
1 

 

A Powerful Approach for Identification of Differentially 1 

Transcribed mRNA Isoforms 2 

 3 

Yuan-De Tan and Joel. R. Neilson 4 

Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, 5 

Baylor College of Medicine, Houston, Texas, 77030 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

this version posted January 26, 2014. ; https://doi.org/10.1101/002097doi: bioRxiv preprint 

https://doi.org/10.1101/002097


2 

 

Next generation sequencing is being increasingly used for transcriptome-wide 21 

analysis of differential gene expression. The primary goal in profiling expression is 22 

to identify genes or RNA isoforms differentially expressed between specific 23 

conditions.   Yet, the next generation sequence-based count data are essentially 24 

different from the microarray data that are continuous type,  therefore, the 25 

statistical methods developed well over the last decades cannot be applicable.  For 26 

this reason, a variety of new statistical methods based on count data of transcript 27 

reads has been correspondingly developed. But currently the transcriptomic count 28 

data coming only from a few replicate libraries have high technical noise and small 29 

sample size bias, performances of these new methods are not desirable. We here 30 

developed a new statistical method specifically applicable to small sample count 31 

data called mBeta t-test for identifying differentially expressed gene or isoforms on 32 

the basis of the Beta t-test. The results obtained from simulated and real data 33 

showed that the mBeta t-test method significantly outperformed the existing 34 

statistical methods in all given scenarios.  Findings of our method were validated by 35 

qRT-PCR experiments. The mBeta t-test method significantly reduced true false 36 

discoveries in differentially expressed genes or isoforms so that it had high work 37 

efficiencies in all given scenarios.  In addition, the mBeta t-test method showed high 38 

stability in performance of statistical analysis and in estimation of FDR. These 39 

strongly suggests that our mBeta t-test method would offer us a creditable and 40 

reliable result of statistical analysis in practice.  41 

 42 
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 43 

Development of high-throughput sequencing technologies in recent years (Cloonan et al. 44 

2008a; Cloonan et al. 2008b; Mortazavi et al. 2008)has massively been increasing genomic 45 

data and led sequencing cost to rapidly go down so that the sequencing technologies as 46 

platforms for studying gene expression or sub-gene expression have become more and 47 

more attractive (McCarthy et al. 2012). Current next generation sequencing (NGS) 48 

technologies such as RNA-seq (Cloonan et al. 2008a; Cloonan et al. 2008b; Mortazavi et al. 49 

2008), Tag-seq (Morrissy et al. 2009), deepSAGE (t Hoen et al. 2008), SAGE-seq (Wu et al. 50 

2010), and PAS-seq (Shepard et al. 2011) can generate short reads of sequence tags, that is, 51 

sequences of 35-300 bp that correspond to fragments of the original RNA. In particular, 3P-52 

seq or PAS-seq(Shepard et al. 2011), a deep sequencing-based method for quantitative and 53 

global analysis of RNA polyadenylation has been used to study expression behavior of RNA 54 

isoforms in a variety of human and mouse cells.  55 

   56 

To evaluate differential expression between conditions or cases, sequences need to be 57 

mapped to genome and annotated. After doing so, the sequence data can be transformed to 58 

count data at genomic level of interest. Although RNA-Seq can be used to study differential 59 

transcription of novel exons, splice-variants and isoforms-specific (Denoeud et al. 2008; Li 60 

et al. 2010; Pan et al. 2008; Wang et al. 2009) and allele-specific expression(Degner et al. 61 

2009; Montgomery et al. 2010), our focus here is on differential expression of genes or 62 

isoforms due to alterative polyadenylation signals and cleavage sites in 3’ untranslated 63 

regions (3’UTR) .  64 
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 65 

A RNA sample may be thought of as a RNA population and each RNA sequence as one 66 

individual. Sequencing a RNA sequence is a random process of sampling from a RNA 67 

population. If each individual RNA has equal chance to be selected for sequencing, then 68 

probability of sequencing a RNA sequence is proportional to the length of waiting time 69 

(Anders et al. 2010). Thus number of RNA read counts for a given genomic feature should 70 

follow Poisson distribution.  The Poisson distribution implicates that only one parameter 71 

determines count variation of reads.  However, since the Poisson model is just with respect 72 

to noise but does not deal with biological source of variation, that is, difference in 73 

transcription between samples, some counts are over-dispersed between samples under 74 

the Poisson Model.  Accordingly, variation of read counts consists of two parts: 75 

noise(Poisson) and biological variability, that is, 22
biological

2
noise

2 μμσσσ a+=+=  where 76 

μσ =2
noise is variance of Poisson distribution and 2

biologicalσ is biological variance, which is 77 

determined by biological effect a. This is just characteristic of negative binomial 78 

distribution (Anders et al. 2010; Robinson et al. 2008). 79 

  80 

To identify differential transcription of RNA tags, many statistical methods have been 81 

proposed so far. At early stage, most of methods are based on Poisson distribution 82 

(Madden et al. 1997) or normal approximations (Kal et al. 1999; Man et al. 2000; Michiels 83 

et al. 1999), permutation (Zhang et al. 1997), beta distribution (Baggerly et al. 2003) or 84 

over-dispersed logistic linear distribution (Baggerly et al. 2004). As RNA count data have 85 

become more and more prevalent, newer statistical methods such as Exact test(Robinson 86 
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et al. 2008), empirical Bayesian method (Hardcastle et al. 2010), DESeq (Anders et al. 87 

2010), generalized linear modeling (McCarthy et al. 2012), and likelihood ratio tests (Wang 88 

et al. 2010) have recently been developed.   89 

 90 

Despite the development of technologies decreasing costs of sequencing, RNA-Seq 91 

experiments still remain expensive for many researchers so that RNA-Seq studies have to 92 

be limited to only a very small number of replicate libraries for each condition or case. The 93 

basic scientific need to assess differential transcription due to biological variation remains 94 

undiminished but the problem becomes complicated by the fact that different genes or 95 

transcripts may have different degrees of biological variation. There is therefore a need to 96 

estimate biological variation as reliably as possible from a few replicate libraries (McCarthy 97 

et al. 2012).  The classical statistical methods are not applicable for such data. To address 98 

this problem, many methods such as empirical Bayesian method (baySeq) (Hardcastle et al. 99 

2010), DESeq (Anders et al. 2010)  and Exact test (Robinson et al. 2010b; Robinson et al. 100 

2007; Robinson et al. 2008)  adopt variation information across transcriptome and the 101 

GLM (McCarthy et al. 2012)uses similarity information between genes.  However, none of 102 

these methods considers fudge effect of small sample size.  So-called fudge effect is such an 103 

effect on which differences between two means are small but sample variances are also 104 

much smaller such that statistics are inflated (Tusher et al. 2001, Tan et al 2007). This is 105 

because sample size is so small that there is a big chance to give rise to small difference 106 

among replicates in a large-scale data (see Discussion Section for more detail). The fudge 107 

phenomenon broadly exists in high-throughput data, especially, in transcriptomic data 108 
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because there are a lot of very small counts.  Therefore, to suppress such an effect can 109 

greatly improve performance of the statistical methods in identification of differentially 110 

expressed genes or isoforms. For doing so, we are required to develop novel methods or to 111 

modify the existing statistical methods.  112 

 113 

Our development work is based on Beta t-test of Baggerly et al (2003) (Baggerly et al. 114 

2003)because this method is not sensitive to data distributions (see Discussion Section). 115 

On the other hand, the Beta t-test approach optimizes weights for replicate libraries. The 116 

weighting and optimal strategy may be useful for excluding artificial or technical noise in 117 

count data and hence the genes or isoforms with better consistent counts in replicates 118 

libraries but having differential transcriptions between conditions would be identified with 119 

higher probabilities. The third, a very important point, is that it is t-test, a classical 120 

distance-variance test approach, that is clear and simple to understand gene differential 121 

expression but its fudge effect is also significant. For this reason, we are highly motivated to 122 

develop a novel beta t-statistic by which gene mRNAs to be tested can be separated into 123 

two different groups with least type I and type II errors.  124 

 125 

Results 126 

Statistical Methods 127 

Here we follow the notations of Baggerly et al (Baggerly et al. 2003) but for the 128 

convenience of description, we use isoforms as features of study. However, our method is 129 
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available to all types of count data.  Let iX be count for an isoform of interest in library i.  130 

Let ip be true proportion of an isoform and iN be total count in library i, that is, size of 131 

library i. We suppose that the proportion ip  of a count in library i follows a beta 132 

distribution,  133 

                                     ),(~ βαBetapi ,                                                                                                   (1) 134 

but as mentioned above, the count for an isoform has binomial or negative binomial 135 

distribution. In our current study, we consider the binomial distribution instead of negative 136 

binomial distribution (see Discussion Section).  Since iii NXp /ˆ = is an estimate of ip , the 137 

mean and variance of the estimated proportion for this isoform in library i are given by α , 138 

β and iN (see Supplemental Appendix A).  139 

 140 

Considering the case of small sample size, we use weight to correct biases of expectation 141 

and variance of estimated proportion p.  Supposing that we have m replicate libraries in a 142 

condition, the mean and variance of proportions in m replicate libraries can be linearly 143 

combined by weights (Baggerly et al. 2003): 144 
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where the sum of weights over m replicates is constrained to be 1 . Equation (2a) indicates 147 

that this combination has the correct mean.  Using a partial derivative of variance of 148 

weighted proportions with respect to weights, solution for weight vectors can be 149 

analytically given by 150 

                                                

1
11

−
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⎡
+

+
∝

i
i N

w
βα

 .                                                                            (3) 151 

Equation (3) indicates that the weights are determined by the means and sizes of libraries.  152 

Here two extreme cases may occur: If ∞→+ βα , then weight iw is proportional to size of 153 

library i, iN , meaning that distribution of ip is degenerate so that there is no change in the 154 

true proportion going from sample to sample.  If, on the other hand, βα + is very small, 155 

then the weights would be roughly the same for all libraries. The true optimum lies 156 

somewhat in between. With the weights, the proportion for an isoform count in a condition 157 

is now estimated by 158 

                                                     ∑
=

=
m

i
ii pwp

1

ˆˆ                                                                                       (4) 159 

and its variance is also estimated, in an unbiased fashion, by 160 
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Since we have weights for all parameters ( βα, , p , and V ) in a condition, then an iterative 162 

search algorithm for optimal estimation of these parameters can be driven by weights (see 163 

Supplemental Appendix B).  164 
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 165 

Despite the estimation of variances of proportions in a condition is unbiased and 166 

optimized, those isoforms of extremely small counts would have very small and similar 167 

proportions in a few replicate libraries, which leads variances to be much smaller than 168 

differences between means so that the t-values are inflated (see Discussion Section). To 169 

avoid occurrence of this phenomenon, a modified estimator of variance is found to be 170 

                                                             [ ]#* ˆ,ˆmaxˆ VVV =  .                                                                       (6) 171 

In Baggerly et al(Baggerly et al. 2003), #V̂ is given by 172 
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allows #V̂ to be extremely small. In order to avoid the extreme small variance, we modify 175 

#V̂ as 176 
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#V̂ in Equation (7b) is larger than that in Equation(7a). Equation (7b) shows that (1) lower 178 

bound of #V̂ is 
⎟
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is extremely 179 

small.  Thus V̂ =
#V̂  in case of extremely small  *V̂ . 180 

 181 

By the above optimal estimation, we obtain Ap̂  and Bp̂ , AV̂ and BV̂  in conditions A and B, 182 

respectively. Using these estimates, the t-statistic similar to Z statistic suggested by Kar et 183 

al (Kal et al. 1999) is found to be 184 
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(Baggerly et al. 2003) where ∑ =
= Am

i AiA NN
1

and ∑ =
= Bm

i BiB NN
1

. With df, we can obtain p-188 

value for each t-statistic from the t-distribution. For count-based transcriptional data, 189 

however, since replicate numbers are very small (for example, 3 replicate libraries), a 190 

potential for “fudge” effect exists in a population. Although Equation (6) inserts another 191 

estimator of variance as a lower bound so as to avoid occurrence of zero or extremely small 192 

variance, the fudge effect still exists in Equation (8) due to small sample size.  To remove 193 

this effect, the t-statistic is modified as 194 
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Here ρ is defined as φϕρ = where ψ is referred to as “polar ratio” (see Appendix C1). 196 

Equation (C1) indicates that if two data sets ),,{ 1 AAmAA XXX L= and ),,{ 1 BBmBB XXX L=  197 

for an isoform do not overlap, then 1>ψ , otherwise, 1≤ψ .  In statistical theory, two count 198 

sets that are definitely separated have a higher probability of showing that they come from 199 

two different populations than those that are overlap. ζ is referred to as log odds ratio (see 200 

Supplemental Appendix C2). If two data sets ),,{ 1 AAmAA XXX L= and ),,{ 1 BBmBB XXX L=  201 

do not overlap and have a big gap, then BA XXX <<  or BA XXX >>
 
but 22 ˆˆ

A
σσ >> and 202 

22 ˆˆ
B

σσ >> , leading to 
222 ˆˆˆ
BA BA XXX σσσ +>  and ζ >1, otherwise, ≤ζ 1 where X and 2σ̂ are 203 

respectively overall estimated mean and variance of counts for a given isoform; iX and 2ˆ
i

σ204 

are estimated mean and variance of counts for this isoform in condition i, i = 1 for A and 2 205 

for B. Forψ  >1 and ζ >1, we have 1>ρ .  The t*-statistic is potentially preferable to the t-206 

statistic in two aspects: (1) isoforms with small counts are not easily found to have 207 

differential expression and (2) t-values with ωρ >  are inflated but those with ωρ <  are 208 

shrunken. As a result, the fudge effect is suppressed and truly differentially expressed 209 

isoforms would be found with a high probability (very low p-value). ω  is a threshold 210 

whose value is inversely proportional to sample size and determined by simulated null 211 

data based on the real data. Here we simulate null data, perform our modified Beta t-212 

test(mBeta t-test) with setting 1=ρ and 1=ω for all isoforms on the null simulated data, 213 

find false DE isoforms, calculate their ρ  values, then order them from the smallest to the 214 
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largest, kj ρρρρ <<<< LL21 , and calculate quantiles. We set ,,/2,/1 21 Lkqkq ==215 

1,/ == kj qkjq L where k is number of false discoveries in a null simulated data. Setting 216 

85.0≥jq , then we choose ω = jρ value. This means that 85% false discoveries would have 217 

ρ  ≤ ω and be excluded. If, however, k ≤5, then 85.0≥jq is not informative.  In this case, we 218 

take ω = 1ρ . This process is done on all given simulated null datasets. We choose 219 

∑ =
= S

s sS 1
1 ωω over S simulated null datasets.   The p-value for each t*-value can be obtained 220 

from t-distribution using degrees of freedom given or by performing the bootstrap (Storey 221 

et al. 2005) (see Supplemental Appendix D). 222 

 223 

Simulation comparisons 224 

We used the 12 scenario stimulation datasets (see Simulation in Materials and Methods) to 225 

compare 6 statistical methods for identifying isoforms differentially expressed between 226 

two given conditions. The 6 statistical methods chosen here are Beta t-test (Baggerly et al. 227 

2003), empirical Bayesian method (Hardcastle et al. 2010), Exact test (Robinson et al. 228 

2010b; Robinson et al. 2007; Robinson et al. 2008), GLM (McCarthy et al. 2012), DESeq 229 

(Anders et al. 2010)and our new Beta t-test (mBeta t-test). The empirical Bayesian 230 

(eBayesian) method was implemented on R package baySeq and the Exact test and GLM 231 

methods on R package edgeR(Robinson et al. 2010a). DESeq was implemented by R 232 

package DESeq(Anders et al. 2010). The Beta and mBeta t-test methods were performed in 233 

Matlab. We simulated null data to determine ω value for mBeta t-test. We set FDR cutoff = 234 

0.05 and chose estimated FDRs smaller than but closest to this cutoff as acceptable levels 235 

this version posted January 26, 2014. ; https://doi.org/10.1101/002097doi: bioRxiv preprint 

https://doi.org/10.1101/002097


13 

 

for differential expressions of isoforms because the FDR cutoff of 0.05 is widely accepted in 236 

multiple tests, especially, in genome-wide studies. We counted isoforms identified to be 237 

differentially expressed by these methods, false discoveries and calculated means and 238 

standard deviations(stdev) of the numbers of findings and true FDRs for each method 239 

chosen and then summarized them in Tables 1-3. 240 

 241 

For small condition effect (A=100) or low artificial noise proportion (Q=10%), or low 242 

proportion (P=10%) of DE isoforms, the Beta t-test method had higher power. Since mBeta 243 

t-test is a modified beta t-test, in the case of low P or small A, mBeta t-test, eBaysian, Exact 244 

test and GLM had similar powers,  while in higher P and larger A scenarios, Beta and mBeta 245 

t-test had lower powers than eBayesian, Exact test and GLM.  In all 12 scenarios (Tables 1-246 

3), DESeq always had very low powers. This is because DESeq always had extremely low 247 

true FDRs, indicating that DESeq is a very conservative method that would miss many true 248 

differentially expressed isoforms in practice. Beta t-test had much higher true FDRs than its 249 

estimated FDRs in all these scenarios, meaning that in the Beta t-test method’s findings, 250 

there would be much more false discoveries than estimated, so this is not a conservative 251 

method. eBayesian showed higher powers in low artificial noise proportion (Tables 1 and 252 

3) but it also had higher true FDRs than estimated FDRs in most cases. In high artificial 253 

noise proportion (Q=30%) scenario, eBayesian performed well (Table 2). GLM showed 254 

high powers in all 12 given scenarios but its true FDRs were much larger than estimated in 255 

9 scenarios (Table 1-3), suggesting that this method is also not conservative. In low DE 256 

isoform proportion (P=10), low artificial noise proportion (Q=10%) or small condition 257 
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effect (A=100) scenario, Exact test performed poorly because its true FDRs were much 258 

larger than its estimated values in most cases, however, in high P(30%), high Q(30%),and 259 

large A(300) scenarios, Exact test had a good performance.  Similarly to DESeq, mBeta t-260 

test also had lower true FDRs than its estimated values in all 12 given scenarios but its 261 

powers were much higher than DESeq (Tables 1-3), showing that the mBeta t-test method 262 

is conservative and powerful. 263 

 264 

Stability is an important property of a statistical method. To rate stabilities of these 265 

statistical methods in performance, we here used standard deviations (stdev) of finding 266 

numbers and true FDRs listed in Tables 1-3 as criterion. Small stdev means that this 267 

method has a small fluctuation and hence a high stability in identification of DE isoforms, 268 

while larger stdev indicates that it has a bigger fluctuation and hence lower stability. Thus, 269 

for each scenario, we ordered these methods by using stdev from the smallest to the 270 

largest, assigned order scores (from 1 to 6) to them and averaged their order scores over 271 

12 scenarios. Thus, the order score can be used to measure relative stability of a method:  272 

the smaller order score, the higher stability.  Table 4 summarizes the results of stability 273 

analysis.  For findings, mBeta t-test had the highest stability, while GLM had the lowest. 274 

Beta t-test, eBayesian, DESeq and Exact test got similar order scores and so they had 275 

proximate stabilities. For true FDR, as expected, DESeq showed the highest stability. mBeta 276 

t-test was in the second highest rank. GLM and Beta t-test were lowest.  Exact test and 277 

eBayesian showed similar stabilities.  278 

 279 
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To comprehensively rate these statistical methods, we follow Tan (Tan 2011) and define 280 

work efficiency of a statistical method as  281 

                                                                φϕ=w
                                                                                    

 (11) 282 

where 
NP

N f=φ  and 1=ϕ if true FDR<=0.05 and 0=ϕ , otherwise. Here N is number of 283 

isoforms in simulated data, P, proportion of DE ioforms given in simulation, NPNP = , and 284 

fN , number of isoforms found to be differentially expressed by a statistical method. φ is 285 

used to measure power (ability or probability) of a statistical method for identifying a 286 

differentially expressed isoform and ϕ  to measure conservativeness of this method. The 287 

performance of a method must be evaluated by its power and conservativeness. If a 288 

method has a high power to find DE isoforms with no conservativeness, its findings would 289 

then be unreliable and incredible; if a method has a low power with high conservativeness, 290 

then the method would loss many findings. So such two types of statistical methods would 291 

have low work efficiencies in identification of DE isoforms. 292 

 293 

Table 5 lists work efficiencies of the 6 large-scale statistical methods in 4 pairs of scenarios. 294 

From Table 5, one can find that eBayesian and GLM had higher work efficiencies in 3 295 

replicate libraries than in 5 replicate libraries. This is because in 5 replicate libraries, the 296 

two methods underestimated FDR at cutoff α=0.05 (Tables 1-3) so that they lost 297 

conservativeness. Beta t-test had work efficiency of zero in all scenarios. Exact test had 298 

lower efficiencies in low P, low Q, small A and 3 replicates than in high P, high Q, large A 299 
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and 5 replicates.  For the DESeq and mBeta t-test approaches, the work efficiency was 300 

greatly raised with increment of sample size. This is due to the fact that the two methods 301 

promoted its power with the same conservativeness. Similar results also can be seen in 302 

condition effects A=100 versus A=300. These two methods did not significantly respond to 303 

change in proportion of DE isoforms and in artificial noise proportion. However, in all 304 

simulated scenarios, the mBeta t-test method showed the highest work efficiencies.  305 

 306 

In order to display FDR profiles along FDR cutoff, we here plotted averaged true FDRs 307 

against averaged estimated FDRs by these compared methods from cutoff = ~ 0 to ~ 0.21 308 

in scenario 1. To evaluate the FDR profiles of these statistical methods, we also plotted a 309 

theoretical FDR profile (a diagonal line for true FDR against true FDR) for each method.  310 

Figure 1 shows that the estimated FDR curves of eBayesian, GLM and Exact test and Beta t-311 

test are much below their theoretical lines, indicating that these methods, especially, Beta t-312 

test, indeed heavily underestimated their FDRs, while DESeq too much overestimated its 313 

FDRs along the cutoff. Therefore, DESeq indeed is a too stringent and too conservative 314 

method. The mBeta t-test method overestimated FDR and hence is conservative.   315 

 316 

  Real experimental data 317 

The simulated data are generally made in a known distribution and all factors impacting on 318 

differential expressions are well controlled, hence evaluation of these statistical methods 319 

on the simulated data is conducted in ideal and known states. Obviously, such an evaluation 320 
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has a limited significance for their application.  Real data are therefore required in 321 

comparison of statistical methods. However, since everything, in particular, noise 322 

distribution in real data is unknown, a direct evaluation of statistical methods is impossibly 323 

realized by comparison between true and estimated FDRs. For this reason, we here 324 

employed an indirect way for doing so. First, we compared the performances of these 325 

statistical methods on our two real datasets: Jurkat T-cell isoform transcriptomic data and 326 

Jurkat T-cell gene transcriptomic data. The Jurkat T-cell isoform dataset contains 64428 327 

isoforms which attribute to 14603 genes. These 64428 isoforms were annotated according 328 

to alternative poly(A) and cleavage sites within genes and studied on differential 329 

transcriptions between resting and stimulating immune states each with 3 replicate 330 

libraries by using PAS-seq (Shepard et al. 2011). We used edgeR (Robinson et al. 2010a)to 331 

normalize the Jurkat T-cell isoform and gene data. After filtering, 13409 isoforms in the 332 

isoform data and 9572 genes in the gene data were available for differential expression 333 

analyses. eBayesian had no results because either it was running too long (over at least 2 334 

days in isoform data, infinite loop might occur) or showed NA result (in gene data). GLM 335 

obtained 4376 genes and 5039 isoforms of being differentially expressed from our gene 336 

and isoform data, respectively, at FDR cutoff of 0.05. Since ratios of findings are so high 337 

(45% in the gene data and 37% in the isoform data), we did not believe that this method 338 

could work on these real data. DESeq found 261 DE genes and 287 DE isoforms at the same 339 

FDR cutoff. The ratios of findings are so low (3% in gene data and 2% in isoform data), 340 

basically, DESeq also did not work on the two transcriptomic data. The Beta t-test, mBeta t-341 

test and Exact test methods worked and the results obtained at FDR cutoff of 0.05 are listed 342 

in Table 6.  343 
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 344 

In the next step, we compared their findings using Venn Diagram Generator 345 

(http://simbioinf.com/mcbc/applications/genevenn/). Figure 2A shows that except that 346 

the three methods shared 554 DE genes, Exact test and mBeta t-test shared 22 DE genes in 347 

their 2019 findings while the former and Beta t-test shared merely 3 DE genes in their 348 

2760 findings. Similar result was also found in the isoform data (Fig. 2B). In addition, if a 349 

gene was found to be differentially expressed by a method only, then it is highly possible 350 

that this DE gene would be falsely discovered. Figure 3 visualizes heat maps of 10 genes 351 

identified to be differentially expressed by mBeta t-test method (Fig. 3A), 770 by Beta t-test 352 

only (Fig. 3B), and 220 by Exact test only (Fig. 3c). Indeed, the method-specific genes do not 353 

display obvious expression difference between no stimulation (NS) and 48h 354 

poststimulation. Thus, we defined no share ratio of findings ( ii Mm / where im  is number of 355 

method i-specific findings, and iM is numbers of findings identified by method i) as least 356 

true false discovery rate (least true FDR is corresponding to q-value defined by Storey et 357 

(Storey et al. 2003)). Using this indirect method, we obtained the least true FDRs for the 358 

findings of the Exact test, mBeta t-test and Beta t-test methods, respectively, in the two real 359 

transcriptomic datasets (Table 6). From Table 6, one can see that Exact test and Beta t-test 360 

extremely underestimated their FDRs while mBeta t-test still overestimated FDR in its 361 

findings. These are well consistent with those found in the simulated data.  362 

 363 

Experimental Validation 364 
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qRT-PCR experiments were carried out to valid our method's findings. Our qRT-PCR 365 

experiments were done in Jurkat T-cells at rest and 48 hours  after stimulation.  To make 366 

our qRT-PCR results be more representative, we randomly chose the genes that were found 367 

to be up-regulated or down-regulated at 48 hours after stimulation and not to be 368 

differentially expressed by mBeta t-test. We used relative differences between stimulation 369 

and rest and relative variation coefficient (VC) (see Materials and Methods Section) to do 370 

comparison between the RNA-seq and qRT-PCR data. The results show that genes UBL3, 371 

MST123 and KIAA0465 that were found to be up-regulated to respond to stimulation (blue 372 

columns in Fig. 4A) in RNA-seq data also displayed positive response to stimulation in qRT-373 

PCR data (red columns in Fig. 4A). Gene CD47 negatively responded to stimulation in both 374 

datasets while gene TESK2 was not detected to have significantly difference between 375 

stimulation and rest in these two datasets. In expression direction and relative expression 376 

amount, these two datasets show cc=0.9 (Pearson correlation coefficient) (Fig. 4 A), 377 

suggesting that our transcriptomic data were well consistent with qRT-PCR data.  Using 378 

relative VC, we found that gene UBL3 had small expression noise at rest and stimulation in 379 

these two datasets, while genes TESK2 had bigger expression noises in the transcriptomic 380 

data (Fig. 4 B). This is why gene UBL3 was detected to be differentially expressed but 381 

TESK2 was not though both UBL3 and TESK2 had small counts of mRNA reads in 382 

transcriptomic data. 383 

 384 

Discussion 385 
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Although our simulated data were made in the NB distributions, Beta and mBeta t-test 386 

worked well if estimation of FDR was not considered. This is because not only the NB 387 

counts can be well approximated by binomial distributions but also the frequencies (p) of 388 

counts of mRNA reads in libraries can be approximated by beta distributions. While the 389 

eBayesian, GLM, Exact test, and DESeq approaches are merely based on the NB distribution.  390 

Therefore, for real datasets whose distributions are often unknown, mBeta t-test will 391 

perform well. For example, as seen in Result Section, eBayesian and GLM, DESeq could not 392 

work on our Jurkat T-cell isoform and gene data, while Exact test, Beta t-test and mBeta t-393 

test worked even though their results have big differences. We also applied these methods 394 

to our leukemia transcriptomic data containing 10299 genes (data not yet published), the 395 

results show that all methods chosen can work but eBayesian has very low power (it just 396 

found 165 DE genes), while GLM, Exact test and mBeta t-test identified, respectively, 780, 397 

733 and 711 DE genes and hence performed very similarly. These strongly suggest that 398 

eBayesian and GLM are specific to the NB distribution.   399 

 400 

In addition, in genome-wide data, especially, in transcriptomic data, sample sizes usually 401 

are very small, for example, 3 or 2 replicate libraries in each condition due to high cost and 402 

biological resource limitation. Small samples would lead to a fudge effect (Tan 2011; Tan et 403 

al. 2011; Tan et al. 2006). For example, in count data containing more than ten thousands of 404 

isoforms, two 3-replicate small-count sets would have a larger probability of showing that 405 

they would be sampled from the same distribution not only than two 5-replicate small-406 

count sets but also than two 3-replicate big-count sets. On the other hand, in 407 
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transcriptome-wide data, small-count data have more chance to be weakly fluctuated by 408 

noise and to form extremely small within-variances than big-count data, giving rise to 409 

inflating t-statistics. For general statistical methods, the genes or isoforms with small count 410 

data in small samples would easily be found to be differentially expressed between 411 

conditions due to inflation of statistic. To address this problem, many methods developed 412 

for identifying differentially expressed genes in microarray data introduce a constant to 413 

shrink statistics. For example, In SAM (Tusher et al. 2001), two-sample t-test is modified as 414 

S-test by adding a minimized coefficient of variation S0 of differences between two 415 

conditions to denominator. In the regularized t test (Baldi et al. 2001), two-sample t-test is 416 

modified by combining gene-specific variance with global average variance. The two 417 

methods shrink all t-statistics across the whole genes detected in microarrays. So they have 418 

low powers (Tan 2011). Tan et al (Tan et al. 2006) used a conditional shrinking method to 419 

address the problem of inflating t-test. But this conditional shrinking method cannot be 420 

introduced to Beta t-test because the Beta t-test is based on differences in frequencies 421 

(proportions) of tags between conditions (Baggerly et al. 2003).   422 

 423 

Baggerly et al (Baggerly et al. 2003) employed a weighting and iteration strategy to look for 424 

an optimal estimation of parameters beta and alpha of frequency that is assumed to follow 425 

beta distribution for a tag in a condition and furthermore developed a new t-test, we called 426 

Beta t-test. Weight and optimization is a strategy for excluding artificial or technical noise 427 

in count data. Although Baggerly et al (Baggerly et al. 2003) recognized small-count effect 428 

on t-tests and tried to avoid the problem of t-value inflation using alternative variance 429 
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given in Equation (18a), our practice demonstrated that Equation (18a) does not 430 

substantially reduce the fudge effect.  For this reason, we modify the alternative variances 431 

by utilizing means of total counts over all libraries in a condition for those isoforms with 432 

very small counts. Analytically, it can be seen that the alternative variance defined in 433 

Equation (18b) is larger than that in Equation (18a). Our simulation really showed that the 434 

above small-count effect on testing for differential expressions of isoforms was mostly 435 

reduced by our modified alternative variances.   436 

 437 

In order to eliminate small sample effect, we introduced a gene-or isoform-specific variable 438 

ρ  into the Baggerly et al.s’ (Baggerly et al. 2003)Beta t-test. ρ is used to measure overlap 439 

between two count sets.  If two count sets more overlap, then ρ  becomes smaller; if two 440 

count sets separate, then ρ >1. The larger gap between two count sets, the larger ρ . In 441 

theory, two count sets that are separated have a higher probability of showing that they 442 

came from two different populations than those that overlap. Besides, if noise within count 443 

sets is large, then ζ is small, which makes ρ become small. Thus, ρ shrinks t-values of 444 

overlapped count sets and inflates t-values of separated count sets with small noise.  As 445 

seen in Tables 1-3, compared to the Beta t-test method, our mBeta t-test approach did not 446 

obviously decrease its power but significantly reduce false discovery rate so that it has 447 

higher work efficiencies.  Considering sample size effect, we set a threshold ω  for ρ .  That 448 

is, t-values are inflated with ρ >ω , or shrunken with ρ <ω .  As a result, almost all of small 449 

t-values are compressed into a short interval close to zero but the t-values with ρ >ω  are 450 

further enlarged  and a region in which truly differential expressions of isoforms and 451 
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expression noises are mixedly distributed becomes very narrow(Fig. 5). Since p-value only 452 

depends on t-value given degree of freedom, p-values with inflating t-values become 453 

smaller while those with shrinking t-values become larger.  Thus a lot of false discoveries 454 

are also compressed into the zero neighbors so that very few false positives would be 455 

found (Fig.5). Threshold ω  depends on sample size. The larger sample size, the smallerω . 456 

However, when sample size is large,  ω  becomes very small, ability of ρ controlling false 457 

discoveries becomes very weak because the gaps between two datasets are vanished and 458 

there is not fudge effect in such data.  459 

 460 

ROC is popularly used to evaluate statistical methods (Hardcastle et al. 2010) (Robinson et 461 

al. 2007) but ROC has two fatal drawbacks. First, ROC cannot evaluate the FDR estimation. 462 

For multiple tests, since FDRs are unknown, they must be estimated so that one can 463 

determine which features have statistical significances. Precise or conservative estimation 464 

of FDRs is important for an experimental scientist or statistician to choose a statistical 465 

method in practice because if a method significantly underestimates FDRs in findings, then 466 

it would provide much more false findings than expected or if it much overestimates FDRs, 467 

we would then loss many true findings (Tan 2011). Second, in some cases, the ROC curves 468 

of the methods are tightly close to each other or overlap together,  meaning that these 469 

methods have similar sensitivity against specificity but it does not suggest that they have 470 

the same or approximate performances because they may have different estimations of 471 

FDRs.  For example, we employed simulated data of scenarios 1 and 4 to makeup 472 

eBayesian, Exact test, DESeq and mBeta t-test ROC curves. The results show that mBeta t-473 
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test performed best at specificity<0.3 in scenario 1 (Fig. 6A) or <0.5 in scenario 4 (Fig. 6B), 474 

DESeq had the slight higher sensitivity than mBeta t-test when specificity > 0.3 in scenario 475 

1 (Fig. 6 A) or >0.5 in scenario 4 (Fig. 6B), eBayesian had the lowest curve, Exact test and 476 

GLM had almost the same curve, performed better than eBayesian when specificity >0.4 477 

(Fig. 6). However, these ROC curves did not show significant difference, in particularly, in 478 

scenario 4.   For this reason, our evaluation of these methods chosen was based on 479 

comparison between true and estimated FDRs. The simulated data showed that the 480 

eBayesian and GLM methods worked well in the ideal NB distributions, lower proportions 481 

of DE isoforms, smaller condition effect and smaller number of replicate libraries but they 482 

performed poorly in the case in which sample sizes were larger and proportion of DE 483 

isoform was higher or condition effect was bigger. This is because in such a scenario they 484 

generally had a high power to find DE isoforms but, on the other hand, their FDRs are often 485 

notably underestimated.  Therefore, we evaluated performance of a statistical method in 486 

power (ability or probability to find DE genes or isoforms) and conservativeness of FDR 487 

estimation (reliability of findings). A statistical method with high power but no 488 

conservativeness of FDR estimation would offer us a lot of unreliable findings or a 489 

statistical method with low power but conservativeness would miss many true DE genes or 490 

isoforms. That is to say, these two types of methods would have low work efficiency to 491 

perform their statistical analysis of real data. 492 

 493 

It is required to indicate that the Exact test method performs very fast, in contrast, the 494 

eBayesian method (baySeq) is very intensive in computation and took a long time (maybe 495 
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infinite loop occurred in calculation of posterior probabilities when performed on our real 496 

data). Nevertheless, the current version of baySeq is not available for our real data. The 497 

mBeta t-test method is also computationally intensive because it runs literately to look for 498 

an optimal estimation of weight and beta and alpha parameters for each isoform. However, 499 

it finishes its work in 15 minutes for more 10 thousands of isoforms if we don’t use 500 

bootstrap to calculate p-values.  501 

 502 

Materials and Methods 503 

Cell Lines and Stimulation 504 

Jurkat T-cell lines were obtained from the ATCC and maintained in RPMI (ATCC) with 10% 505 

fetal bovine serum supplemented with penicillin and streptomycin (Gibco).  Jurkat T-cells 506 

were stimulated with plate-bound antibodies coated with a solution of 1 Rg anti-CD3 507 

(OKT3 – eBiosciences) and 5 Rg anti-CD28 (CD28.2 – BD Pharmingen).   Activation of T-cell 508 

was monitored via flow cytometry detection of CD69 expression (FN-50) 48 hours after 509 

stimulation (Simms et al. 1996).  510 

 511 

High-throughput Sequencing Library Generation 512 

Total RNA was harvested from resting and stimulated cells with Trizol reagent and 513 

processed as per manufacturer instructions.  Polyadenylated RNA was isolated with the 514 

Poly(A)-Purist MAG kit as per manufacturer instructions.  Libraries for high-throughput 515 

this version posted January 26, 2014. ; https://doi.org/10.1101/002097doi: bioRxiv preprint 

https://doi.org/10.1101/002097


26 

 

sequencing were established as described (Shepard et al. 2011) with minor modifications.  516 

Libraries were sequenced via 50 bp paired-end sequencing on an Illumina GAIIx in genome 517 

sequencing center in Baylor College of Medicine.   The listed reagents were from Life 518 

Technologies.   519 

 520 

Annotation and pipeline analyses 521 

Paired-end reads were first subjected to a  profiler removing  A and T homopolymer runs 522 

within the forward and reverse reads, respectively.  Pairs in which the length of both reads 523 

was greater than 25 bp were mapped to the human genome reference (UCSC hg19) with 524 

Bowtie(Langmead et al. 2009) using default parameters.  The reads were simultaneously 525 

mapped to the UCSC KnownGene database to identify putative exon-spanning reads or 526 

pairs.  The union of mate pairs mapping uniquely to the genome and those mapping 527 

specifically to the KnownGene database were condensed to isoforms by 3’ alignment 528 

identity, filtered for false priming, and assigned gene identity and region (e.g. CDS, 3’ UTR) 529 

using UCSC KnownGene annotations.  Cleavage and polyadenylation sites were defined as 530 

the median genome coordinate of all reads within a 20-base pair sliding window of an 531 

adjacent read.  Defined sites were carried forward for analysis only if they were present in 532 

all libraries representing an individual cellular type or state.  Intralibrary isoform 533 

representation was normalized to pseudocounts using the negative binomial 534 

method(Robinson et al. 2008). 535 

 536 
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qRT-PCR 537 

Total RNA was respectively isolated from Jurkat T-cells at rest and 48hours after stimulation using 538 

TRIZOL(Invitrogen). RNA was digested with DNase I to remove contaminating genomic DNA. 539 

One microgram of total RNA was used to generate cDNA with the ImProm-II™ Reverse 540 

Transcription System (Promega) and real-time PCR was performed in triplicates in an 541 

Eppendorf Mastercycler. qRT-PCR was performed using a pair of primers(forward and 542 

reverse primers) designed for a selected gene. ∆∆CT method was used to calculate relative 543 

quantitation of qRT-PCR product on a 7500 Fast Real-Time PCR machine with SDS software 544 

(Applied Biosystems). 545 

 546 

Simulations 547 

To evaluate statistical properties of various approaches, we used the NB pseudorandom 548 

generator to create RNA isoform count datasets in 12 scenarios, each repeated three times 549 

for calculations of means and standard deviations.  Our simulations were conducted on our 550 

Jurkat T-cell isoform data from which we took 18290 isoforms and 3 replicated libraries in 551 

each of two conditions (resting and stimulating states). We set two levels (A=100 and 300) 552 

of condition (or treatment) effect on differential transcription of isoforms and linearly 553 

assigned the effects UA=τ to differentially expressed isoforms where U is uniform variable 554 

( ]1,0(∈U ), two levels of proportions of differentially expressed isoforms: P =10 and 30%, 555 

two levels of artificial noise proportions: Q=10 and 30% and 2 levels of sample sizes: R=3 556 

and 5 replicate libraries. Here artificial noise (also called technique or Poisson noise) 557 

indicates that the noise does not comes from experimental system error but come from 558 
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techniques such as sequencing, mapping, annotation and pipline analysis, etc. In simulated 559 

data, isoforms with averaged count <5 were filtered, thus 18162 isoforms were available for 560 

analysis.  561 

 562 

Software  563 

A package for implementing mBeta t-test was written in Matlab and a program for 564 

generating simulation data was written in R. They are available for request.  565 
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 663 

 664 

Figure legends 665 

Figure 1  Profiles of true versus estimated FDR 666 

Estimated curve was made by plotting estimated FDR against true FDR along cutoff of ~0 to ~ 0.21 and 667 

theoretical line is a diagonal line made by plotting true FDR against true FDR along the same cutoff. The true 668 

FDR was calculated by counting false positives in findings of a statistical method at an FDR cutoff point in a 669 
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simulated dataset and the estimated FDR was predicted by a statistical method. The true and estimated FDRs 670 

given figure 1 were averaged over three simulated datasets in scenario 1.  671 

Figure 2 Venn diagram analyses of the Exact test, Beta t-test and mBeta t-test approaches  672 

A: DE genes found in Jurkat T-cell gene transcriptomic data. B: DE isoforms found in Jurkat T-cell isoform 673 

transcriptomic data.  674 

Figure 3 Heatmaps of method-specific differentially expressed genes  675 

NS.A, NS.B, NS.C are replicate libraries A, B and C in resting state (no stimulation). 48h.A, 48h.B and 48h.C are 676 

replicate libraries A, B and C in stimulating state (48h poststimulation). Method-specific DE genes were 677 

treated as false DE genes. Heatmaps show that these genes really do not have obvious expression difference 678 

between resting and stimulating states. A:  10 DE genes found by mBeta t-test only. B: 770 DE genes found by 679 

Beta test only. C: 220 DE genes found by Exact test only.  680 

Figure 4 Comparison between RNA-seq data and qRT-PCR data on 5 genes chosen.  681 

In RNA-seq data genes UBL3, MST123, CD47 and KIAA0465 were found to be differentially expressed 682 

between rest and stimulation. TESK2 had no differential expression. Genes UBL3, MST123, KIAA0465 were 683 

significantly higher at stimulation than at rest, while genes CD47 and BCL11B were significantly lower at 684 

stimulation than at rest. 685 

A: Relative expression comparisons of 5 genes between RNA-seq and qRT-PCR. In RNA-Seq data, relative 686 

expression of a gene is defined as ddg / where 0ggtg nnd −= , d is averaged value, g= UBL3, MST123, 687 

CD47, KIAA0465 and TESK2, n  is averaged count of reads over three replicates and t =48 hour. In qRT-PCR, 688 

the relative expression of a gene is defined as bg Δ−Δ where 0ggtg CTCT −=Δ , b = background gene for 689 

control, and CT is averaged CT value over three replicates and CT is log2 transformed threshold value of 690 

amplification in qRT-PCR. In our experiment, we used TBP (TATA binding protein) as background expression 691 

because it has no change in expression with time.  692 

B: Relative expression variation coefficient comparison of 5 genes between RNA-seq and qPCR data. Relative 693 

expression variation coefficient is defined as tgt VCVC / where gtgtgt snVC /= and tVC is averaged 694 

variation coefficient over all selected genes at time t of stimulation. 695 

 Figure 5  Plots of t-statistics versus log FC.  696 

logFC=log (mean in 48h poststimulation/mean in NS) and t-values were given by two beta t-test methods 697 

from the simulated data in which 10% of isoforms randomly assigned with condition effect τ ≤ 100 were 698 
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differentially expressed between two conditions each with  three replicate libraries. Simulation was 699 

conducted by NB pseudorandom generator based on real isoform transcriptomic data. 700 

A The Beta t-statistics are distributed in interval between -16 and 16, while those for no differential 701 

expressed genes in Beta t-test are distributed in interval between -4.8 and 4.8. Thus a lot of false discoveries 702 

(blue dots) are distributed in the neighboring areas of t-value ≥4.8 or t-value ≤ -4.8.  703 

B: Plots of the mBeta t-statistics versus log FC. The t-statistic interval is enlarged from below -50 to over 100, 704 

while the t-statistics for no differential expressed genes are strongly compressed into a very narrow area 705 

close to zero. Thus a lot of false discoveries of the Beta t-test method are also moved into this area so that 706 

very few false positives (blue dots) would be found.   707 

Figure 6  ROC comparison of statistical methods 708 

ROC curves of the eBayesian, Exact test, GLM, DESeq and mBeta t-test methods were made from simulated 709 

datasets. Sensitivity = true positive fraction (TPF) and specificity = false positive fraction(FPF).  A: simulated 710 

data came from scenario 1(proportion of differentially expressed isoforms =10%, technical noise proportion= 711 

10% and treatment effect A= 100, sample size = 3) and B: from scenario 4(proportion of differentially 712 

expressed isoforms =30%, technical noise proportion= 10% and treatment effect A= 300, sample size = 3).   713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 
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 724 
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Table 1  Results of performing statistical methods on simulated data of 18162 isoforms and two 767 

conditions in simulation scenarios 1 - 4 where simulations were based on real transcriptomic data 768 

scenario 

 

Statistical  

Method 

numbers of findings 
estimated FDR 

 

true FDR 

mean stdev mean stdev 

S
c
e
n
a
r
io
 1
 

eBayesian 684.3 20.74 0.049901661 0.023415632 0.005316 

Exact test 740.3 34.70 0.049290389 0.086608166 0.009598 

GLM 753.3 36.55 0.049609439 0.096184239 0.009912 

DESeq 552.0 24.24 0.049794642 0.007797678 0.002519 

beta  t-test 800. 7 4.93 0.049847667 0.144082436 0.010284 

mBeta  t-test 726.0 3.46 0.048788614 0.037659939 0.008904 

S
c
e
n
a
r
io
 2
 

eBaysian 990. 7 17.61 0.04970673 0.06424989 0.004605 

Exact test 1003.0 28.68 0.04971551 0.089023333 0.002429 

GLM 1015.3 31.34 0.049347345 0.097436683 0.0047 

DESeq 855.0 14.42 0.048391895 0.011703212 0.005338 

beta  t-test 1000.0 25.23 0.049856733 0.155683147 0.008473 

mBeta  t-test 957.3 12.50 0.048912878 0.035496106 0.007327 

S
c
e
n
a
r
io
 3
 

eBayesian 2271.3 49.52 0.049921947 0.027993743 0.002909 

Exact test 2299.3 36.69 0.049936596 0.053499728 0.002031 

GLM 2316. 7 35.21 0.049880522 0.058151276 0.003686 

DESeq 1815. 7 32.02 0.049790935 0.006585122 0.00228 

beta  t-test 2323.0 46.11 0.049676633 0.071477617 0.009545 

mBeta  t-test 2093.0 32.90 0.049291886 0.012110596 0.002648 

S
c
e
n
a
r
io
 4
 

eBayesian 3024.0 166.91 0.04991893 0.070821217 0.01752 

Exact test 2880.3 145.08 0.049928763 0.044367555 0.008163 

GLM 2896.0 150.06 0.049981628 0.048324792 0.009311 

DESeq 2517. 7 177.80 0.049904472 0.005894893 0.001385 

beta  t-test 2913.0 40.92 0.049404633 0.073357708 0.007807 

mBeta  t-test 2789.0 41.76 0.049425529 0.008624077 0.002894 

Scenario 1: P(proportion of DE isoforms)=10%, Q(artificial noise proportion)=10%, A(condition effect) 769 

=100, R(replicate number)=3; Scenario 2: P=10%, Q=10%, A=300, R=3; Scenario 3: P=30%, Q=10%, 770 

A=100, R=3;Scenario 4: P=30%, Q=10%, A=300, R=3. 1=ω for mBeta t-test method in scenarios 1-4. FDR 771 

underestimated was marked by red color.  772 

 773 

 774 

 775 

 776 

 777 

 778 
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Table 2 Results of performing statistical methods on simulated data of 18162 isoforms and two 779 

conditions in scenarios 5 - 8 where simulations were based on real transcriptomic data 780 

scenario 
Statistical  

methods 

number  of findings 

estimated FDR 

true FDR 

mean stdev 
 

mean stdev 

S
c
e
n
a
r
io
 5
 

eBayesian 536.0 19.31 0.049475743 0.014225 0.004023 

Exact test 582.7 40.15 0.049037986 0.053917 0.022639 

GLM 592.0 41.90 0.049785069 0.062515 0.024089 

DESeq 400.7 8.32 0.049205147 0.004114 0.003743 

Beta t-test 586.7 20.42 0.049744667 0.165699 0.010472 

mBeta t-test 608.3 37.87 0.049095016 0.045627 0.02317 

S
c
e
n
a
r
io
 6
 

eBayesian 887.3 28.91 0.049840282 0.034131 0.002471 

Exact test 901.0 12.76 0.049361917 0.048886 0.005728 

GLM 911.0 13.11 0.049262212 0.054955 0.007382 

DESeq 746.3 19.08 0.047905044 0.006171 0.005225 

Beta t-test 892.0 38.22 0.0495794 0.13778 0.017347 

mBeta t-test 864.3 27.06 0.04986485 0.027286 0.005041 

S
c
e
n
a
r
io
 7
 

eBayesian 1880.0 37.98 0.049924036 0.016844 0.000593 

Exact test 1905.0 63.26 0.049760675 0.033698 0.003521 

GLM 1936.3 67.33 0.04987274 0.039498 0.004252 

DESeq 1398.0 39.39 0.049872216 0.004724 0.002398 

Beta t-test 1800.7 151.30 0.0498517 0.070921 0.011422 

mBeta t-test 1887.3 74.19 0.049352367 0.018178 0.00276 

S
c
e
n
a
r
io
 8
 

ebayesian 2780.3 71.62 0.049903333 0.049308 0.00472 

Exact 2653.3 97.38 0.04993212 0.033475 0.008219 

GLM 2668.3 98.19 0.049910444 0.036769 0.008319 

DESeq 2275.3 81.32 0.049506184 0.004339 0.002514 

Beta t-test 2509.7 40.82 0.0498865 0.060843 0.010993 

mBeta t test 2599.7 29.73 0.049559249 0.014071 0.004408 

Scenario 5: P=10%, Q=30%, A=100, R=3; Scenario 6: P=10%, Q=30%, A=300, R=3; Scenario 7: P=30%, 781 

Q=30%, A=100, R=3;Scenario 8: P=30%, Q=30%, A=300, R=3. 1=ω for mBeta t-test method in scenarios 782 

5-8. FDR underestimated was marked by red color.  783 

 784 

 785 

 786 

 787 

 788 

 789 
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Table 3 Results of performing statistical methods on simulated data of 18162 isoforms and two 790 

conditions in scenarios 9-12 where simulations were based on real isoform transcriptomic data 791 

scenario 

Statistical 

method 

number of findings 

estimated FDR 

true FDR 

mean stdev mean stdev 

S
c
e
n
a
r
io
 9
 

eBayesian 1466.7 136.99 0.049816998 0.065909 0.017935 

Exact test 1455.7 135.50 0.04942623 0.075021 0.023157 

GLM 1492.0 157.43 0.049120039 0.092843 0.032046 

DESeq 1270.7 116.81 0.04968407 0.016749 0.004976 

Beta t-test 1447.7 103.58 0.049672 0.116815 0.028366 

mBeta t-test  1457.3 114.02 0.048886388 0.03596 0.009967 

S
c
e
n
a
r
io
 1
0
 

eBayesian 1822.3 95.61 0.049864672 0.104564 0.013078 

Exact test 1768.3 117.50 0.049594284 0.08398 0.028075 

GLM 1794. 7 131.76 0.049606781 0.094059 0.033016 

DESeq 1593.3 125.52 0.049260009 0.021667 0.012233 

Beta t-test 1772.0 67.55 0.049848 0.132159 0.025635 

mBeta t-test  1697.667 67.26 0.049301841 0.032401 0.007489 

S
c
e
n
a
r
io
 1
1
 

eBayesian 4894. 7 289.89 0.049930905 0.081428 0.011789 

Exact test 4633.3 303.32 0.049761768 0.051046 0.013995 

GLM 4681.3 332.24 0.049960589 0.057404 0.018121 

DESeq 4206.3 317.16 0.049814792 0.013886 0.005984 

Beta t-test 4700. 7 362.29 0.0493765 0.070815 0.014574 

mBeta t-test  4438. 3 149.79 0.04952921 0.0124 0.000406 

S
c
e
n
a
r
io
 1
2
 

ebayesian 5701.0 206.72 0.049939398 0.099753 0.01504 

Exact test 5453. 7 100.48 0.049737062 0.048492 0.006854 

GLM 5454. 7 145.40 0.049840291 0.053679 0.008784 

DESeq 4915.3 228.00 0.049430541 0.012464 0.005037 

Beta t-test 5091. 7 128.48 0.049957167 0.066915 0.013236 

mBeta t-test  5072.3 135.57 0.049633984 0.01087 0.002098 

Scenario 9: P=10%, Q=10%, A=100, R=5; Scenario 10: P=10%, Q=10%, A=300, R=5; Scenario 11: P=30%, 792 

Q=10%, A=100, R=5; Scenario 4: P=30%, Q=10%, A=300, R=5. 45.0=ω for the mBeta t-test method in 793 

scenarios 9-12. FDR underestimated was marked by red color.  794 

 795 

 796 

 797 

 798 

 799 

 800 
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 802 

Table 4 Stability analysis of methods 803 

Standard deviation of findings 

 

Standard deviation of true FDR 

method Averaged order score method Averaged order score 

mBeta t-test  2.333333 DESeq 1.833333 

Exact test 3.166667 mBeta t-test  2.5 

Beta t-test 3.25 eBayesian 3 

eBayesian 3.416667 Exact test 3.5 

DESeq 3.833333 Beta t-test 5.083333 

GLM 5 GLM 5.083333 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 
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Table 5  Averaged work efficiencies of statistical methods 

Scenario factors 

eBayesian Exact test GLM DESeq Beta t-test mBeta t-test 

mean stdev mean stdev mean stdev mean stdev mean stdev mean stdev 

3 replicate libraries 0.48697 0.321 0.3726 0.40689 0.27557 0.3884 0.57566 0.15142 0 0 0.69207 0.12025 

5 replicate libraries 0 0 0.46259 0.53764 0 0 0.81272 0.15142 0 0 0.87067 0.07198 

proportion of DE 

genes/isoforms=10% 0.30974 0.35327 0.13241 0.32434 0 0 0.63812 0.09414 0 0 0.75333 0.14388 

proportion of DE 

genes/isoforms=30% 0.3281 0.36791 0.49808 0.42951 0.16917 0.31848 0.66774 0.18908 0 0 0.7625 0.14959 

artificial effect 

proportion =10% 0.31775 0.36784 0.21165 0.42329 0.2128 0.42559 0.62857 0.19842 0 0 0.7298 0.1188 

artificial effect 

proportion =30% 0.3281 0.36791 0.49808 0.42951 0.16917 0.31848 0.66774 0.13814 0 0 0.7625 0.14959 

condition effect 

=100 0.3827 0.30323 0.23505 0.37554 0.09485 0.23234 0.5427 0.19842 0 0 0.66057 0.12078 

condition effect 

=300 0.2666 0.41316 0.57015 0.44847 0.27258 0.4228 0.76666 0.1635 0 0 0.84263 0.07676 
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Table 6.  Results of performances of 3 statistical methods on two real gene transcriptomic data 

data type  Exact test mBeta t-test
a

 Beta t-test 

Gene count data 

 

# of DE genes found 799 1774 2515 

estimated FDR 0.0499 0.0499 0.0489 

least true FDR 0.2753 0.0056 0.3062 

Isoform count data 

 

# of DE isoforms found 1029 1981 3025 

estimated FDR 0.0499 0.0498 0.0499 

least true FDR 0.2799 0.0101 0.3530 

a:  ω =1 
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