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 Background: Constraint programming (CP) is usually seen as a rigid approach, focusing on crisp, precise, 
distinctions between what is allowed as a solution and what is not. At first sight, this makes it seem inadequate for 
bioinformatics applications that rely mostly on statistical parameters and optimization. The prediction of protein 
interactions, or protein docking, is one such application. And this apparent problem with CP is particularly evident 
when constraints are provided by noisy data, as it is the case when using the statistical analysis of Multiple 
Sequence Alignments (MSA) to extract coevolution information. The goal of this paper is to show that this first 
impression is misleading and that CP is a useful technique for improving protein docking even with data as vague 
and noisy as the coevolution indicators that can be inferred from MSA.  

Results: Here we focus on the study of two protein complexes. In one case we used a simplified estimator of 
interaction propensity to infer a set of five candidate residues for the interface and used that set to constrain the 
docking models. Even with this simplified approach and considering only the interface of one of the partners, there 
is a visible focusing of the models around the correct configuration. Considering a set of 400 models with the best 
geometric contacts, this constraint increases the number of models close to the target (RMSD ¡5Å) from 2 to 5 and 
decreases the RMSD of all retained models from 26Å to 17.5Å. For the other example we used a more standard 
estimate of coevolving residues, from the Co-Evolution Analysis using Protein Sequences (CAPS) software. Using 
a group of three residues identified from the sequence alignment as potentially co-evolving to constrain the search, 
the number of complexes similar to the target among the 50 highest scoring docking models increased from 3 in 
the unconstrained docking to 30 in the constrained docking.  

Conclusions: Although only a proof-of-concept application, our results show that, with suitably designed 
constraints, CP allows us to integrate coevolution data, which can be inferred from databases of protein sequences, 
even though the data is noisy and often “fuzzy”, with no well-defined discontinuities. This also shows, more 
generally, that CP in bioinformatics needs not be limited to the more crisp cases of finite domains and explicit rules 
but can also be applied to a broader range of problems that depend on statistical measurements and continuous data. 

1.   INTRODUCTION 

Proteins constitute the main machinery of life. These 
macromolecules, consisting of long strings of amino 
acid residues, with tens or hundreds of thousands of 
atoms, interact in complex ways to regulate and 
catalyse the chemistry of living organisms. In some 
cases, interactions occur because, by chance, the 
sequence and structure of a protein makes it 
recognize a specific substrate. This happens in the 
immune system, for example, where antibodies are 
created by random shuffling of genetic motifs. But, 
in general, proteins interact because they evolved 
together under pressure to optimize a particular 
interaction, and this coevolution can leave traces in 
the sequences of the proteins involved (Pazos et al., 
1997). For two proteins to interact in a biologically 

useful manner they must recognize each other and 
form a complex that is stable enough to promote a 
particular effect, be it a chemical reaction, electron 
or substrate transfer, or conformational change. This 
requires that the interface region of one protein 
matches, in some chemical or physical attributes, the 
interface region of the other protein, thus placing 
evolutionary constraints on the residues involved. A 
mutation in one of these interface residues will 
create a selection pressure favouring compensatory 
mutations in the other protein (Pazos and Valencia, 
2008). 

This is also true for those interactions, within 
each protein, that determine its three-dimensional 
structure. Thus, identifying coevolution of protein 
residues is of great potential interest for structure 
prediction (Codoñer and Fares, 2008), protein 
domain analysis (Yeang and Haussler, 2007), and 
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for the study of the relations between structure and 
function (Little and Chen, 2009). However, 
coevolution data is insufficient for determining the 
structure of a protein. The statistical information on 
correlations or mutual information between residues 
is too noisy to provide more than a few clear signals, 
and knowing only a few contacts is not enough to 
determine the structure of a protein. Furthermore, 
correlation between residues can arise from other 
factors besides the pressure to maintain the 
necessary contacts. Residues can be correlated 
because unrelated ancestral mutations persist in the 
same descendant lineages, or because of functional 
or structural constraints that affect both residues 
even if they are not close together in the structure 
(Lovell and Robertson, 2010). In addition, 
paralogous sequences – those that descend from a 
common ancestor in the same organism lineage by 
gene duplication – can diverge by selection for 
different roles (e.g. myoglobin and hemoglobin). 
Since it is not trivial to distinguish paralogs from 
orthologs – those that retain the same role and 
diverge due to the splitting of the organism lineages 
– this interferes with the statistics obtained from the 
MSA. 

For protein interaction prediction, the scarcity 
of contact information should, in theory, not be such 
a problem in itself. Since the structure of each 
interaction partner is known, identifying even a 
single correct contact would greatly restrict the 
number of possible configurations for the complex. 
However, the problem remains that any correct 
contact is likely to be hidden in a set of incorrect 
candidates, because correlations can arise from 
stochastic factors or from evolutionary factors 
unrelated to interface contacts. For these reasons, 
there are many different ways of trying to calculate 
the appropriate correlation, and the definition of 
what measure is the best for each case is still an 
open problem (see (Halperin et al., 2006) and 
(Horner et al., 2007) for an overview of several 
alternatives), but our focus, in this paper, is not to 
address the detailed issues of how to infer inter-
molecular contacts from MSA data. In fact, our 
measure is a simplification of different statistical 
correlation measures and scores based on 
evolutionary information and contact propensities 
(e.g. (Madaoui and Guerois, 2008)). Rather, our 
focus is to show that despite the nature of the 
problem, and of the data behind the constraints, CP 
can be used to integrate this information and 
improve protein docking predictions. We achieve 
this by using a constrained docking algorithm that is 
robust to noisy data. 

1.1 Constrained docking 

As published in previous work, BiGGER (Palma 
et al, 2000), our protein docking application, can 
model a wide range of geometric constraints on the 
contacts between two proteins by imposing a 
cardinality constraint on the set of contacts between 
two specified groups of points. Given two groups, A 
and B, with Ma and Mb points respectively, and with 
each group belonging to each partner, the constraint 
is that there must be at least N contacts between the 
two groups. A contact is defined as a pair of points 
(Pa; Pb), respectively from groups A and B, that have 
a distance below a predefined contact threshold D. 
As long as N is not larger than the number of correct 
contacts between these groups and D is not too 
restrictive, the search space can be reduced while 
still avoiding inconsistencies due to having incorrect 
residues included in the groups or losing correct 
models due to over-constraining the search. The 
details for this constraint, and how it is propagated 
during docking, can be found in (Krippahl and 
Barahona, 2005). Moreover, we showed that even a 
few contacts are enough to pinpoint the correct 
protein complex, assuming that such information is 
available (Krippahl et al., 2003), and that this CP-
based can improve docking the results when used in 
conjunction with specific information about the 
mechanism of interaction (Monaco et al., 2007) or 
with spectroscopic data (Palma et al., 2005). 
However, it is still an open question whether one 
can, in practice, apply this same technique to less 
accurate data. Hence, the importance of trying to 
combine our constrained docking algorithm with 
statistical indicators on coevolution. 

1.2 Multiple Sequence Alignment 

Another problem with the inference of 
coevolutionary data is the MSA itself. To identify 
coevolving residues it is first necessary to compute 
an MSA over a set of similar sequences, in order to 
compare the mutations at different positions. The 
MSA attempts to represent the evolutionary relations 
between different sequences by aligning them under 
the assumption that mutations are independent, and 
is usually depicted as a table where each row 
represents one sequence and each column consists of 
all residues that descend from a common ancestor at 
that position, in some ancestral sequence. Deletions 
or insertions are represented by adding gaps to the 
appropriate sequences. Since computing a MSA is 
an NP-Hard problem ((Wang and Jiang, 1994), (Just, 
2001), (Elias, 2006)), MSA algorithms need to take 
shortcuts and rely heavily on heuristics trying to 
optimize the alignment score. This often leads to 
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poor alignments and, given the importance of this 
problem, there has been a significant effort to find 
ways of improving MSA by modelling constraints 
within the classical alignment algorithms ((Myers et 
al., 1996), (Sammeth et al., 2003), (Papadopoulos 
and Agarwala, 2007)) or with Constraint 
Programming techniques ((Yap, 2001), (Will et al., 
2008)). However, one important problem for 
identifying coevolution is the alignment score itself. 
Alignments are scored by assuming independent 
mutations and estimating the likelihood of each pair 
of matching residues, but if some positions are 
linked by coevolutionary constraints, scoring their 
alignments independently will not reflect their actual 
evolutionary relations. While attempting to align 
residues that minimize the differences between 
sequences, the MSA algorithm can misplace 
coevolving sites in the alignment, thus making it 
harder to find the statistical correlations that indicate 
coevolution. However, the possibility of specifying 
groups of atoms that are in contact without having to 
specify which particular pairs form such contacts, a 
feature of our cardinality constraint over the set of 
contacts, allows us to improve the reliability of the 
information inferred from the sequence alignments 
by averaging the estimates for each residue, as 
detailed below in the methods section. 

2.   METHODS 

Our method spans the complete docking process, 
starting from the structures of the proteins that 
interact and finishing with a prediction for the 
complex. The first step is to use the sequence of 
each interaction partner to query a database for 
similar sequences. In our case, we used the EBI PSI-
BLAST server. The reason for using PSI-BLAST 
(Altschul et al., 1997) instead of a simple BLAST 
search is that we need to start with a large number of 
homologous sequences, and PSI-BLAST allows us 
to find more distant relatives. Once we obtain a large 
set of homologous sequences, we use ClustalW 
(Chenna et al., 2003) to obtain the MSA. We also 
match each sequence of one partner to the 
corresponding sequence of the other partner by 
comparing the source organisms for each protein. 
The assumption is that, if the proteins are 
homologous and interact in one organism, they 
should also interact in the other organisms. This is a 
crucial step because proteins will only coevolve 
within the same lineage, and without matching the 
correct organisms the data obtained would be 
meaningless. In fact, the data that can be obtained 
from a random match can provide a baseline with 
which to compare the coevolution indicators, as we 
explain below. 

For the first test case (see Results and 
Discussion), the next step was to use the MSA to 
predict a contact map by estimating how likely it is 
that residues interact across a protein-protein 
interface. This estimate is calculated by summing all 
contact propensity scores (the volume-normalized 
scores from (Glaser et al., 2001)) for all pairs of 
columns in the MSA, across the two different 
partners. These MSA columns represent a snapshot 
of the evolutionary relations for a given pair of 
residues in all different protein sequences, and give 
us an indication of the overall contact propensity 
between those two residues across the set of proteins 
being considered. From this score we then subtract 
the total score obtained using those same two 
columns but randomizing the pairing of the amino 
acid residues. This final score is an indication of 
how much the contact propensity was maintained 
during evolution despite the occurrence of mutations 
that change the amino acid sequences. The higher 
this value, the higher the indication that 
compensatory mutations arose that mitigated the 
deleterious effects of mutations interfering with the 
stability of the interaction. This is a simple and 
intuitive measure that, though likely inferior to more 
refined statistical measures typically used for these 
purposes, still provides a suitable test to the capacity 
of our constrained docking algorithm to deal with 
noisy data. Finally, we average, for each residue in 
each protein, the best ten scores obtained in the 
pairings with all residues of the other protein. The 
reasoning is that residues that are at the interface 
must be in proximity to several residues of the other 
protein, and thus this average can mitigate the effect 
of high scores in incorrect pairs due to chance. This 
average also eliminates the information about which 
specific pairs are in contact, but this is not a problem 
for our system, as opposed to other constraint 
docking approaches that do not use CP (e.g. 
(Dominguez et al., 2003)), because our constraint 
does not require us to identify which pairs are in 
contact. In exchange, this averaging not only reduces 
the noise but also reduces by two orders of 
magnitude the absolute number of candidates to 
consider, since each protein has on the order of a 
hundred amino acid residues, and in this way we 
drop from the total number of pairs to the number of 
residues. This is a useful step that can only be taken 
because of the features of the constraint we use in 
docking. Applying this procedure to the first test 
case, we kept the five highest scoring residues after 
averaging, of which two were actually in the 
interface region. This gave a total of 85 atoms, and 
our constraint was that at least 20 of these 85 atoms 
from one partner was less than 5Å away from any 
atom of the other partner. 
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For the second test case we used CAPS (Fares 
and McNally, 2006) to perform a more standard 
coevolution analysis, based on the Pearson 
coefficient, and used the groups identified as 
coevolving to pinpoint the interaction sites. In this 
case the constraint is much stronger, as in each 
group we required at least one contact between those 
specific residues. This group had only two residues 
in one partner and one residue in the other, thus 
greatly reducing the number of allowed 
configurations. The disadvantage of this approach is 
that, due to the significant number of false positives 
in the CAPS estimates, a different docking search 
must be run for each group. However, given the 
tightness of the constraints, each docking run takes 
only a small fraction of the time needed for an 
unconstrained run, and thus all groups can be easily 
screened. 

3.   RESULTS AND DISCUSSION 

From targets used in the Critical Assessment of 
Predicted Interactions experiment (CAPRI) ((Janin 
et al., 2003), (Janin and Wodak, 2007)) so far, we 
selected a complex from which coevolutionary data 
could, presumably, be found. This requirement 
excluded cases such as antibody-antigen 
interactions, for which no coevolution is expected, 
and complexes determined for the interaction of only 
a domain or fragment of a larger protein, since this 
could create additional difficulties for the MSA 
analysis. Of the remaining candidates, we opted for 
the complex formed by the bacterial N5-glutamine 
Methyltransferase (HemK) and Peptide Chain 
Release Factor 1 (RF1) (Graille et al., 2005), 
corresponding to target 20 in the sixth round of 
CAPRI. Figure 1 (panels A, B and C) summarizes 
the results obtained for this complex, with the 
docking simulations starting from randomly oriented 
partners.  

Panel A shows five residues of RF1 selected as 
candidates for the interface. The two residues inside 
the black rectangle are actually at the interface, and 
the other three are incorrect. The two residues inside 
the gray rectangle appear to be close to the interface 
due to the perspective, but are actually more than 
12Å away from HemK. Figure 1B shows the correct 
RF1-HemK complex and, around the HemK protein, 
400 spheres indicating the geometric center (average 
of all atomic coordinates) of the RF1 protein in each 
of the 400 models that scored highest in surface 
contact and which respected the constraint on the 
contacts between the selected RF1 residues and any 
atom in HemK. The spheres inside the black 
rectangle indicate the large cluster of models close 
to the correct position. It is important to note that 

this constraint only specified a set of residues on 
RF1. For HemK, any atom could count for a contact. 
However, this was enough not only to place HemK 
in the correct position relative to RF1 but also, in 
conjunction with the surface contact criteria, to place 
RF1 in the correct position relative to HemK in a 
large number of models. The panel C shows the best 
400 models without this contact constraint obtained 
from the five candidate residues. It is easy to see 
that, in this case, the positions of RF1 more widely 
distributed around HemK. 

Comparing these two sets of 400 models with 
the largest surface contact, the set without the 
constraint contains 2 models similar to the correct 
complex (¡5Å of RMSD) and a median RMSD of 
26Å when compared to the correct complex. In 
contrast, the set obtained by imposing the constraint 
has 5 models similar to the actual complex and a 
median RMSD of 17.5Å. This is a significant 
improvement because the greatest problem in 
protein-protein docking is to identify the correct 
models within the set of models that have the best 
surface contact (Halperin et al., 2002). Thus, 
anything that helps to enrich this set with good 
approximations of the target complex makes this 
task easier. 

Our other target complex was the N-termimal 
region of the Disulfide interchange protein (DsbD) 
and Cytochrome c biogenesis protein (CcmG) 
(Stirnimann et al., 2005), from the protein-protein 
docking benchmark (Hwang et al., 2008). For this 
complex we used CAPS, a software package 
designed to perform coevolution analysis on protein 
sequences with improved sensitivity over previous 
methods for detecting intra-molecular coevolution, 
and also capable of detecting inter-molecular 
coevolution. CAPS uses Blosum-corrected amino 
acid distances to identify co-variation between 
residues across different proteins and measures their 
correlation using the Pearson coefficient ((Fares and 
McNally, 2006), (Fares and Travers, 2006)). CAPS 
can thus provide estimates on groups of residues that 
coevolve, and these groups can be used to greatly 
constrain the search space for permitted 
configurations. It is important to note that these 
estimates are noisy and, in general, a large part of 
the groups identified by CAPS are false positives. 
However, the constraints provided by forcing 
contacts between small groups of residues reduce the 
computation time for each docking run from several 
hours to around ten minutes. This makes it practical 
to test all the ten to twenty groups that CAPS 
typically proposes as coevolving in even less time 
that it would take to run the docking search without 
constraints. As Figure 1 (panels D and E) illustrates, 
the results are quite significant. On the panel D we 
show the best 50 models, as scored by BiGGER 
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according to residue contact propensities, from the 
constrained docking run. The panel E shows also the 
best 50 models, but from an unconstrained run. 
Whereas in the unconstrained docking there are only 
3 models in the correct position, as shown by the 
three spheres inside the lighter structure representing 
the position of the partner in the target complex, in 
the constrained docking more than half of the 
highest-scoring models are close to the correct 
position, greatly simplifying the task of adequately 
modeling the structure of this complex. This means 
that it is feasible to test, individually, all potential 
residue contacts given by the coevolution 
measurements. Furthermore, since the docking runs 
are independent, the whole process is trivial to run in 
parallel, thus, in practice, taking less time than a 
single unconstrained docking run.  

4.   CONCLUSIONS 

The work presented here leaves many questions 
still unanswered. There are still many parameters to 

optimize, such as the number of candidates to 
consider, the thresholds for the contact distances and 
the number of contacts, as well as implementation 
details, such the integration of better scoring 
functions for the inference of coevolution, and also 
the need to apply this approach to other test cases 
and gather more data on its advantages and 
shortcomings. However, these tasks are ongoing, 
part of current and intended future work. For the 
work reported here, the purpose was to test whether 
CP techniques that enforce strict and well defined 
constraints (such as our cardinality constraint on the 
set of contacts) can be profitably applied to help 
processing diffuse and noisy statistical data. Our test 
cases suggest that this is true and thus, we hope, can 
motivate more applications of CP in those areas of 
Bioinformatics traditionally dominated by “softer”, 
more statistically oriented, approaches. 

The software referred to and developed as part of 
this work is available, included in the Open Chemera 
Library (Krippahl, 2012). 

Figure 1: Results for the complexes RF1-HemK and DsbD-CcmG. Panel A shows the residues of RF1 identified as 
candidates for the interface with HemK. Two residues, in the black rectangle, were correctly identified. The remaining 
three are false positives, even though the perspective makes it seem that the two residues in the grey rectangle are close to 
the interface. Panel B shows the pattern of models obtained with the constraint, and the panel C shows the distribution of 
models obtained without this constraint. Panel D shows the pattern of models obtained with the constraint given by the 
CAPS analysis. Panel E shows the distribution of models obtained without this constraint. The lighter shaded structure 
shows the correct position of the partner that is represented by the spheres. The 50 highest-scoring models according to 
BiGGER's contact propensity score are represented in each panel. 
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