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Abstract:  

 

In a host-parasite system, the constitutive interaction among the species, 

regulated by the growth rates and functional response, may induce populations to 

approach equilibrium or sometimes to exhibit simple cycles or peculiar oscillations, 

such as chaos. A large carrying capacity coupled with appropriate parasitism 

effectiveness frequently drives long-term apparent oscillatory dynamics in population 

size. We name these oscillations due to the structure of the constitutive interaction 

among species as ecological.  

 

On the other hand, there are also exceptional cases when the evolving 

quantitative traits of the hosts and parasites induce oscillating population size, which we 

call as evolutionary. This oscillatory behavior is dependent on the speed of evolutionary 

adaptation and degree of evolutionary trade-off. A moderate level of negative trade-off 

is essential for the existence of oscillations. Evolutionary oscillations due to the host-

parasite coevolution (known as the Red Queen) can be observed beyond the ecological 

oscillations, especially when there are more than two competing species involved.  

 

One Sentence Summary:  

We investigate several cases yielding to oscillating host-parasite populations, and we 

found that the Red Queen hypothesis can explain some of the exceptional cases. 

 

 

Keywords: host-parasite, prey-predator, coevolution, oscillation, Red Queen, selection 

gradient 
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Graphical Abstract: 

 
 

 

I. Introduction 

 

Interacting species can coexist but it is possible that some species approach the edge 

of extinction. In most cases, the species with the greatest fitness are always dominant, but 

there are also cases when populations exhibit fluctuating population size. In this paper, we 

investigate host-parasite population dynamics using an ordinary differential equation (ODE) 

model to particularly determine several cases yielding to long-term apparent oscillatory 

behavior. Exploring the realm of fluctuating, and possibly non-equilibrium, dynamics can 

help explain complex antagonistic systems. The abstract model of host-parasite interaction 

can also describe competition such as predator-prey and exploiter-victim.  

 

Various researches have been done analyzing and employing multispecies host-

parasite models to represent theoretical, experimental and natural situations [Jost, 1998; 

Briggs and Hoopes, 2004; Piana et al., 2006; Beninca et al., 2009; Mougi and Kondoh, 2012]. 

Solution to a model may converge to an equilibrium point, which is either a stable node or 

stable focus. In some cases, solution may approach a limit cycle, which is possibly 

synchronous or asynchronous. There are also situations where fluctuating behavior leads to 

chaos. Oscillating population size (e.g., solution converging to a stable focus, limit cycle or 

strange attractor) is not unusual in nature, and in fact, is very important in maintaining 

diversity. This may be a result of the average antagonistic interaction among species 

(deterministic) or a result of randomness (stochastic). Time delays and environmental factors 

can also play significant roles in producing oscillations.    

 

An interaction model can involve single host and single parasite; many hosts but 

single parasite; single host but many parasites; or many hosts and many parasites. ODE 

models can differ on the growth terms (e.g., exponential growth or logistic growth of host 

species), and functional response (e.g., Holling type I, II or III, Beddington-DeAngelis and 

Monod-Haldane). Analysis of classical and low-dimensional host-parasite interaction models, 
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such the Lotka-Volterra (LV) and Rosenzweig-MacArthur (RM), can be found in various 

literatures [Korobeinikov and Wake, 1999; Murray, 2002; Zhao and Chen, 2004]. 

 

Interaction systems often involve evolutionary dynamics. Several studies employed 

selection gradient to model evolving populations [Khibnik and Kondrashov, 1997; Mougi and 

Iwasa, 2010, 2011a,b], while others examined gene-for-gene coevolution [Sardanyes and 

Sole, 2006]. Khibnik and Kondrashov (1997) classified non-equilibrium (Red Queen) 

dynamics as evolution arising from fast ecological processes, slow genetic processes, or the 

combination of both (eco-evolutionary). The Red Queen hypothesis, which states that 

“species need to run or evolve in order to stay in the same place or to survive” [Van Valen, 

1973; Rosenzweig et al., 1987], is often associated to host-parasite interaction. In this paper, 

we show illustrations presenting exceptional cases where evolutionary dynamics can explain 

the existence of oscillating population size.  

 

We refer to the oscillating population sizes due to the structure of the constitutive 

interaction among species as ecological oscillations. While, we call the oscillatory behavior 

due to host-parasite coevolution as evolutionary oscillations. 

 

 

II. The Mathematical Model 

 

We numerically investigate the behavior of host-parasite interaction system using an 

ODE model where there are m hosts and n parasites. This model does not only consider 

antagonistic interaction between hosts and parasites but also the inter-host and inter-parasite 

competition. We consider the following general (multispecies) model: 

 

dHi

dt
= UiHi = (Gi(H1, H2, ⋯ Hi, ⋯ , Hm) − ∑ fikPk

n

k=1

) Hi , i = 1,2, ⋯ , m 

dPj

dt
= VjPj = (−dj + ∑ ckjfkjHk

m

k=1

(1 − Dj(P1, P2, ⋯ Pj, ⋯ , Pn))) Pj , j = 1,2, ⋯ , n, 

 

where Hi and Pj respectively denote the population of host i and parasite j. The parameters Ui 

and Vj are the corresponding fitness functions. Refer to Appendix I for the description of the 

variables and parameters. 

 

The change in the size of host population is positively influenced by its growth rate 

Gi(H1, H2, ⋯ Hi, ⋯ , Hm), which is affected by the basal per capita birth rate and possibly by 

inter-host competition. However, it is negatively influenced by parasitism. In the absence of 

parasitism, host populations never reach extinction. One parasite can exploit a fraction of the 

host population by a factor dictated by the functional response. On the other hand, the 

parasite population is positively influenced by the reproduction rate of the parasite due to its 

utilization of hosts (numerical response), and negatively influenced by the death rate and 

competition among parasite species. In the absence of hosts, all parasite populations vanish. 

 

There are two common mathematical representations of the host growth terms, 

namely, model with constant effective growth rate (exponential or the Malthusian), and 

model involving inter-host competition and carrying capacity (logistic). In the absence of 

parasitism, a host population with constant effective growth rate will exponentially propagate 
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without bound. Whereas, a host population with growth rate that is affected by the carrying 

capacity and competition among hosts approaches equilibrium. Similarly, the parasite growth 

rate can involve inter-parasite competition. The term Dj refers to the situation where parasite 

populations can be satiated by other resources other than the hosts.  

 

 

Coevolutionary Dynamics 

 

We consider cases where there are coevolving species due to competition. In this 

paper, evolution is represented by a system involving the concept of quantitative traits 

(genetic, phenotypic or behavioral traits) and selection gradient. Let Ui and Vi be functions of 

host and parasite populations as well as of the values of the quantitative traits (e.g., traits that 

are related to the parameters in the functional response). We define uij  as the mean 

quantitative trait of the i-th host population specific for dealing with the j -th parasite 

population. We similarly define vij  as the mean quantitative trait of the j -th parasite 

population specific for dealing with the i-th host population. We suppose slow constant 

genetical changes represented by small values of the speeds of evolutionary adaptation (i.e., 

εij ≪ 1 and δij ≪ 1 respectively for the host and parasite population). The representation of 

the coevolutionary dynamics is as follows: 

  
dHi

dt
= UiHi 

dPj

dt
= VjPj 

duij

dt
= εij

∂Ui

∂uij
≈ εij [

Ui(uij + ∆) − Ui(uij − ∆)

2∆
] 

dvij

dt
= δij

∂Vj

∂vij
≈ δij [

Vj(vij + ∆) − Vj(vij − ∆)

2∆
] 

i = 1,2, ⋯ , m;  j = 1,2, ⋯ , n; ∆≪ 1  
 

A positive selection gradient (value of the partial derivative) drives the population to 

climb a stronger trait value, and a negative gradient drives the population to have a lower trait 

value. For example, when Ui decreases due to the increase in uij, then the value of uij should 

be reduced for the benefit of the host species. Alternatively, when Ui increases due to the 

increase in uij, then the value of uij should be improved. This scenario shows that the host 

develops defense to counteract the parasite. Sexual reproduction and biological diversity 

often play big roles in this kind of evolutionary process. On the other hand, the parasite also 

evolves to increase or decrease the value of vij in response to the host’s evolution. Several 

studies have shown various empirical evidences of temporal coevolutionary dynamics 

[Decaestecker et al., 2013]. 

 

Progressive evolution has a trade-off since evolution entails costs and an indefinitely 

advancing trait is unlikely. In this paper, a climb from an inferior trait to a stronger trait 

results to a decline in the birth rate of the evolving population. For example, the host’s 

growth rate can be represented by a rational function ri =
rMi

1+∑ (qikuik)2m
k=1

 to characterize the 

evolutionary trade-off. The parameter rMi is the positive basal (maximal) birth rate and each 

qij denotes the degree of trade-off that affects the shape of the trade-off function curve. The 
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rational trade-off functions assure that the value of ri is always in the interval [0, rMi] for any 

positive trait value.  

 

Unlike most models where only one host and one parasite are involved, multispecies 

interaction are frequently asymmetric [Dawkins and Krebs, 1979; Lapchin and Guillemaud, 

2005]. Parasites can select their host, while hosts do not choose their parasite. Our model can 

accommodate this situation by having asymmetric interaction parameter values. Evolving 

quantitative traits can also be asymmetric.    

 

 

III. Interaction Without Carrying Capacity and Without Coevolution 

 

The exponential and logistic growth terms become approximately equivalent when the 

carrying capacity factor K  for the host populations is very large (i.e., lim
K→∞

(ri (1 −

∑ φikHk
m
k=1

K
)) = ri ). Correspondingly, when the carrying capacity K̅  for the parasite 

populations is very large, the limiting term affecting the growth rate of the parasite becomes 

approximately zero (Dj ≈0). For these reasons, we give more emphasis on models with 

carrying capacities (both in host and parasite populations), since in nature, a population 

cannot grow unboundedly as t → ∞ even in the absence of competition. Nevertheless, as a 

take-off point, let us first discuss the Lotka-Volterra (LV) model without considering any 

carrying capacity (or with infinite resources). 

 

The following Lotka-Volterra system with exponential growth (for host) and decay 

(for parasite) terms, and Holling type I functional response   

 
dH

dt
= (r − αP)H  

dP

dt
= (−d + cαH)P 

 

has two equilibrium points (namely, (0,0) and (
d

cα
,

r

α
)), which are unstable. However, the 

solution (given any nonnegative initial condition and parameter values) is bounded and is 

actually always approaching a stable limit cycle. This model is structurally unstable [Murray, 

2002] but it can be used as a groundwork for a more realistic representation.  

 

In the general LV system (dHi dt⁄ = (ri − ∑ αikPk
n
k=1 )Hi, i = 1,2, … , m; dPj dt⁄ =

(−dj + ∑ cjkαjkHk
m
k=1 )Pj, j = 1,2, … , n), the situation where all host and parasite populations 

are extinct is unstable. However, unlike single host-single parasite LV system where species 

always coexist, it is possible in the general system for some but not all host and parasite 

populations to vanish (i.e., populations may go extinct but at least one host and one parasite 

survive).  

 

The surviving populations have higher fitness (e.g., high value of birth rate or low 

value of death rate) compared to the extinct species. Moreover, the amplitude of the solution 

corresponding to the surviving population can be greater than the other surviving species 

depending on the initial condition. The dynamics of this multispecies interaction implies that 
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the superior populations are more progressive; and the weakest remains inferior or possibly, 

verge to vanish.  

 

A small perturbation in the birth rate of a host species or in the death rate of a parasite 

causes bifurcation, specifically when all initial conditions and parameter values are equal. A 

small difference in the birth rates of hosts (or in the death rates of parasites) induce extinction 

of inferior species. It is possible that only two species will survive in the long run (i.e., the 

superior host with the highest birth rate and the superior parasite with the lowest death rate 

remain) which reduces the general LV model to a single host-single parasite system (see 

Figure 1).  

 

 
Figure 1. Influence of small change in birth rate of host and death rate of parasite may induce 

extinction in populations.  

 

The solution to the general LV system always oscillates (ecological oscillations). 

Murray (2002) discussed insights regarding possible instability in a multispecies LV system 

and the danger of naively fitting models without biologically sound foundations to explain 

oscillating empirical data. A small change in the initial condition can produce large phase 

shifts in the solution after several time steps. At some periods, the population density of a 

surviving population declines too much near the edge of extinction because of very relatively 

large amplitude. These risky phenomena are common in oscillating systems.  

 

Moreover, Figure 2 shows perturbation of a parameter value that results to a 

bifurcation from seemingly simple oscillatory behavior to a peculiar oscillation. In the 

classical LV model, chaos is not possible, but in a general model (with three or more species), 

chaos may arise. The occurrence of strange attractors prompts potential unpredictability and 

inadequacy of the LV model in dealing with biological data. When performing parameter 

estimation (fitting experimental data), it is advisable to examine if the solution to the fitted 

LV model is not sensitive to small perturbations, such as measurement errors.  
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Figure 2. Influence of small change in parameter value (in this case, r1 = 0.56 to r1 = 0.55) 

results to a shift in behavior – from a seemingly simple oscillation to a peculiar one.  

 

 
Figure 3. Multispecies Lotka-Volterra model appears to exhibit chaos given certain parameter 

values. Sensitivity to initial conditions can be observed (in this case, P3(0) = 0.69 to P3(0) =
0.7).  

 

 

IV. Interaction With Carrying Capacity but Without Coevolution 

  

We investigate the solution to the following modified Rosenzweig-MacArthur (RM) 

ODE model:   

 

dHi

dt
= (ri (1 −

∑ φikHk
n
k=1

K
) − ∑ fikPk

m

k=1

) Hi , i = 1,2, … , n 

dPj

dt
= (−dj + ∑ ckjfkjHk

n

k=1

(1 −
∑ φ̅ikPk

m
k=1

K̅
)) Pj , i = 1,2, … , m. 

 

The host and parasite species with the greatest fitness respectively dominate the other host 

and parasite populations. Unlike LV model, populations in the RM model never propagate 

unboundedly and the size of any host (as well as any parasite) population never exceeds the 

init P3=.69 

init P3=.7 
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carrying capacity. The solution to the RM model may approach an equilibrium point 

depending on the initial condition and parameter values.  

 

The RM model has (0,0, … ,0) as an equilibrium point, denoting a system where all 

species are extinct. However, this point is unstable. It follows that when there is a host 

population with nonzero initial condition then we expect that at least one host species 

survives. Although, if the death rates of all parasite populations are higher than the growth 

rates generated by utilizing host populations then all parasite population can vanish.  

 

The equilibrium point (H∗, P∗) = (h, 0) such that h > 0 in single host-single parasite 

system is always stable from the positive value of P. For any given functional response, such 

equilibrium point always has h = K φ⁄ . Convergence to this equilibrium point implies that 

the host survives while the parasite becomes extinct. This phenomenon is not surprising since 

when the parasite vanishes, the model reduces as a classical single species Verhulstian 

(logistic) model where host population converges to K φ⁄  (where K is the host’s carrying 

capacity). Moreover, it is impossible to have an equilibrium point (H∗, P∗) = (0, p) such that 

p > 0. This portrays our assumption that the parasite population cannot survive without a 

host. 

 

Many computational and mathematical studies have been done involving two 

(classical) as well as three (one host and two parasites, or two hosts and one parasite) species 

interaction, and some employed the classical model as part of a hybrid model. However, as 

more state variables (representing population of species) and parameters are added, the model 

becomes more challenging to analyze.  

 

Furthermore, in a system with two or more host species (or with two or more parasite 

species), infinitely many equilibrium points may exist, specifically in a model with Holling 

type I where two species have the same parameter values. This implies that it is possible for 

two species with very similar characteristics to have different future population sizes when 

their initial populations are not the same. 

 

In the RM model with Holling type I functional response (see Figure 4), larger 

carrying capacities both for host and parasite populations induce apparent ecological 

oscillation in population sizes. However, the oscillating solution does not necessarily 

converge to a limit cycle (it converges to a stable focus), unless, for instance, when carrying 

capacity is infinite. In addition, the host and parasite populations do not necessarily saturate 

the carrying capacity as opposed to the classical single species Verhulstian (logistic) model. 

In some situations, every population size for host or parasite species is less than the carrying 

capacity as a result of parasitism and interspecies competition. 

 

Long-term apparent oscillations always occur when host and parasite interaction has 

appropriate parasitism functional response (e.g., Holling Type I) coupled with unbounded 

growth rates (immense carrying capacity). This phenomenon is related to the Paradox of 

Enrichment. Boundless growth potential and parasitism efficiency enable the populations of 

the interacting species to reach extreme states.  

 

Ecological oscillations associated with a large carrying capacity are commonly 

fostered by certain functional responses, such as Holling type I, where there is unrestrained 

(no satiation) parasite utilization efficiency. If other functional response is used, it is possible 

that a large carrying capacity does not necessarily result to long-term apparent oscillation. 
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Functional response plays a big role in producing oscillatory behavior. Note: oscillations can 

also arise given Holling type II and III for some parameter values. In this paper, we focus on 

Holling type I. 

 

 
Figure 4. A larger carrying capacity induces oscillation.  

 

Furthermore, similar to LV models, RM models with Holling type I functional 

response may result to peculiar ecological oscillations, especially when carrying capacities 

are large. Some of these peculiar fluctuations in the trajectory of the ODE show sign of 

chaos-like behavior.  

 

Long-term apparent oscillations are not only possible because of large carrying 

capacity. There are cases that changing the birth and death rates as well as initial conditions 

of the host and parasite species result to simple or peculiar ecological oscillations. There are 

also cases where ecological oscillations occur depending on the structure of parasitism 

efficiency matrix. A right combination of parameter values can generate peculiar oscillatory 

solution (see Figure 5). 

 

 
Figure 5. Certain parameter values can generate long-term apparent oscillatory behavior.  

Hosts 

Parasites 

Pulse 

𝐾 = 𝐾̅ = 1 𝐾 = 𝐾̅ = 10 

𝐾 = 𝐾̅ = 100 𝐾 = 𝐾̅ = 1000 
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 Figure 5 presents a case where parasitism efficiency matrix is of the form  

 

[
0.92 𝟎. 𝟎𝟐

⋱
𝟎. 𝟎𝟐 0.92

] 

 

This matrix shows that 𝐻𝑖 is the main host of parasite 𝑖. While all 𝐻𝑘≠𝑖 are alternative hosts. 

In this example, parasite populations approach the edge of extinction but they create pulses 

that induce oscillations in the population of the hosts. 

 

 

V. Interaction With Carrying Capacity and With Coevolution 

 

Quantitative traits and population densities of the interacting species are affected by 

evolution. For example, suppose there are 2 identical host populations (H1 and H2) and 2 

identical parasite populations (P1 and P2). If H1 evolves against P1, it is possible that H1 will 

dominate H2, and P2 will dominate P1. According to the Red Queen Hypothesis, the parasites 

and hosts must coevolve to counteract their evolutionary disadvantage. However, note that 

evolution does not necessarily result to survival. 

 

Oscillating population sizes are possibly due to the constitutive interaction between 

species and not because of coevolution. The oscillatory behavior of interacting host and 

parasite species, without looking at the evolving quantitative traits, are not enough evidence 

of the Red Queen. We need to look at evolutionary oscillations, which are beyond the 

ecological oscillations. To establish this claim, we present illustrations of the interaction 

among the host and parasites, with and without coevolutionary dynamics. Figure 6 shows that 

oscillations are not easily generated by the Red Queen.   

 

 
Figure 6. Oscillations are not necessarily evolutionary. Oscillations in the system with 

coevolutionary dynamics are inherited from the constitutive interaction among species.  

  

Coevolution does not always result to long-term apparent oscillating population size 

(beyond the oscillations caused by constitutive interaction). Figure 7 presents examples of the 

exceptional cases where the Red Queen generates oscillation. We can observe in Figure 7 the 
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difference between evolutionary oscillation and ecological oscillations. Evolutionary 

oscillation is seen by looking at evolutionary time scale. Although, a non-evolving species 

(e.g., parasite) may seemingly exhibit evolutionary oscillations because other competing 

species (e.g., other parasites) are evolving. In this case, evolutionary oscillation turns to be 

ecological, too. In addition, the speed of evolutionary adaptation can dictate the existence and 

the period of the apparent oscillations.    

 

 

 
Figure 7. Evolutionary oscillations observed at evolutionary time scale beyond the ecological 

oscillations.  

 

The illustrations shown in Figure 7 are oscillations that became possible with the aid 

of inter-parasite competition. We hypothesize that in our ODE system, long-term apparent 

evolutionary oscillations are not possible in single host, single parasite interaction. The Red 

Queen reveal herself through oscillating population sizes when there are three or more 
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interacting species (inter-parasite as well as inter-host). However, we do not dismiss the case 

where evolution affects ecological oscillations. Sometimes ecological and evolutionary 

oscillations are mixed and indistinguishable from each other, especially when the evolving 

traits push the system to have a set of parameter values that results to ecological oscillations 

or when there are already existing peculiar ecological oscillations (see Figure 8). 

 

 
Figure 8. An example where there are already peculiar ecological oscillations, and evolution 

affects the behavior of the ecological oscillations (e.g., change in amplitude).  

 

A right combination of parameter values can generate oscillations. Speed of 

evolutionary adaptation and degree of trade-off play significant roles in generating 

evolutionary oscillation in population size. Low and high values of trade-off parameters do 

not provide good conditions for oscillatory behavior. In fact, a high value of trade-off 

parameter may constrain the evolution of quantitative traits. However, introducing some 

medium-level degree of trade-off during co-evolution results to oscillations (see Figure 9 for 

an example).  
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Figure 9. Evolutionary trade-off does not always result to oscillatory behavior. There is a 

range of parameter values that generates evolutionary oscillations.  
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In a system without coevolution, the equilibrium values depend on the parameters. 

Thus, if parameters become dynamic because of evolution then it is possible that the 

trajectory of the ODE solution shifts equilibrium values, which results to evolutionary 

oscillations. However, there are some cases when coevolution shutdowns ecological 

oscillations. 

 

In our model of coevolutionary dynamics, the fitness functions (as well as the 

population densities) and the quantitative traits operate in a feedback loop. Evolution of the 

quantitative traits affects the population densities through the fitness functions; and the fitness 

functions dictate the evolution of the traits. The Red Queen hypothesis indicates that 

coevolving species undergo endless arms race competition (e.g., unbounded set of feasible 

phenotypes) [Rosenzweig et al. 1987; Dieckmann et al. 1995], while balancing the benefit 

and cost of evolution. There are cases when coevolution exhibits unbounded non-equilibrium 

dynamics depicted in the quantitative traits. Some argue that this unbounded dynamics is rare 

or possibly unrealistic [Dieckmann et al. 1995]. However, there are cases when evolving 

quantitative traits tend to an attractor (equilibrium point, limit cycle or strange attractor). 

Arms race competition can end [Dawkins and Krebs, 1979]. 

 

Figure 10 presents an example of evolving quantitative traits of hosts and parasites. 

The quantitative traits of the hosts approach an attractor but the quantitative traits of the 

parasites continuously increase. Pressure is given to the parasite species since parasite species 

can vanish if it cannot run after the evolving host, yet it cannot kill all the hosts to avoid 

extinction (since parasites cannot live without a host). This example is one of the numerous 

scenarios that arise from coevolutionary dynamics. There are cases when coevolution results 

to extinction of one of the evolving host species. There are also cases when cryptic dynamics 

occur. 

 

 
Figure 10. An example of evolving quantitative traits during coevolution.  

 

 

VI. Concluding Remarks 

 

We numerically investigated several cases yielding to oscillating host-parasite 

populations, and we found that the Red Queen hypothesis can explain some of the 
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exceptional cases (evolutionary oscillation). Arms race competition can be observed by 

tracking the evolution of quantitative traits, and it is possible that evolutionary oscillations 

can be recognized beyond ecological oscillations. One limitation of our model is that it 

cannot track polymorphism and the diversity of the changing phenotypes over the fitness 

landscape. 

 

There are many possible model representations for the host-parasite or prey-predator 

system, justified using either mechanistic or empirical explanations. To have biological 

relevance, we should always ensure that for any finite time, a unique solution to the model 

exists and that state variables should always be non-negative. Parameter values can be 

estimated using several techniques, such as by curve fitting or by machine learning. Keen 

investigation is important in determining the robustness of the model and if empirical 

observations match the behavior of the theoretical model to be used in representing biological 

phenomena.  

 

Ecological and evolutionary oscillations result from a right combination of parameter 

values. This study can be extended by considering other functional response curves, non-

monotonic evolution function and spatial distribution of species. Demographic and 

environmental randomness can also be incorporated to determine if the oscillations are robust 

against stochastic noise. 
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APPENDIX I: Definition of Variables and Parameters 

 

State Variables and 

Parameters 

Definition 

𝒎 number of different host species 

𝒏 number of different parasite species 

𝑯𝒊 population of host 𝑖 
𝑷𝒋 population of parasite 𝑗 

𝑼𝒊 host fitness function 

𝑽𝒋 parasite fitness function 

𝑮𝒊(𝑯𝟏, 𝑯, ⋯ 𝑯𝒊, ⋯ , 𝑯𝒎) effective growth rate of the population of host 𝑖; Exponential: 

𝐺𝑖(𝐻1, 𝐻, ⋯ 𝐻𝑖 , ⋯ , 𝐻𝑚) = 𝑟𝑖 or Logistic: 

𝐺𝑖(𝐻1, 𝐻, ⋯ 𝐻𝑖 , ⋯ , 𝐻𝑚) = 𝑟𝑖 (1 −
∑ 𝜑𝑖𝑘𝐻𝑘

𝑚
𝑘=1

𝐾
)  

𝒓𝒊 basal growth rate of the population of host 𝑖 
𝝋𝒊𝒌 nonnegative relative strength of host 𝑖 over host 𝑘 

𝑲 size of the carrying capacity of the environment of host 

populations during inter-host competition  

𝑫𝒋(𝑷𝟏, 𝑷𝟐, ⋯ 𝑷𝒋, ⋯ , 𝑷𝒏) limiting term affecting the growth rate of parasite 𝑗 (e.g., due 

to inter-parasite competition for resources other than the 

host); suppose 𝐷𝑗(𝑃1, 𝑃2, ⋯ 𝑃𝑗 , ⋯ , 𝑃𝑛) =
∑ 𝜑̅𝑗𝑘𝑃𝑘

𝑚
𝑘=1

𝐾̅
 

𝝋̅𝒊𝒌 nonnegative relative strength of parasite 𝑗 over parasite 𝑘 

𝑲̅ size of the carrying capacity of the environment of the 

parasite populations during inter-parasite competition. This 

carrying capacity includes resources excluding host 

utilization. 

𝒅𝒋 constant death rate of the population of parasite 𝑗 

𝒇𝒊𝒋 the parasitic utilization efficiency (part of the functional 

response) 

𝒄𝒊𝒋 conversion rate or birth rate of parasite due to host utilization 

𝒖𝒊𝒋 mean quantitative trait of the i-th host population specific for 

dealing with the 𝑗-th parasite population 

𝒗𝒊𝒋 mean quantitative trait of the 𝑗-th parasite population specific 

for dealing with the 𝑖-th host population 

𝜺𝒊𝒋 and 𝜹𝒊𝒋 speeds of evolutionary adaptation of the host and parasite 

populations, which are functions of the additive genetic 

variances 
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APPENDIX II: Functional Response Curve 

 

Let 𝐹𝑖𝑗 = 𝑓𝑖𝑗𝐻𝑖 . We consider the following monotonic one-variable functional 

response curve:  

 

Holling type I: 𝐹𝑖𝑗 = 𝛼𝑖𝑗𝐻𝑖 

 

where the nonnegative constant parameter 𝛼𝑖𝑗 is defined as the efficiency of the parasite in 

utilizing hosts (i.e., one parasite can parasitize 𝛼𝑖𝑗𝐻𝑖  number of hosts). The matrix containing 

the 𝛼𝑖𝑗’s is called the parasitism efficiency matrix [𝛼𝑖𝑗].  

  

The Holling type I functional response represents linear curve, and only depends on 

the size of host population [Piana et al. 2006; Kratina et al. 2009]. Holling type 1 indicates 

that the rate of utilization of one parasite is directly proportional to the size of host population, 

where the ratio between the number of parasitized hosts and the parasite population is a linear 

function (i.e., 
𝐻𝑖𝑓𝑖𝑗𝑃𝑗

𝑃𝑗
= 𝛼𝑖𝑗𝐻𝑖).  

 

 

APPENDIX III: The Selection Gradient 

 

We also consider cases where there are co-evolving species due to competition. In this 

paper, evolution is represented by a system involving the concept of quantitative traits 

(genetic, phenotypic or behavioral traits) and selection gradient [Khibnik and Kondrashov, 

1997; Mougi and Iwasa, 2011a,b]. Let 𝑈𝑖 and 𝑉𝑖 be functions of host and parasite populations 

as well as of the values of the quantitative traits (e.g., traits that are related to the parameter 

𝛼𝑖𝑗). In this paper, we assume that the evolving quantitative traits are only those related to 𝛼𝑖𝑗. 

We define 𝑢𝑖𝑗 as the mean quantitative trait of the i-th host population specific for dealing 

with the 𝑗-th parasite population. We similarly define 𝑣𝑖𝑗 as the mean quantitative trait of the 

𝑗-th parasite population specific for dealing with the 𝑖-th host population. We suppose slow 

constant genetical changes represented by small values of the speeds of evolutionary 

adaptation (which are actually functions of the additive genetic variances), that is, 𝜀𝑖𝑗 ≪ 1 

and 𝛿𝑖𝑗 ≪ 1 respectively for the host and parasite population. A positive selection gradient 

(value of the partial derivative) drives the population to climb a stronger trait value, and a 

negative gradient drives the population to have a lower trait value. For example, when 𝑈𝑖 

decreases due to the increase in 𝑢𝑖𝑗, then the value of 𝑢𝑖𝑗 should be reduced for the benefit of 

the species. On the other hand, when 𝑈𝑖 increases due to the increase in 𝑢𝑖𝑗, then the value of 

𝑢𝑖𝑗 should be improved for the benefit of the species. The representation is as follows: 

  
𝑑𝐻𝑖

𝑑𝑡
= 𝑈𝑖𝐻𝑖 

𝑑𝑃𝑗

𝑑𝑡
= 𝑉𝑗𝑃𝑗  

𝑑𝑢𝑖𝑗

𝑑𝑡
= 𝜀𝑖𝑗

𝜕𝑈𝑖

𝜕𝑢𝑖𝑗
≈ 𝜀𝑖𝑗 [

𝑈𝑖(𝑢𝑖𝑗 + ∆) − 𝑈𝑖(𝑢𝑖𝑗 − ∆)

2∆
] 

𝑑𝑣𝑖𝑗

𝑑𝑡
= 𝛿𝑖𝑗

𝜕𝑉𝑗

𝜕𝑣𝑖𝑗
≈ 𝛿𝑖𝑗 [

𝑉𝑗(𝑣𝑖𝑗 + ∆) − 𝑉𝑗(𝑣𝑖𝑗 − ∆)

2∆
] 

𝑖 = 1,2, ⋯ , 𝑚;  𝑗 = 1,2, ⋯ , 𝑛; ∆≪ 1  
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The evolving parameters (such as 𝛼𝑖𝑗) due to the evolving quantitative traits can be 

modeled using a monotonic curve (e.g., 𝛼𝑖𝑗 =
𝛼𝑀𝑖𝑗

1+𝑒
𝜗𝑖𝑗(𝑢𝑖𝑗−𝑣𝑖𝑗) =

𝛼𝑀𝑖𝑗𝑒
𝜗𝑖𝑗𝑣𝑖𝑗

𝑒
𝜗𝑖𝑗𝑣𝑖𝑗+𝑒

𝜗𝑖𝑗𝑢𝑖𝑗
 which is 

sigmoidal) [Mougi and Iwasa, 2011a,b]. The value of 𝜗𝑖𝑗 ≥ 0 defines the steepness of the 

curve, and the parameter 𝛼𝑀𝑖𝑗  is the basal and possible maximal value of 𝛼𝑖𝑗 . Monotonic 

curves are usually used to represent co-evolution due to arms-race competition.  

 

Progressive evolution has a trade-off since evolution entails costs and an indefinitely 

advancing trait is unlikely [Khibnik and Kondrashov, 1997]. In this paper, a climb from an 

inferior trait to a stronger trait results to a decline in the birth rate (e.g., 𝑟𝑖 and 𝑐𝑖𝑗) of the 

evolving population. Let 𝑢̂𝑖 = ‖〈𝑞𝑖1𝑢𝑖1, 𝑞𝑖2𝑢𝑖2, … , 𝑞𝑖𝑚𝑢𝑖𝑚〉‖𝜔, and for simplicity, we assume 

𝜔 = 2 (2-norm), that is, 𝑢̂𝑖 = √∑ (𝑞𝑖𝑘𝑢𝑖𝑘)2𝑚
𝑘=1 . The parameter 𝑢̂𝑖  represents the collective 

trait of the host population, where the 𝑞𝑖𝑗’s are parameters that affect the shape of the trade-

off function curve. There are various representations of the trade-off function, such as the 

standard polynomial function 𝑟𝑖 = 𝑟𝑀𝑖(1 − 𝑢̂𝑖
𝜔) [Mougi and Iwasa, 2011a,b]. However, we 

suppose the effect of evolution to the birth rates are represented as rational functions instead 

of polynomials such as 𝑟𝑖 =
𝑟𝑀𝑖

1+𝑢𝑖
𝜔 and 𝑐𝑖𝑗 =

𝑐𝑀𝑖𝑗

1+(𝑞̅𝑖𝑗𝑣𝑖𝑗)
𝜔, where 𝑟𝑀𝑖 and 𝑐𝑀𝑖𝑗 are positive basal 

(maximal) birth rates, and the exponent (𝜔 ≥ 2) as well as  𝑞̅𝑖𝑗 are parameters that define the 

shape of the curves. Similar to the usual polynomial functions, if the value of the exponent 

𝜔 = 1, then the system may have a negative trait value which is unrealistic [Mougi and Iwasa, 

2011b]. In contrast to the usual polynomial functions, the rational trade-off functions assure 

that the values of 𝑟𝑖 and 𝑐𝑖𝑗 are always in the interval [0, 𝑟𝑀𝑖] and [0, 𝑐𝑀𝑖𝑗], respectively, for 

any positive trait value.  
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