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Abstract

Background Nucleotide and protein sequence feature annotations are essential to understand biology on the

genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological

annotations, there was no standard that described this potentially complex location information as

subject-predicate-object triples.

Description We have developed an ontology, the Feature Annotation Location Description Ontology

(FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be

used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites,

among other features in coordinate systems of the aforementioned “omics” areas. Using the same data

format to represent sequence positions that are independent of file formats allows us to integrate sequence

data from multiple sources and data types. The genome browser JBrowse is used to demonstrate

accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein
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annotations from UniProt mapped to genomic locations.

Conclusions Our ontology allows users to uniformly describe – and potentially merge – sequence annotations

from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised

SPARQL queries against public SPARQL endpoints and/or local private triple stores.

Keywords

SPARQL, RDF, Semantic Web, standardisation, sequence ontology, annotation, data integration, sequence

feature

Background

Describing regions of biological sequences is a vital part of genome and protein sequence annotation, and in

areas beyond this such as describing modifications related to DNA methylation or glycosylation of proteins.

Such regions range from one amino acid (e.g. phosphorylation sites in singalling cascades) to multi

megabase contigs mapped to a complete genome. Such annotation has been discussed in biological

literature since at least since 1949 [1] and recorded in biological databases since the first issue of the Atlas

of Protein Sequence and Structure [2] in 1965.

There are many different conventions for storing genomic data and its annotations in plain text flat file

formats such as GFF3, GVF [3], GTF and VCF, and more structured domain specific formats such as

those from INSDC or UniProt, but none are flexible enough to discuss all aspects of genetics or proteomics.

Furthermore, the fundamental designs of these formats are inconsistent, for example both zero-based and

one-based counting standards exist, a regular source of off-by-one programming errors which experienced

bioinformaticians learn to look out for.

Although non-trivial, file format interconversion is a common background task in current script-centric

bioinformatics pipelines, often essential for combining tools supporting different formats or format variants.

As a result of this common need, file format parsing is a particular strength of community developed open

source bioinformatics libraries like BioPerl [4], Biopython [5], BioRuby [6] and BioJava [7]. While using

such shared libraries can reduce the programmer time spent dealing with different file formats, adopting

Semantic Web technologies has even greater potential to simplify data integration tasks.

As part of the Integrated Database Project (http://lifesciencedb.mext.go.jp/en/) and the Core Technology

Development Program (http://biosciencedbc.jp/en/tec-dev-prog/programs) to integrate life science

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2014. ; https://doi.org/10.1101/002121doi: bioRxiv preprint 

https://doi.org/10.1101/002121
http://creativecommons.org/licenses/by-nd/4.0/


databases in Japan, the National Bioscience Database Center (NBDC) and the Database Center for Life

Science (DBCLS) have hosted an annual “BioHackathon” series of meetings bringing together biological

database teams, open source programmers, and domain experts in Semantic Web and Linked Data [8–11].

At these meetings it was recognised that failure to standardise how to describe positions and regions on

biological sequences would be an obstacle to the adoption of federalised SPARQL/RDF queries which have

the potential to enable cross-database queries and analyses. Discussion and prototyping with

representatives from major sequence databases such as UniProt [12], DDBJ [13] (part of the INSDC

partnership with the NCBI-GenBank [14] and EMBL-Bank [15]), and a number of glycomics databases

(BCSDB [16], GlycomeDB [17], GLYCOSCIENCES.de [18], JCGGDB, RINGS [19] and UniCarbKB [20])

and assorted open source developers during these meetings led to the development of the Feature

Annotation Location Description Ontology (FALDO).

FALDO has been designed to be general enough to describe the position of annotations on nucleotide and

protein sequences using the various levels of location complexity used in major databases such as INSDC

(DDBJ, NCBI-GenBank and EMBL-Bank) and UniProt, their associated file formats, and other generic

annotation file formats such as BED, GTF and GFF3. It includes compound locations, which are the

combination of several regions (such as the ‘join’ location string in INSDC), as well as ambiguous positions.

It allows us to accurately describe ambiguous positions today in such a way that future more precise

knowledge does not introduce logical conflicts which potentially could only be resolved by intervention of

an expert in the field.

FALDO is suited to accurately describe the position of a feature on multiple sequences. This is expected to

be most useful when lifting annotation from one draft assembly version to another. For example, a gene

can start at a position for a given species’ genome assembly, while the conceptually same gene can start at

another position in previous/following genome assemblies for the species in question.

FALDO has a deliberately narrow scope which does not address general annotation issues about the

meaning of or evidence for a location, rather FALDO is intended be used in combination with other

relevant ontologies such as the Sequence Ontology (SO) [21] or database-specific ontologies. That is, it is

used only to describe the loci of features, not to describe the features themselves. A FALDO position

relative to a sequence record is comparable to a coordinate position on a map: it makes no claim about

how that sequence record or map is related to the real world.
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Implementation

FALDO is a small OWL2 ontology with 14 classes of which 9 deal with the concept of a position on a

sequence (Figure 1). Four of those classes are used to describe accurately what we know of a position that

is not precisely determined. Four classes are used to describe the concept of a position on a strand of DNA,

e.g. positive, negative and on both strands. All eight of these classes are sub classes of the generic

faldo: Position super-class. The ninth class is the concept of a region i.e. something with a end and start

position. In contrast to other representations, FALDO has no explicit way to say that it is not “known” on

which strand a position is, because this explicit statement unknown strand position can introduce

contradictions when merging different data sets. For example, some positions could end up being

contradictorily typed both as forward-stranded as well as being located on an unknown strand position.

There are 3 more classes (faldo: CollectionOfRegions and its subclasses) that are only there for

backwards compatibility with INSDC join features with uncertain semantics. i.e. those join regions where

a conversion program can only state that there are some regions and that the order that they are declared

in the INSDC record might have biological significance. However, here the INSDC record needs intelligent

inspection before the data can be cleanly converted to a data model with rich semantics.

FALDO defines a single datatype property, faldo: position, that is used to provide a one-based integer

offset from the start of a reference sequence. This property, when used together with the faldo: reference

property, links the concept of a faldo: Position to an instance of a biological sequence. Note that these

terms are case-sensitive: faldo: position is a property, and faldo: Position is a concept.

For compatibility with a wide range of data, FALDO makes very few assumptions about the representation

of the reference sequence, and can be used to describe positions on both single- and double-stranded

sequences. When both strands of a double-stranded sequence are represented by a single entity

(recommended over each strand being represented separately), integer faldo: position properties are

counted from the 5’ end of whichever strand is considered the “forward” strand.

A key part of the FALDO model is the separation of feature and where a feature is found in a sequence

record. For this we use the faldo: location object property. This property is used to distinguish between

a conceptual gene as an “unit of inheritance” and the corresponding representation of the DNA sequence

region encoding the gene as stored in a database.

As in the INSDC data model and the associated GenBank ASN.1 notation, each location in FALDO has an

identifier for the sequence it is found on [22]. This means that the position information is complete without

further references to the context the position information was found in. The difference is that in FALDO,
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Figure 1: The classes and object properties used in FALDO.

due to its RDF nature, the identifier of the sequence is a dereferencable pointer (URI) on the web, instead

of just a string of characters.

Compression via OWL2 reasoning

For large databases such as INSDC or UniProt, the need to repeat the reference sequence for each position

may come with a significant cost in storage. However, this triple does not need to be materialised in the

database, as it is inferrable using OWL2 property chain reasoning. With the axiom shown in Figure 3 the

faldo: reference triples can be inferred for any faldo: position described by an INSDC record. Having

an OWL-capable query rewriter allows users to ignore the difference between encoding the

faldo: reference properties explicitly and having them inferred at query time. For RDF databases that
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Figure 2: Assorted conventions for regions, start, end, and strands. This figure shows two hypothetical
features on a DNA sequence (labeled chr1), on either the forward strand (orange) or reverse strand (blue).
Using the INSDC location string notation, these regions are “1050..2080” and “complement(1050..2080)”
respectively if implicitly given in terms of the reference chr1. Using the GTF/GFF3 family of formats,
regardless of the strand these two locations are described with start = 1050 and end = 2080, and in general,
start ≤ end. Biologically speaking, in terms of transcription, the start of a genomic feature is strand
dependent. For the forward strand feature (orange), the start is 1050 while the reverse strand feature (blue)
starts from 2080.

do not offer this capability, the necessary triples can be easily added using a single SPARQL insert query

(Figure 4). This flexibility allows users of the data to select the best approach for their infrastructure,

rather than being constrained by the decisions of the data provider.

Validating data encoded with FALDO

Some databases only allow a subset of FALDO. For example INSDC requires that the start and end of a

region are on the same sequence, while UniProt requires that a feature is described in relation to the

insdc:reference

a owl:ObjectProperty ;

rdfs:subPropertyOf faldo:reference ;

owl:propertyChainAxiom

(faldo:endOf faldo:locationOf insdc:featureOf insdc:sequence) ,

(faldo:locationOf insdc:featureOf insdc:sequence) ,

(faldo:beginOf faldo:locationOf insdc:featureOf insdc:sequence) .

Figure 3: OWL2 property chain axiom to infer that all positions described in an INSDC record are relative
to the main sequence of the record (in RDF turtle syntax, prefixes ommited).
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INSERT {

?position faldo:reference ?sequence .

}

WHERE {

?record a insdc:Entry ;

insdc:feature ?feature ;

insdc:sequence ?sequence .

?feature faldo:location ?location .

{ ?location faldo:begin|faldo:end ?position . }

UNION

{ ?location a faldo:Position . }

}

Figure 4: A SPARQL query to add all faldo: reference properties to faldo: positions described from a
insdc: record.

reference’s canonical isoform. Yet another database might annotate the location of a glycsoylation site on

an UniProt isoform sequence. When added to an UniProt record in RDF, this extra RDF annotation

would be ignored by applications that are not concerned with glycosylation of isoforms. The same

annotation can not be added to UniProt XML as the XSD schema does not allow for it, and the older plain

text flat-file format does not allow for this kind of third party extension either. An attempt to add such

information would very likely break any XML or flat-file parser and introduces the risk of importing data

incorrectly. Only the UniProt RDF format allows other people to make assertions about UniProt data

without breaking existing tools.

There are many ways to add constraints to the data model by applications using Semantic Web

technologies [23]. In other words, data validation is an application specific concern instead of a data format

concern.

Users

FALDO is already deployed and used in a number of tools and databases.

JBrowse can use SPARQL queries with FALDO to visualize annotations on reference sequences from

semantic databases [24] (see Figure 5).

INSDC-DDBJ DDBJ is currently working on an RDF format for the INSDC data that is stored in

DDBJ/GenBank/EMBL-Bank.

BioInterchange uses FALDO to make position information stored in current bioinformatics formats (s.a.
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Figure 5: JBrowse showing features, whose location is encoded using FALDO, selected via SPARQL (at
http://togogenome.org/).

GFF3, GTF and GVF) available to the Semantic Web (http://www.biointerchange.org/).

TogoGenome a genome database collection provided by the DBCLS also uses FALDO in its RDF

representation (http://togogenome.org/).

PhenomeBrowser The positions on the mouse genome of phenotype and disease related natural

variations are described using FALDO.

BOING The “bio-ontology integrated querying of sequence annotations” framework uses FALDO to

describe all feature locations [25].

SPARQL-BED This simple tool that turns any BED file into a Web accessible SPARQL endpoint using

FALDO to describe BED feature positions (https://github.com/JervenBolleman/sparql-bed).

BioPerl BioPerl [4] now includes a FALDO exporter (Bio::FeatureIO::faldo), which allows any

BioPerl-supported feature format to be translated to FALDO.

UniProt UniProt annotates many protein features and sites. Starting with UniProt RDF release 2014 01

the positions of protein feature are described using FALDO.

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2014. ; https://doi.org/10.1101/002121doi: bioRxiv preprint 

https://doi.org/10.1101/002121
http://creativecommons.org/licenses/by-nd/4.0/


AC Q6Q250;

...

DE Flags: Precursor; Fragment;

...

FT SIGNAL <1 15

FT ACT_SITE 153 153 Nucleophile (By similarity).

uniprot:Q6Q250 rdf:type up:Protein ;

up:annotation SHA:E50-1B, SHA:E50-1C ;

up:sequence isoform:Q6Q250-1 ;

rdfs:seeAlso ddbj-cds:AAS67043.1 .

SHA:E50-1B a up:Signal_Peptide_Annotation ;

faldo:location region:f1t15 .

SHA:E50-1C a up:Active_Site_Annotation ;

faldo:location position:153 .

region:f1t15 a faldo:Region ;

faldo:begin position:before1 ;

faldo:end position:15 .

position:before1 a faldo:InRangePosition ;

faldo:reference isoform:Q6Q250-1 ;

faldo:end position:1 .

position:1 a faldo:ExactPosition ;

faldo:reference isoform:Q6Q250-1 ;

faldo:position 1 .

position:15 a faldo:ExactPosition ; #End of the signal peptide region

faldo:reference isoform:Q6Q250-1 ;

faldo:position 15 .

position:153 a faldo:ExactPosition ; #Where the active site should be

faldo:reference isoform:Q6Q250-1 ;

faldo:position 153 .

isoform:P05064-1 up:fragment "single" ;

up:precursor true .

Figure 6: Excerpt from UniProt entry Q6Q250 showing the position of an active site and a signal peptide
in both the UniProt flat-file format and FALDO.

Results

One of the practical goals driving the development of FALDO was to be able to represent all the annotated

sequences in INSDC and UniProt as RDF triples, as a step towards providing this data via SPARQL

endpoints where it can be queried.

The protein examples considered here, such as the UniProt feature annotations, describe relatively simple

locations within protein sequences (see the active site annotation in Figures 6 and 7).

Complement strand and INSDC compound locations

Describing biological features in relation to a genomic DNA sequence does not have to be complicated.
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LOCUS AY566647 948 bp mRNA linear INV 22-MAR-2004

...

FEATURES Location/Qualifiers

...

CDS <1..>948

/note="allergen Pol d 1.03"

/codon_start=1

/product="venom phospholipase A1 3 precursor"

/protein_id="AAS67043.1"

/db_xref="GI:45510891"

/translation="ADDLTTLRNGTLDRGITPDCTFNEKDIELHVYSRDKRNGIILKK

EILKNYDLFQKSQISHQIAILIHGFLSTGNNENFDAMAKALIEIDNFLVISVDWKKGA

CNAFASTNDVLGYSQAVGNTRHVGKYVADFTKLLVEQYKVPMSNIRLIGHSLGAHTSG

FAGKEVQRLKLGKYKEIIGLDPAGPSFLTSKCPDRLCETDAEYVQAIHTSAILGVYYN

VGSVDFYVNYGKSQPGCSEPSCSHTKAVKYLTECIKRECCLIGTPWKSYFSTPKPISQ

CKRDTCVCVGLNAQSYPAKGSFYVPVDKDAPYCHNEGIKL"

ddbj-feature:AAS67043.1 rdf:type :Nucleotide_Resource ;

faldo:location [ a faldo:Region ;

faldo:begin [ a faldo:InRangePosition ;

faldo:before [a faldo:ExactPosition ;

faldo:position 1 ;

faldo:reference ddbj-seq:AY566647 ]]];

faldo:end [ a faldo:InRangePosition ;

faldo:after [a faldo:ExactPosition ;

faldo:position 948 ;

faldo:reference ddbj-seq:AY566647 ]]].

Figure 7: DDBJ record associated with UniProt Q6Q250 showing the related CDS sequence, with coding
region outside of the known deposited mRNA sequence.
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@prefix faldo: <http://biohackathon.org/resource/faldo#> .

@prefix ddbj-record: <http://ddbj.nig.ac.jp/entry/nucleotide/> .

# Here are example triples describing a gene, note the location line:

<_:geneCheY> a so:Gene ;

rdfs:label "cheY" ;

faldo:location <_:example> .

# The following triples define the location used by the feature above,

# made up of a region and its two positions:

<_:example> a faldo:Region ;

faldo:begin [ a faldo:Position ,

faldo:ExactlyKnownPosition ,

faldo:ReverseStrandPosition ;

faldo:position 1965461 ;

faldo:reference ddbj-record:U00096.3 ];

faldo:end [ a faldo:Position ,

faldo:ExactlyKnownPosition ;

faldo:ReverseStrandPosition ;

faldo:position 1965072

faldo:reference ddbj-record:U00096.3 ].

Figure 8: Using FALDO in Turtle [26] syntax to describe the location of a gene feature cheY at
complement(NC 000913.2:1965072..1965461) in a INSDC record U00096.3.

For example the cheY gene (shown in Figure 8) Escherichia coli str. K-12 substr. MG1655 (accession

NC 000913.2) is described in the INSDC feature table as complement(1965072..1965461), which is 390

base pairs using inclusive one-based counting. This feature begins on the base complementary to

start = 1965461 and finishes at end = 1965072, so the INSDC location string can be interpreted as

complement(end..start). FALDO respects this biological interpretation of a feature location on the

reverse strand.

In contrast, other formats such as the GFF family of formats, require start ≤ end regardless of the strand,

which is equivalent to interpreting the INSDC location string as complement(start..end). This convention

has some practical advantages when dealing with numerical operations on features sets, such as checking

for overlaps or indexing data. For example, the feature length is given by length = end− start + 1 under

this numerically convenient scheme where the interpretation of start versus end is strand independent.

There are a number of implicit conventions in INSDC data that need to be translated into the more

explicit FALDO model. Some of the complicated regions for INSDC are features on a circular chromosome,

the most common of which are features that overlap the chromosome’s origin of replication. One such

feature is the “Protein II” gene from the reverse strand of f1 bacteriophage (ddbj:J02448). “Protein II”
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{"@context" : {"comment" : "http://www.w3.org/2000/01/rdf-schema#comment",

"label" : "http://www.w3.org/2000/01/rdf-schema#label",

"taxonomy" : "http://purl.uniprot.org/taxonomy/",

"ddbj" : "http://ddbj.nig.ac.jp/ontologies/sequence/",

"ddbj-record" : "http://ddbj.nig.ac.jp/entry/nucleotide/",

"ddbj-aa" : "http://ddbj.nig.ac.jp/entry/protein/",

"ddbj-seq" : "http://ddbj.nig.ac.jp/entry/sequence/",

"identifier" : "http://purl.org/dc/terms/identifier",

"faldo" : "http://biohackathon.org/resource/faldo#",

"so" : "http://purl.obolibrary.org/obo/so.owl#"},

"@id" : "ddbj-record:J02448",

"identifier" : "J02448",

"comment" : "Bacteriophage f1, complete genome",

"ddbj:organism": "taxonomy:10863",

"ddbj:feature" : {"@id" : "ddbj-protein:AAA32209.1 ",

"@type" : "so:0000316",

"label" : "Protein II",

"faldo:location": {"@type" : "faldo:Region",

"faldo:begin": {"@type": ["faldo:Position",

"faldo:ExactlyKnownPosition",

"faldo:ForwardStrandPosition" ],

"faldo:position" : "6006",

"faldo:reference": "ddbj-seq:J02448" },

"faldo:end" : {"@type" : ["faldo:Position",

"faldo:ExactlyKnownPosition",

"faldo:ForwardStrandPosition" ],

"faldo:position" : "831",

"faldo:reference" : "ddbj-seq:J02448" }

}

}

}

Figure 9: Partial example of using FALDO in JSON-LD [27] syntax to describe the CDS “Protein II” at
join(6006..6407,1..831) on J02448.

transcription starts at position 6006 on the reverse strand and ends at position 831 (see Figure 9).

Fuzzy locations

Feature positions in, for example, INSDC or UniProt, are not always exactly known or described, but we

should strive to describe our limited knowledge as accurately as possible. Take for example the position of

the signal peptide annotation shown in Figure 6, where the protein sequence is known to belong to a family

of proteins, but unfortunately only a part of the amino acid sequence is known. The UniProt curator

deduced that the signal peptide region only partly overlaps the known sequence fragment. The same is true

in the related INSDC record, were the CDS starts and ends before the known mRNA sequence (see
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\/

5’..AAGCTT..3’

123456

3’..TTCGAA..5’

/\

:enzymeRestrictionSite a example:EnzymeRestrictionSite ;

faldo:location :EnzymeRestrictionRegion .

:enzymeRestrictionRegion a faldo:Region ;

faldo:begin :53_1 ;

faldo:end :35_6 .

:53cleaveageSite a example:CleavageSite ;

faldo:location [a faldo:InBetweenPosition,

SO:0001690 ; # 3’ restriction enzyme junction

faldo:after :53_1 ;

faldo:before :53_2 ] .

:35cleaveageSite a example:CleavageSite ;

faldo:location [a faldo:InBetweenPosition,

SO:0001689 ; # 5’ restriction enzyme junction

faldo:before :35_5 ;

#Note the before after reversion due to biological start

faldo:after :35_6 ].

:53_1 a faldo:ExactPosition , faldo:ForwardStrandedPosition ;

faldo:position 1 .

:53_2 a faldo:ExactPosition , faldo:ForwardStrandedPosition ;

faldo:position 2 .

:35_5 a faldo:ExactPosition , faldo:ReverseStrandedPosition ;

faldo:position 5 .

:35_6 a faldo:ExactPosition , faldo:ReverseStrandedPosition ;

faldo:position 6 .

Figure 10: FALDO representation of HindIII restriction enzyme cleavage site with sticky ends.

Figure 7). As demonstrated in the figure, this limited knowledge can be described using the FALDO

classes faldo: InRangePosition and faldo: OneOfPosition.

Restriction enzymes

The task of describing the recognition sites of most restriction enzymes is quite straightforward, as is

describing the cleavage site of a blunt end cutting enzyme. However, the cut site of a sticky-end cutting

enzyme like HindIII that leaves an “overhang” is more challenging to specify, since it cuts in a different

place on the forward and reverse strands. Figure 10 demonstrates how to describe this in FALDO by

specifying start and end positions of the cut site that are on different strands.

13

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2014. ; https://doi.org/10.1101/002121doi: bioRxiv preprint 

https://doi.org/10.1101/002121
http://creativecommons.org/licenses/by-nd/4.0/


Discussion

When designing FALDO, a broad range of use cases were considered from human genome annotations to

protein domains and glycan binding sites on amino acid sequences, with the goal of developing a scheme

general enough to describe regions of DNA, RNA and protein sequences.

Advantages and drawbacks of existing file formats were considered, including line based column formats

like BED and GTF/GFF3 which focus on exact ranges on a given sequence, and the more complex

locations supported by the INSDC feature tables used by DDBJ, NCBI-GenBank and EMBL-Bank.

The simplest non-stranded range location on a linear sequence requires a start and end coordinate, but

even here there are existing competing conventions for describing open or closed end-points using zero and

one-based counting (for example BED versus GTF/GFF3/INSDC).

In FALDO we always count from the start of the forward 5’–3’ strand, even for features on the reverse

strand. This encoding means there is no need to know the length of the sequence to compare positions on

the different strands of a linear chromosome or genome. The end and start position of a region is inclusive.

Unlike formats like GTF/GFF3, FALDO shares with Chado [28] the convention that the start coordinate

should be the biological start (which may be a numerically higher value than the end coordinate).

For a semantic description describing the strand explicitly is preferable. FALDO chooses to add the strand

information to the position. This is required to accurately describe for example the sticky ends of an

enzyme digestion cut site, as in the HindIII example (Figure 10).

A major difference with other standards is that we chose to make strandedness and reference sequence a

property of the position, instead of the region. This is important in a number of use cases. For example,

one may need to describe the position of a gene on a draft genome assembly where the start and end are

known to be on different contigs. This can be the case when RNA mapping is used in the genome assembly

process. Another is when rough semantics are used in queries e.g. answering what is the start and end of a

gene. In a process called transplicing, exons of one gene can be found on multiple chromosomes, or on

different strands of the same chromosome. e.g. gene mod(mdg4 ) of Drosophila melanogaster

(uniprot:Q86B87). In such cases the start of the gene can be on a different reference sequence or strand

than the end. These biological realities cannot be described accurately if the reference sequence was a

property of the region. As a side effect, it allows single nucleotide or amino acid sites to be described

directly as a position without a need for an artificial region of length one.

Every faldo: Position refers to the sequence it is on. This allows us to say that gene XX starts at

position 4 of assembly Y 1, while the same conceptual gene starts at position 5 of assembly Y 2. Even
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within the same assembly, FALDO offers the possibility to describe features in different contexts at the

same time, allowing for instance to represent a SNP in terms of its position within a known coding region

(i.e. gene coordinates) and within a chromosome region, which offers clear advantages for features

annotation. Chado also allows multiple locations per feature, but unlike FALDO, the start and end of any

location must be in the same region, which prohibits for example a feature that spans more than one

contig, or describing the same feature on two different genome assemblies.

Efficiency of Region-of-Interest queries

For FALDO we also considered query efficiency in comparison to existing search technology. Region of

interest (ROI) queries are common operations performed on a set of genome annotations to extract a set of

features within a range. For applications such as genome browsers, it is important that these are efficient

enough. Although some RDF query engines may perform poorly when performing ROI queries over large

feature sets, others have special indexes (e.g. literal filter indexes) that improve query performance. There

is scope for further optimisation in the context of a SPARQL query by combining efficient algorithms and

indexes such as Nested Containment Lists (NCLs) [29] or spatial indexes.

As a RDF based format, FALDO can be used to represent feature position information in a wide variety of

serialisations e.g. JSON-LD, RDF/XML, Turtle, RDFa (embedded in HTML). This allows developers

flexibility in consideration of their usage scenario, while at the same time allowing conversion to the

common RDF triple model used in RDF databases and accessed by SPARQL queries.

Conclusions

FALDO is a small ontology for describing biological features in a consistent manner that bioinformaticians

can depend upon. The diverse software and high-profile databases already using FALDO show that it has

enough power to describe existing biological feature locations. The uptake of this ontology means that it is

now much easier for users querying biological databases on the Semantic Web to compare features on the

basis of locations. This also means that visualisation tools that access positional data via SPARQL can

easily reuse significant parts of queries between databases.

Availability and requirements

FALDO is publicly available at the URL http://biohackathon.org/resource/faldo which is developed under

source code control at https://github.com/JervenBolleman/FALDO hosted by GitHub Inc, where everyone
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is free to suggest extensions and improvements and if required extend FALDO to meet their unique

requirements. FALDO currently uses the Creative Commons Attribution Zero 1.0 Public Domain

dedication license, making FALDO available to use and reuse free of charge.

The ontology is shared in the Turtle (http://www.w3.org/TR/turtle/) RDF syntax, which can be

automatically converted to another RDF syntax such as RDF/XML if required.

List of abbreviations

BED Browser Extensible Data (file format)

DDBJ DNA Data Bank of Japan

EMBL European Molecular Biology Laboratory

FALDO Feature Annotation Location Description Ontology

GFF Generic Feature Format

GFF3 Generic Feature Format version 3

GTF Gene Transfer Format, a variant of GFF

GVF Genome Variation Format, an extension to GFF3

INSDC International Nucleotide Sequence Database Collaboration

OWL Web Ontology Language (note acronym is OWL, not WOL)

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

UniProtKB Universal Protein Knowledgebase

VCF Variant Call Format
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H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka
E, Wilkinson MD, Birney E: The Bioperl toolkit: Perl modules for the life sciences. Genome Research
2002, 12(10):1611–1618, [http://dx.doi.org/10.1101/gr.361602].

5. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F,
Wilczynski B, de Hoon MJL: Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics 2009, 25(11):1422–1423,
[http://dx.doi.org/10.1093/bioinformatics/btp163].

6. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T: BioRuby: bioinformatics software for the
Ruby programming language. Bioinformatics 2010, 26(20):2617–2619,
[http://dx.doi.org/10.1093/bioinformatics/btq475].
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