tested. For each Q, we ran the 
PHADIA algorithm 10 times and calculated the predictive performance of PLS-LDA 
using cross validation (Figure S1). Considering both the mean and variance of 
prediction errors, Q=20 was chosen to be the optimal one. Although the sub-dataset is 
chosen randomly, we found that the top ranked informative variables identified by the 
PHADIA algorithm is highly reproducible (Table S1). 

 
( insert Figure 3) 

 
Figure 3 shows the phase diagram from one run of the PHADIA algorithm. This 

plot is divided into four phases, corresponding to the four types of genes as described 
previously. The genes (probe sets) in Phase 1 are most informative. Phase 2 houses 
less informative genes which can still be considered to be included in model. 
However, those genes in Phase 3 and 4 will most likely reduce a model’s performance 
and therefore should be eliminated as interfering genes. We found that there are 878 
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genes with DMAN>0 (in Phase 1 or Phase 2), out of which 206 are significant with a 
p-value < 0.05. 

 
We then from each Phase, manually picked one gene (Phase 1: index=493, Phase 2: 

index=633, Region 3: index=937 and Phase 4: index=261) and displayed their 
prediction error distributions in Figure 4. Take the 493th gene for example, the 
prediction error distribution of models including this variable shows significantly 
lower mean errors and smaller variance, representing the most informative variable. In 
contrast, the variables in Plot A and C are of poor predictive performances since 
including them into a model will on average reduce a model’s performance. 

 
To build a parsimonious PLS-LDA classifier, we ranked all the variables based on 

their DMEAN value and selected a subset of 200 genes using a forward strategy. The 
achieved average median leave-one-out-cross-validation (LOOCV) error of 10 
replicate runs of the PHADIA algorithms is 0.0806±0.0221. For the same data, Furey 
et al. (2000) misclassified 6 samples using SVM based on LOOCV, leading to a 
prediction error=0.097. In Nguyen et al. (2002), their best result is obtained using 
PLS including 50 or 100 genes with the misclassification error = 0.065, which are 
slightly better than ours. Compared to the reported results, the proposed PHADIA 
algorithm shows competitive performances. 

  
Estrogen data 
 
  This dataset consisted of the expression values of 7129 genes of 49 breast tumor 
samples, and presented by West et al. (2001) and Spang et al.(2001)[27]. There are 25 
LN+ samples and 24 LN- samples. Before gene selection and classifier building, 
pretreatment is done on this data following the same methods described in Ma et al. 
(2005). 3333 genes were left and log2 transformed in our analysis. 

 
 ( insert Figure 5) 
 ( insert Figure 6) 

 
For this data, N is also set to 10,000, and the optimal Q value is determined to be 20 

using cross validation (Figure S2). The results of PHADIA are shown to be highly 
reproducible (Table S1). The phase diagram from one run of PHADIA with Q=20 is 
shown in Figure 5. In this plot, the 77th gene stands out, which should be of high 
predictive value based on our method. For illustration, we also selected one gene from 
each phase and their prediction error distributions are shown in Figure 6. Take the 
77th gene as an example, it remarkably reduces the prediction error while 
simultaneously improve the predictive stability in terms of lower variance if included 
in a model. It may be inferred that the 77th gene is a key factor for underling the 
physiological state of estrogen. From Phase 1 and Phase 2, 312 genes were found to 
be informative with p<0.05.  
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Using the same method as applied to the colon data, we selected 25 genes and built 
a PLS-LDA classifier with a median LOOCV error 0.06±0.00 over 10 replicate runs 
of the PHADIA algorithm. For this dataset, based on their selected 100 genes, 
Dettling and Buhlmann (2003) yields classification errors 0.020 (LogitBoost, optimal), 
0.06 (AdaBoost, 100 iterations) and 0.040 (CART). In the work of Ma et al (2005), 
their reported misclassification errors are 0.120±0.080. These results demonstrated 
that our method is very compelling. 

Conclusions 

  Based on model population analysis, we in the present study introduced the 
PHADIA algorithm for variable selection. One unique feature of PHADIA is that it 
can output a phase diagram that describes the prediction ability of variables in terms 
of the expectation and variance of their prediction errors if included in a model. Based 
on the phase diagram, variables can also be classifier into informative, uninformative 
and interfering ones in a similar manner as in our previous work [18,19,33]. When 
applied to two gene expression datasets, competitive performances were achieved 
compared to the results reported in the literature. Our results indicate that PHADIA 
algorithm is a powerful tool for visualizing variables’ prediction ability and 
identifying informative variables. It’s expected that PHADIA will find more 
applications in other fields. 
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Figure 1.  Illustration of Monte Carlo sampling in the variable space. In each sampling, a 
sub-dataset containing only a given number (Q, e.g. 10) of variables are randomly selected from the 
original data, denoted by filled square. Finally, N sub-datasets are generated and a sub-model will be 
built using each of the sub-dataset. 

 

Figure 2. A schematic of the phase diagram for variable selection. Based on the DMEAN and DSD 
values (see main text for definition), variables fall into four main phases. The variables in Phase 1 can 
not only increase a model’s performance (DMEAN>0) but also reduce prediction variances (DSD>0). 
In the inset, the peak denoted by “1” stands for the prediction error distribution of models including 
such a variable, while the peak denoted by “0” is the prediction error distribution of models that do not 
include this variable. This type of variables is called informative variables. The variables in Phase 2 can 
also increase performance but at the cost of increased variance, thus being less informative than those 
in Phase 1. In contrast, variables in Phase 3 and 4 will reduce the performance (DMEAN<0) of models, 
so they are suggested not to be used for modeling. These are called interfering variables. Specifically, 
including variables in Phase 4 into a model will even increase the prediction variance (DSD<0). In 
addition, variables at the boundary (the shadow region with DMEAN close to 0) can not significantly 
increase or decrease model performances, and are hence thought of as being uninformative. 
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Figure 3.  The phase diagram of the colon data. Red: informative variables (DMEAN>0, p<0.05); 
blue: uninformative variables (p>0.05); red: interfering variables (DMEAN<0, p<0.05). 

 
 

 
Figure 4.  The prediction error distributions of four genes from each of the four phases for the 
colon data.  They are picked from Phase 1 (plot B, index=493), Phase 2 (plot D, index=633), Phase 3 
(plot A, index=937) and Phase 4 (plot C, index=261) in Figure 3, respectively. 
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Figure 5.  The phase diagram of the estrogen data. Red: informative variables (DMEAN>0, p<0.05); 
blue: uninformative variables (p>0.05); red: interfering variables (DMEAN<0, p<0.05). 

 

 
Figure 6.  The prediction error distributions of four genes from each of the four phases for the 
estrogen data.  They are picked from Phase 1 (plot B, index=77), Phase 2 (plot D, index=3130), 
Phase 3 (plot A, index=1167) and Phase 4 (plot C, index=2242) in Figure 5, respectively. 
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Supplementary materials 
 

 
Figure S1. 5-fold cross validated prediction errors using different Q values for the 
colon data. 
 
 
 

 
 
Figure S2. 5-fold cross validated prediction errors using different Q values for the 
estrogen data. 
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