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Abstract  

Background 
One of the most common goals of hierarchical clustering is finding those branches of 

a tree that form quantifiably distinct data subtypes. Achieving this goal in a 

statistically meaningful way requires (a) a measure of distinctness of a branch and (b) 

a test to determine the significance of the observed measure, applicable to all branches 

and across multiple scales of dissimilarity. 

Results 

We formulate a method termed Tree Branches Evaluated Statistically for Tightness 

(TBEST) for identifying significantly distinct tree branches in hierarchical clusters. 

For each branch of the tree a measure of distinctness, or tightness, is defined as a 

rational function of heights, both of the branch and of its parent. A statistical 

procedure is then developed to determine the significance of the observed values of 

tightness. We test TBEST as a tool for tree-based data partitioning by applying it to 

five benchmark datasets, one of them synthetic and the other four each from a 

different area of biology.  For each dataset there is a well-defined partition of the data 

into classes. In all test cases TBEST performs on par with or better than the existing 

techniques.  

Conclusions 

Based on our benchmark analysis, TBEST is a tool of choice for detection of 

significantly distinct branches in hierarchical trees grown from biological data. An R 

language implementation of the method is available from the Comprehensive R 

Archive Network: cran.r-project.org/web/packages/TBEST/index.html .  
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Background  
Hierarchical clustering (HC) is widely used as a method of partitioning data and of 

identifying meaningful data subsets. Most commonly an application consists of visual 

examination of the dendrogram and intuitive identification of sub-trees that appear 

clearly distinct from the rest of the tree. Obviously, results of such qualitative analysis 

and conclusions from it may be observer-dependent. Quantifying the interpretation of 

hierarchical trees and introducing mathematically and statistically well-defined 

criteria for distinctness of sub-trees would therefore be highly beneficial and is the 

focus of this work.   

The need for such quantification was recognized some time ago, and methods 

have been designed for (a) identifying distinct data subsets while (b) making use of 

hierarchical tree organization of the data. These methods fall into two categories, 

depending on whether or not they employ statistical analysis. The simplest approach 

that does not rely on statistical analysis is a static tree cut, wherein the tree is cut into 

branches at a given height. This procedure is guaranteed to produce a partition of the 

data, but provides no way to choose the height at which to cut. Moreover, some 

partitions cannot be produced by a static cut. Dynamic Tree Cut, or DTC in the 

following [1], is a more sophisticated recipe, capable of generating partitions not 

achievable by a static cut. However, DTC partitions depend on the minimal allowed 

number of leaves in a branch, a user-defined parameter that cannot be determined by 

the method itself.  

In addition, there are methods for choosing a tree partition from considerations 

of branch distinctness and its statistical significance. Sigclust, or SC in the following 

[2], is a parametric approach wherein a two-way split of the data is deemed significant 

if the null hypothesis that the data are drawn from a single multivariate normal 

distribution is rejected. The method is designed to work in the asymptotic regime, 
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where the dimensionality of the objects being clustered far exceeds the number of the 

objects. In application to trees SC works in a top-down fashion, by first examining the 

split at the root node and proceeding from a parent node to its daughter nodes only if 

the split at the parent node has been found significant. Unlike SC, the sum of the 

branch lengths method, or SLB in the following [3] is designed specifically for 

hierarchical trees and utilizes a measure of distinction between two nodes joined at a 

parent node that is linearly related to the heights of the two daughter nodes and that of 

the parent. Similarly to SC, SLB adopts a top-down scheme. 

A method introduced here is termed Tree Branches Evaluated Statistically for 

Tightness (TBEST) and shares features with the existing approaches. Like SC and 

SLB, TBEST employs statistical analysis to identify significantly distinct branches of 

a hierarchical tree. Similarly to DTC and SLB, it uses tree node heights to assess the 

distinctness of a tree branch. As with the other three methods, partitions generated by 

TBEST are not necessarily accessible by a static cut.  

At the same time, TBEST differs from the existing designs in several aspects, 

two of which are critical. First, unlike DTC, SC and SLB, it examines all the tree 

nodes simultaneously for distinctness. Secondly, unlike SLB, it combines node 

heights non-linearly to construct a statistic for distinctness that is better able to handle 

a tree in which distinct branches of approximately equal numbers of leaves occur at 

different heights. The key properties of all four methods are summarized in Table 1.  

In the remainder of this work we formulate TBEST and systematically 

compare its performance to that of DTC, SC and SLB on a number of benchmark 

datasets originating from a variety of biological sources. In all cases we find that 

TBEST performs as well as or better than the three published methods. We conclude 
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by discussing generalizations of TBEST and its relation to other aspects of cluster 

analysis. 

Methods 
Consider a set of objects with pair-wise relations given by a dissimilarity matrix. 

Given a linkage rule, a hierarchical tree can be grown for the set. We will only 

consider inversion-free linkage rules here. The tree is specified, in addition to its 

branching structure, by the heights of its nodes. The height of the node quantifies the 

dissimilarity within the data subset defined by the node. We wish to construct, for 

each node of the tree, a measure of how distinct the data subset corresponding to the 

node is from the data set. The special case of the objects being points in a Euclidean 

space, with the dissimilarities defined as distances between the points, may be used 

for guidance in this construction. The node height then quantifies the linear extent of 

the data subset defined by the node. Accordingly, it has been proposed [3] to make the 

measure of distinctness of a node n linear in the difference in heights between a parent 

P(n) of n and that of n itself. An example of a one-dimensional dataset, tabulated in 

Additional File 1 and shown in Figure 1, illustrates a difficulty with such 

construction. Both the subsets shown in blue and in green are clearly distinct from the 

rest of the data, but the difference in heights between the blue node and its parent is 

not as great as that between the green node and its parent. Thus, based on the parent to 

child difference in heights, one would conclude, counter-intuitively, that the blue 

subset is not nearly as distinct as the green subset. A measure in better agreement with 

intuition is the relative difference of heights:  

 ���� �
������������

�������
 (1) 

where h(n) is the height of node n. In the following we refer to S(n) as the tightness of 

node n. In the absence of inversions, the tightness of any node is a number between 0 
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and 1. In particular, S(n) = 1 identically if n is a leaf. The two subsets highlighted in 

Figure 1 are nearly equally tight by this measure, despite the disparity in their heights. 

To enable statistical analysis of tightness, a null distribution of S(n) is 

required, for making comparisons with the observed S(n). This null distribution is 

obtained by randomizing the dataset from which trees are grown. How such 

randomization is to be performed depends on the type of the data and on the broader 

context of the study and cannot be specified in general. For example, if the data 

matrix represents gene expression, with genes as rows and observations as columns, it 

may be appropriate to randomize the data by permuting values independently within 

each row. However, in other situations a more restrictive randomization should be 

adopted. For example, the elements of a binary data matrix may represent the 

mutation status at a set of genomic positions (rows) in a collection of genomes 

(columns). The investigator may wish to randomize the data while preserving both the 

site mutation frequencies (row sums) and the overall mutation burden within each 

genome (column sums).  

Here we design a general procedure for constructing the null distribution of 

tightness for any given data randomization scheme. To guide this design, we 

generated distributions of tightness in trees grown from randomized data for multiple 

combinations of datasets, definitions of dissimilarity, linkage rules and randomization 

methods, as listed in Table 2. As Figure 2 and Additional file 2: Figure S1 illustrate, 

the shapes of these distributions generally depend on the number of leaves and, in 

most cases examined, the peak of the distribution occurs at higher tightness for 

smaller number of leaves. The identity S(n) = 1 for single-leaf nodes is consistent with 

this observation. We therefore conclude that, for a given observed value of tightness, 

the appropriate null distribution should be sampled by repeated randomization of the 
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data, growing a tree for each randomization, selecting among its nodes the ones with 

the numbers of leaves matching the observation, and determining the tightness of 

these nodes. However, it is not guaranteed that, in any tree grown from randomized 

data, there will be a unique node with a number of leaves exactly equal to that of the 

observed node. To resolve this difficulty conservatively, we adopt the following 

procedure. If, for a given data randomization, the tree contains nodes with the number 

of leaves exactly as observed, the highest S(n) computed for these nodes is added to 

the sample. Otherwise we consider all the nodes with the number of leaves nearest the 

observed one from above and all those with the number of leaves nearest the observed 

one from below, and add to the sample the highest S(n) of any of these nodes.  

With the sampling procedure specified, tests for statistical significance of 

tightness can be conducted for all the internal nodes of the observed tree, excluding 

the root, since the latter has no parent. The number of tests is therefore two less than 

the number of leaves. Due to this multiplicity of tests, higher levels of significance are 

required for rejection of the null hypotheses for trees with larger numbers of leaves. A 

straightforward way to handle this requirement would be to increase the size of the 

sample from the null distribution by performing more randomizations. However, for 

trees with large numbers of leaves this simple-minded approach may be rendered 

impractical by computational cost. Instead, higher levels of significance may be 

accessed by using the extreme-value theory (EVT) to approximate the tail of the null 

distribution, thereby permitting considerable economy of computational effort [4]. We 

have used the EVT-based method alongside the more costly purely empirical 

computation of significance in our benchmark studies reported in the following, and 

found the two approaches to be in good agreement, as shown in Additional file 2: 

Figure S2. The p-values displayed in the following were computed by applying a 
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multiple-hypotheses correction of the form p = 1 – (1 – pe)
N-2, where pe is the 

empirical p-value and N is the number of leaves. 

Results  
We evaluated the performance of TBEST in comparison to three published methods 

of identifying distinct subsets of observations, namely, DTC, SC and SLB. Of the five 

datasets used in the evaluation one is synthetic, generated to simulate a set of gene 

expression profiles. The remaining four datasets share two common features: they 

originate in biological experiments and in each case there is an independently known, 

biologically meaningful partition of observations into types. We call this known 

partition “truth”, and the corresponding types the true types, henceforth. The essential 

properties of the benchmark datasets are summarized in Table 3.  

To better judge the performance of TBEST in comparison to the other three 

algorithms, we considered, for each dataset, more than one combination of 

dissimilarity and linkage methods used for hierarchical clustering. With the exception 

of the third benchmark case, randomization of the input data, as required for both 

TBEST and SLB, consisted of randomly permuting the observed values, 

independently for each variable. The degree of agreement between a computed 

partition of the data and the truth is quantified in terms of corrected-for-chance Rand 

index, or cRI in the following [5]. It should be noted that the subsets of the data 

identified as distinct by TBEST and the other three techniques by necessity 

correspond each to a branch of a tree. This, however, is not necessarily the case for 

the true types, some of which do not correspond to a single branch. As a result, a 

perfect match between any computed partition and the truth may not be possible, and 

the maximal attainable value of cRI may be below 1. For this reason, to evaluate the 

performance of TBEST and the published methods across benchmark datasets, we 
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also identify, for each tree considered, a partition into branches that best matches the 

truth and determine cRI between that partition and the computed partitions for each of 

the methods. 

Simulated6 

The data are a sample of size 60 in 600 dimensions [6]. The true partition of the data 

is into six subtypes, with the sizes of 8, 12, 10, 15, 5, and 10. Each of the 600 

variables represents a simulation of a gene expression. For 300 of these genes the 

values are sampled from the same distribution for all subtypes. The remaining 300 

genes fall into six non-overlapping subsets of equal size. Each subset corresponds to 

exactly one subtype, and for that subtype only the genes in the subset are sampled 

from a distribution that differs from the background.  

The comparison between the four algorithms is displayed graphically in Figure 

3. For both combinations of dissimilarity and linkage only TBEST and DTC match 

the truth exactly, while the other two methods either fail to partition the set or do so 

incompletely. We note that the Euclidean dissimilarity – complete linkage 

combination results in a particularly challenging tree, which cannot be partitioned 

correctly by a static cut. 

Leukemia 

The original Leukemia dataset [7] contained mRNA level values for 6817 genes; this 

number was reduced to 999 by feature selection [6]. The truth is a partition of patient 

cases into those of acute myeloid leukemia (AML, 11 cases) and of acute 

lymphoblastic leukemia (ALL), and a further partition of the ALL subset into the B-

cell lineage (19 cases) and the T-cell lineage (8 cases) types. Performance of TBEST 

is compared with that of the other three methods in Figure 4. For the Ward linkage, 

two of the significance-based methods, SC and TBEST, attain the highest possible 
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value of the cRI. However, SC only does so with low significance (p > 0.33), while 

TBEST achieves it best performance with high significance (p ≈ 2×10-3) and 

maintains performance close to optimal in a wide range of p-values. The performance 

of SLB in this case is similar to that of TBEST, but SLB does not attain the optimum. 

With the average linkage, TBEST outperforms both SC and SLB throughout the 

entire range of p-values considered and attains optimal performance at high 

significance. In both cases the performance of DTC is highly sensitive to the minimal 

allowed size of a branch, especially so for the Ward linkage, where this algorithm 

attains top performance for sizes between 6 and 10, but performs substantially below 

the optimum outside this range. 

T10 

The third benchmark dataset originates from DNA copy number analysis of 100 

individual cells harvested from a breast tumor [8]. The true partition in this case is 

four-way, with the subsets differing from each other by ploidy as determined by cell 

sorting. The rows of the data matrix correspond each to a cell, the columns correspond 

each to a pre-defined genomic region of recurrent copy number variation called a 

core, specified by the sign of variation (gain or loss) and the endpoint positions of the 

region. The entries in the matrix quantify the extent to which copy number alterations 

observed in the cells match the cores [9]. 

There are multiple instances of strong geometric overlap between cores. As a 

result, the corresponding columns in the data matrix exhibit strong pairwise 

correlations, positive for cores of equal sign (both gains or both losses), and negative 

for cores of opposite signs. Consistent with these geometric constraints, the null 

distribution in this case is generated as follows: the data matrix is divided into sub-

matrices by the chromosome number (1,2,...,22,X), and rows are permuted 
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independently within each sub-matrix. The results are illustrated in Figure 5. For the 

Euclidean dissimilarity - Ward linkage combination only TBEST and SLB identify 

the true partition, with TBEST succeeding in a broader range of p-values. For the (1 – 

Pearson correlation) dissimilarity - average linkage combination TBEST outperforms 

the other two significance-based algorithms and matches the truth perfectly in a broad 

range of p-values.  

Organelles 

Next, we consider a dataset derived from proteomic analysis of the content of four 

cellular compartments in each of six mouse tissues. The analysis is based on 4768 

protein level readings [10].  

   The true partition of the data is by the cellular compartment, and the two 

hierarchical clustering methods considered here both have the branch structure 

organized by the compartment label, to a good approximation. Of the three 

significance-based methods compared, only TBEST reproduces the truth to the 

maximal extent possible for both combinations of dissimilarity and linkage, and it 

does so stably in the broadest range of the levels of significance (Figure 6).   

  DTC achieves top performance for the (1 - Pearson correlation) dissimilarity – Ward 

linkage combination if its minimal allowed number of leaves does not exceed that of 

the smallest compartment-associated branch of the tree. However, this property is lost 

for the (1 - Pearson correlation) dissimilarity – average combination where an 

additional cluster with two leaves is identified by DTC if the minimal number of 

leaves is set at or below 2. 

Chondrosarcoma 

Finally, we discuss the performance of the four methods on a dataset generated by 

flow cytometry analysis of cells harvested from human tissues and cell lines. Among 
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34 samples, two samples were identified as multivariate outliers and removed before 

clustering [11]. The truth is a four-way partition, with three parts corresponding each 

to a different tissue of origin and the fourth part formed by cells from tumor cell lines.  

   We have identified three combinations of dissimilarity and linkage for which 

the tree structure is fully consistent with the true partition and performed comparative 

analysis for all three, as shown in Figure 7. For two of these combinations ((1 - 

Spearman correlation) dissimilarity – Ward linkage and (1 - Kendall correlation) 

dissimilarity – average linkage) partition by TBEST matches the truth in a range of 

acceptable levels of significance. SLB only does so for the first combination, while 

SC fails to match the truth. Note the data dimension in this case is 11, and it is smaller 

than 32, the number of observations. This dataset is therefore outside the range of 

applicability of SC. For Manhattan dissimilarity – Ward linkage TBEST also matches 

the truth, albeit at low significance (p = 0.1). DTC performs well for the first and third 

combinations, but only matches the truth in a restricted range of numbers of leaves in 

the second case. 

Discussion and Conclusions  
As our test results demonstrate, the performance of TBEST as a tool for data 

partitioning is equal or superior to that of similar published methods in a variety of 

biology-related settings. This is true in particular for datasets with underlying tree-like 

organization, such sets of genomic profiles of individual cancer cells, of the same type 

as our second benchmark case above. In a work presently in progress we are applying 

TBEST systematically to a number of datasets of a similar nature. But TBEST also 

performs well on datasets with no underlying hierarchical structure, such as 

Simulated6 or Leukemia above. In total, TBEST was able to recover the true partition 

of the data on par with or better than the published methods in ten out of eleven test 
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cases considered here. We further note that in all but one cases considered the optimal 

partition of the data by TBEST also was the most significant nontrivial partition. This 

was not the case for the other significance-based methods included in the comparison.  

TBEST can both be applied and formulated more broadly. The applicability of 

TBEST is not limited to data partitioning that has been our focus here. TBEST can be 

used for finding all significantly distinct branches of a hierarchical tree, regardless of 

whether these form a full partition. Further, alternatives to the test statistic of 

Equation 1 can easily be devised, For example, for any non-leaf node n we can 

introduce  

        ���� �
�����

�

�
	��
��������
������

����
       (2)                            

where c1(n), c2(n) are the two children of n. While the discussion of these extensions 

is beyond the scope of this work, an implementation of TBEST as an R language 

package provides a number of options, both for the definition of tightness and for 

annotation of significantly distinct branches [12]. 

   Finally, we note that tightness of tree branches is complementary to another 

important notion in clustering, namely, cluster stability under re-sampling of the input 

data. The latter property can be analysed in a number of ways, such as bootstrap 

analysis of trees [13-15] or methods not directly related to trees [6, 16]. Existing work 

provides examples where both distinctness and stability under resampling are 

prerequisites of a meaningful partition [17]. Incorporation of TBEST into such 

combined analysis will be addressed in the future. 
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Figures 

Figure 1. Illustration of the definition of tightness.  

The data consist of 280 points in one dimension, drawn from a normal mixture with 

the components N(0.5,0.42) (blue), N(11,12) (green) and N(5,22); (black). A) A 

histogram of the input data. B) A hierarchical tree of the input data, grown using the 

absolute difference of the data values as the dissimilarity measure, and single linkage. 

Thus, the node heights shown in (B) are equal to the corresponding gaps in the data, 

as indicated in (A). Nodes n1 and n2 are approximately equally tight. 

Figure 2. Null distribution of tightness.  

The null distribution of node tightness S depends on the number of leaves. The 

empirical probability density distributions for the Simulated6 set with (1 - Pearson 

correlation) dissimilarity – average linkage combination (A) and for the Organelles 

set with (1 - Pearson correlation) dissimilarity – Ward linkage combination (B) are 
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shown, for three different values of the number of leaves in each case. Each plot is 

based on 5000 randomizations of the respective data set.  

Figure 3. TBEST compared to published methods for Simulated6. 

Performance comparison of TBEST and the three published methods in Simulated6 

dataset for the Euclidean dissimilarity – complete linkage combination (top) and for 

the (1 - Pearson correlation) dissimilarity – average linkage (bottom). For each 

combination the left portion (A or D) shows the corresponding dendrogram, under 

which then true partition and the partition best matching the truth for each of the 

methods are shown as color bars. In the middle portion (B or E), the relative cRI of 

the computed partition is plotted against the required level of significance p for each 

of the significance-based methods. The customary p = 0.05 threshold of significance 

is shown by a dashed vertical. In the right portion (C or F), the relative cRI of the 

computed partition is plotted against the minimal allowed number of leaves for DTC. 

Figure 4. TBEST compared to published methods for Leukemia. 

Performance comparison of TBEST and the three published methods in Leukemia 

dataset for the Euclidean dissimilarity – Ward linkage combination (top) and for the 

(1 - Pearson correlation) dissimilarity – average linkage (bottom). For each 

combination the left portion (A or D) shows the corresponding dendrogram, under 

which then true partition and the partition best matching the truth for each of the 

methods are shown as color bars. In the middle portion (B or E), the relative cRI of 

the computed partition is plotted against the required level of significance p for each 

of the significance-based methods. The customary p = 0.05 threshold of significance 

is shown by a dashed vertical. In the right portion (C or F), the relative cRI of the 

computed partition is plotted against the minimal allowed number of leaves for DTC. 
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Figure 5. TBEST compared to published methods for T10. 

Performance comparison of TBEST and the three published methods in T10 dataset 

for the Euclidean dissimilarity – Ward linkage combination (top) and for the (1 - 

Pearson correlation) dissimilarity – average linkage (bottom). For each combination 

the left portion (A or D) shows the corresponding dendrogram, under which then true 

partition and the partition best matching the truth for each of the methods are shown 

as color bars. In the middle portion (B or E), the relative cRI of the computed 

partition is plotted against the required level of significance p for each of the 

significance-based methods. The customary p = 0.05 threshold of significance is 

shown by a dashed vertical. In the right portion (C or F), the relative cRI of the 

computed partition is plotted against the minimal allowed number of leaves for DTC. 

Figure 6. TBEST compared to published methods for Organelles. 

Performance comparison of TBEST and the three published methods in Organelles 

dataset for the (1 - Pearson correlation) dissimilarity – Ward linkage combination 

(top) and for the (1 - Pearson correlation) dissimilarity – average linkage (bottom). 

For each combination the left portion (A or D) shows the corresponding dendrogram, 

under which then true partition and the partition best matching the truth for each of 

the methods are shown as color bars. In the middle portion (B or E), the relative cRI 

of the computed partition is plotted against the required level of significance p for 

each of the significance-based methods. The customary p = 0.05 threshold of 

significance is shown by a dashed vertical. In the right portion (C or F), the relative 

cRI of the computed partition is plotted against the minimal allowed number of leaves 

for DTC. 

Figure 7. TBEST compared to published methods for Chondrosarcoma. 

Performance comparison of TBEST and the three published methods in 

Chondrosarcoma dataset for the (1 - Spearman correlation) dissimilarity – Ward 
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linkage combination (top), (1 - Kendall correlation) dissimilarity – average linkage 

combination (middle), and Manhattan dissimilarity – Ward linkage (bottom). For each 

combination the left portion (A, D or G) shows the corresponding dendrogram, under 

which then true partition and the partition best matching the truth for each of the 

methods are shown as color bars. In the middle portion (B, E or H), the relative cRI of 

the computed partition is plotted against the required level of significance p for each 

of the significance-based methods. The customary p = 0.05 threshold of significance 

is shown by a dashed vertical. In the right portion (C, F or I), the relative cRI of the 

computed partition is plotted against the minimal allowed number of leaves for DTC. 

Tables 

Table 1  - Properties of TBEST and of the three published methods. 

Table 2  - Combinations of datasets, dissimilarity, linkage and randomization 
methods used for testing TBEST. 

Table 3  - Properties of the five benchmark datasets. 

 

Additional files 
Additional file 1 – Dataset displayed in Figure 1  
An Excel file containing a set of 280 positive real values sampled from a mixture of 

three normal components: N(0.5,0.42), N(11,12) and N(5,22). 

Additional file 2 – Figures S1 and S2. 
A PDF file containing Figure S1, an 11-panel figure illustrating null distribution of 

tightness and Figure S2, a comparison of empirical p-value estimates for tightness to 

EVT-based estimates.  
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Table 1. Properties of TBEST and of the three published methods. 

Method Order of examining the tree  Significance estimated 

TBEST all internal nodes in parallel Yes 

SC  top down Yes 

SLB top down Yes 

DTC top down and bottom up No 

 

Table 2.  Combinations of datasets, dissimilarity, linkage and randomization methods, used for testing TBEST. 

Dataset Dissimilarity Linkage Data permutation Method 

Simulated6 Euclidean complete Independently for each coordinate (column) 

(1 - Pearson correlation) average 

Leukemia Euclidean  Ward  Independently for each gene (column) 

(1 - Pearson correlation) average 

T10 Euclidean  Ward Independently for each chromosome; identically for all cores 

(columns) in a chromosome (1 - Pearson correlation) average 

Organelles (1 - Pearson correlation) Ward Independently for each protein (column) 

(1 - Pearson correlation) average 

Chondrosarcoma (1 - Spearman correlation) Ward Independently for each surface marker (column) 

(1 - Kendall  correlation) average 

Manhattan Ward 

 

Table 3. Properties of the five benchmark datasets. 

 

Dataset Origin Number of 
leaves 

Number of 
variables 

True number of 
classes 

Simulated6 Simulation of gene expression 60 600 6 

Leukemia mRNA levels from microarray analysis 38 999 3 

T10 DNA copy number  analysis, sequencing 100 354 4 

Organelles Proteomic analysis, using mass spectrometry 24 4768 4 

Chondrosarcoma Flow cytometry analysis of surface markers from fluorescence intensity 32 11 4 
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