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Power-law Null Model for Bystander Mutations

in Cancer
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Abstract

In this paper we study Copy Number Variation (CNV) data. The underlying process generating CNV

segments is generally assumed to be memory-less, giving rise to an exponential distribution of segment lengths.

In this paper, we provide evidence from cancer patient data, which suggests that this generative model is

too simplistic, and that segment lengths follow a power-law distribution instead. We conjecture a simple

preferential attachment generative model that provides the basis for the observed power-law distribution.

We then show how an existing statistical method for detecting cancer driver genes can be improved by

incorporating the power-law distribution in the null model.

Index Terms
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I. INTRODUCTION

COMPREHENSIVE knowledge of the genomic aberrations that underlie cancer is of vital

importance for diagnostics, prognostics, and the development of targeted therapies. Towards

this goal, large databases of genomic cancer-patient data are being generated in recent years. One type

of such data is Copy Number Variation (CNV) data. CNV is structural variation in which relatively

large regions of the genome are either amplified or deleted, leading to gain- or loss-of-function of

the genes contained in the affected regions.
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CNV data consists of copy-number values of thousands of markers corresponding to different

locations in the genome. To reduce the noise in this data, sets of neighboring markers are often

combined resulting in contiguous segments of equal copy number, classified into normal, amplified, or

deleted segments. Examples of such tools, usually called ‘segmenters,’ include GLAD [7], CBS [11],

and a method developed by Mishra’s group [2]. The abnormal segments correspond to duplication

or deletion events and are used as input data to identify regions containing genes that are relevant

for the development of cancer. (e.g., methods described in [9, 1]).

The underlying process generating these CNV segments is generally assumed to be memory-less,

giving rise to an exponential distribution of segment lengths. In this paper, we provide evidence from

cancer patient data, which suggests that this generative model is too simplistic, and that segment

lengths follow a power-law distribution instead. We conjecture a simple preferential attachment

generative model that provides the basis for the observed power-law distribution.

From a thorough understanding of the statistical properties of genomic copy-number data in cancer,

one expects to discover (either directly or indirectly) improved oncogenomics features, using statistical

inference tools which build upon more accurate null-models (examples of these tools include [7, 11,

2, 9, 1]). In this paper, we provide one such improved estimator to an existing statistical method (due

to Ionita et al. [9]) for detecting genetic regions relevant to cancer, which we achieve by incorporating

the power-law distribution in the null. We analyze three TCGA CNV data sets and show that the

improved model based on power-law distribution outperforms the simpler null model which only

uses a non-informative prior.

December 31, 2013

II. EVIDENCE AND FITTING

We analyzed three CNV data sets from The Cancer Genome Atlas (TCGA): Lung Squamous Cell

Carcinoma (LUSC 201 patients), Glioblastoma (GBM 299 patients), and Ovarian Serous Cystadeno-

carcinoma (OV 337 patients) 1. The level 2 data was segmented using the segmentation algorithm

of Daruwala et al. [2] and the empirical segment-length distributions of amplifications and deletions

were fit to both power-law (cx−α) and exponential (ce−λx) distributions.

Figure 1 shows the segment length distribution and fitted functions for the deleted segments of

1http://cancergenome.nih.gov/ The datasets used are: LUSC HMS HG-CGH-415K G4124A, GBM HMS HG-CGH-244A, and OV
HMS HG-CGH-415K G4124A.
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the OV dataset, and Table I lists the numerical values of all fits, as well as their R2 goodness of fit.

Plots for the remaining data sets can be found in figure 2 of Section A.

Fig. 1: Segment length distribution and fitted functions of deleted segments from the OV dataset.
The best power-law fit is shown on the left and the best exponential fit on the right. See Appendix
A Figure 2 for the images showing the fits for all other data sets.

best exponential fit best power-law fit
function R2 function R2

LUSC Amp e−0.014x 0.65 x−1.27 0.86
LUSC Del e−0.008x 0.45 x−0.89 0.79
OV Amp e−0.014x 0.67 x−1.39 0.91
OV Del e−0.013x 0.64 x−1.30 0.91
GBM Amp e−0.015x 0.39 x−1.01 0.71
GBM Del e−0.012x 0.60 x−1.20 0.78

TABLE I: Comparison of exponential and power-law fits for three TCGA data sets: LUSC, OV, and
GBM.

To determine threshold values for amplifications and deletions, we suitably modify the method

described in [8], which implies that a segment is treated as an amplification (or resp. a deletion) if

its value greater (or reps. smaller) than the mean plus (or reps. minus) twice the standard distribution

(AV G± 2STD). The fit was estimated by collecting all the segment-lengths of segments above the

amplification threshold value or below the deletion threshold value and taking a histogram of the

segment lengths. To make the fit particularly sensitive to the tail of the distribution, we chose to fit

the log of the data against the log of the exponential and power-law distributions.

As shown in Table I, in all three datasets, the power-law fits the segment-length distributions better

than the exponential one.

Several remarks about this result are due at this point. First, the remaining segments that are not

considered amplifications or deletions (the ‘Normals’), are not clearly power-law (nor exponentially)

distributed (see Appendix A Table III for the actual fits, and Figure 3 for an illustrative figure). The

power-law distribution only appears to fit segments above (or below) a certain threshold. In Appendix

A, we provide some analysis of the fits relative to a selected threshold. Second, taking the logarithm

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 2, 2014. ; https://doi.org/10.1101/001651doi: bioRxiv preprint 

https://doi.org/10.1101/001651


4

of the data is a way to magnify the difference between the power-law and exponential fit, which

occurs mostly in the tail. It should be noted, however, that it does not affect the relative goodness of

the exponential and power-law fit, as can be verified by the results listed in Table V in the Appendix

A.

A. Generative Model

The observed power-law distributions for amplifications and deletions can be explained by a

mechanism of preferential attachment. That is, once a region has large aberrations, it is more likely

to acquire even more numerous large aberrations. One straightforward reason that could underlie this

mechanism is that large amplifications or deletions lead to genomic instability and hence allow for

subsequent large copy number aberrations.

III. IMPROVING TOOLS THROUGH MORE ACCURATE STATISTICAL NULL-MODELS

Most of the tools that are developed to analyze genomic data assume a non-informative exponential

null-model for segment length distribution (e.g., segmenters [2] and tools for detecting cancer genes

[9]). Knowledge of the fact that segment lengths are not exponentially distributed allows us to improve

our null models and hence our tools. This resulting prior is especially important when there is not

sufficiently enough data available to accurately predict null-models from the data. In the next section

we show how an existing tool for detecting cancer genes can be improved.

A. Statistical Method for Detecting Cancer Genes

In this section we adopt a method described in [9] for finding cancer driver genes from copy number

variation data by building upon the assumption that segment lengths are power-law distributed.

Cancer genes are generally divided into two types: tumor suppressor genes (TSGs) and oncogenes

(OGs). TSGs prevent tumor development by regulating cell growth. A loss or reduction in its function

(for example by a deletion), can lead to uncontrolled cell division and allows the cancer to progress.

Oncogenes, on the other hand, are genes whose function promote proliferation. Gain-of-function

mutations (like amplifications), or overexpression, promote tumor progression. In the case of TSGs

a deletion of a part of the gene will cause a loss-of function, while for OGs the whole gene needs

to be amplified as a whole to cause a gain-of-function.
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The algorithm for finding TSGs and OGs enumerates all possible intervals and assigns to them a

score function that measures the likelihood of this being a driver gene. This score function can be

described as follows:

For any interval I the strength of the association between deletions in I or amplifications of I and

the disease is quantified by analyzing the genomic data for many individuals with a specific type of

cancer. For this purpose, a metric called Relative Risk (RR event I ) assigns a numerical value to any

event, a deletion or amplification of an interval, which thus compares the probability of the disease

occurring with or without the event. Informally, RR event I is the degree to which the occurrence of

event I raises the probability of the disease incidence. Formally,

RR event I = ln P ( disease | event I
P ( disease | NOT event I )

= ln
[

P ( event I | disease )
P ( NOT event I | disease )

× P ( NOT event I )
P ( event I )

]
= ln

[
P ( event I | disease )

P ( NOT event I | disease )

]
+
{
−ln

[
P ( event I )

P ( NOT event I )

]}
, (1)

where, in case of a deletion, “event I” denotes the event that at least part of I is deleted. We call

this event ‘I broken’. In case of an amplification “event I” denotes the event that there exists an

amplified interval that fully includes I . We call this event ‘I increased’.

The first term in equation (1) can be computed from the available tumor samples:

P ( event I | disease )

P ( NOT event I | disease )
=

n event I

n NOT event I
,

where n event I (or n NOT event I ) is the number of patients in whose tumor genomes the event I occurs

(or does not occur). Note that becasue of the intrinsic differences between TSGs and OGs in case of

deletions, the longer the segment the larger n event I
n NOT event I

whereas in case of amplifications the situation

is reversed: longer segments have smaller n event I
n NOT event I

. This imbalance is corrected for by the second

part of (1),

−ln
[

P ( event I )

P ( NOT event I )

]
,

which incorporates prior information inherent in the statistical distribution of amplifications and

deletions.

To compute the prior score, we assume that, at any genomic location, a breakpoint (starting

point) may occur as a Poisson process at a rate of µ ≥ 0. We consider two different µ’s: one for

amplifications µAMP and the other for deletions µDEL, but we drop the subscript when no confusion
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arises. Segments are modeled as vectors. Starting at a breakpoint and moving left (or right) with

probability 1
2
. The length t of each segment is distributed according to a power-law distribution: t−α,

with 1 ≤ α ≤ 2. Let ε be the constant that represents the shortest length an interval could possibly

have.

Given these assumptions we can derive the prior probability that an interval I is amplified or

deleted.

Proposition III.1. Assuming that segment lengths are power-law distributed :

1) The probability that an interval I = [a, b] is broken is as follows:

P ([a, b] broken) = 1− e−µ(b−a)×

e
−µ ε

α−1

2

[
a2−α−ε2−α

2−α

]
×

e
−µ ε

α−1

2

[
(G−b)2−α−ε2−α

2−α

]
;

2) The probability that an interval I = [a, b] is increased is as follows:

P ([a, b] increased) = 1− e−µ ε
α−1

2

[
b2−α−(b−a+ε)2−α

2−α

]
×

e
−µ ε

α−1

2

[
(G−a)2−α−(b−a+ε)2−α

2−α

]
;

where [0, G] represents the region of interest (e.g. a chromosome) and [a, b] is an interval within this

region. It is assumed that ε� G.

�

The proof of this proposition can be found in Appendix III.1.

The parameter α can be estimated from the data as described in section II. The values of the

µDEL and µAMP parameters are the mean number of amplifications and deletions per unit length

respectively and can be computed directly from the segmented data.

The constant ε can take any value. If we assume the value of ε is 1 unit (corresponding to a single

probe in microarray data or a single base in sequencing data) the probability that a segment is broken

approaches:

P ([a, b] broken) = 1− e−µ(b−a)×

e
−µ 1

2

[
a2−α
2−α

]
×

e
−µ 1

2

[
(G−b)2−α

2−α

]
;
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Similarly for amplifications:

P ([a, b] increased) = 1− e−µ 1
2

[
b2−α−(b−a)2−α

2−α

]
×

e
−µ 1

2

[
(G−a)2−α−(b−a)2−α

2−α

]
.

The RR score can be used to estimate the location of tumor suppressor genes and oncogenes.

The simplest algorithm first computes the score for all intervals with value in a range determined

by lower and upper bounds, and then picks the highest scoring interval on each chromosome. Many

other algorithms can be imagined. For example, one can use two scoring functions to compute the

left and right boundaries of the interval separately. The final step of the algorithm is significance

testing of the obtained intervals. The methods as described in [9] for tumor suppressor genes, and

in [8] for oncogenes can be directly applied. Both methods assign a p-value for every putative TSG

or oncogene using tools from scan statistics [12].

We have implemented the algorithm by computing the RR score for each interval while keeping

track of the highest scoring interval. Because each interval needs to be visited only once the time

complexity is linear in the number of intervals.

Instead of finding only the interval with maximum score on each chromosome we can let the

algorithm pick higher scoring intervals. One straightforward way is to pick the n non-overlapping

significantly amplified/deleted intervals with the highest score, by keeping track of a list of results

while going through the set of all intervals. This method has certain shortcomings as described in

the discussion section.

B. Performance Comparison

To be able to test the influence of the improved null model, we have applied the afore-described

algorithm with both the original exponential and the power-law null models to the three TCGA

datasets: OV, LUSC and GMB.

To compare the two models we asked which of the commonly amplified or deleted genes in the

three cancer types were found by the respective algorithms. The results are summarized in table

II. Consistent with our expectation, the power-law based model performs (slightly) better than the

exponential model.

Note that despite the (slightly) better performance of the algorithm with the power-law null model

over the exponential model, the difference between the two performances is comparable and both
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Cancer Gene Power-law Exponential
OV BRCA1 no no

BRCA2 no no
ERBB2 no no
K-ras yes yes
AKT2 no no
PIK3CA no no
c-MYC next no
p53 no no

LUSC CDKN2A yes yes
FGFR1 yes no
PDGFRA no no
SOX2 no no
HWSCL1 next no

GBM EGFR next next
MDM2 no no
PDGFR no no
CDK4 no no
Rb no no
CDKN2A yes yes

TABLE II: List of genes that are commonly altered in OV, LUSC and GBM cancer cells, and
whether or not they were found by the power-law and exponential methods using the three highest
scoring non-overlapping intervals. A more detailed version of this table can be found in Table VIII
in Appendix C.

algorithms appear to miss many cancer genes. Both methods can be further improved by including

additional information (e.g., gene-ontologies, gene-networks or pathways). In such a setting, as well

as when regions for many more genes are checked, the contribution from more accurate null model

is expected to be more pronounced.

We offer several explanations for the missing genes. For example, the algorithm only picks out a

few (in this case three) high scoring intervals per chromosome. Often, these intervals are in the same

region close to a single gene, which causes other regions of interest to be overlooked. For example,

in the OV dataset, all three deleted intervals that were found on chromosome 17 were close to (but

not exactly overlapping with) BRCA1. It became therefore impossible to find P53, which also lies

on chromosome 17, as well. This problem can be resolved by adopting more sophisticated statistical

methods for selecting high-scoring intervals.

In addition, regions either right next to actual genes or close to the centromere were often identified

as likely cancer genes. We expect this type of error to disappear as methods for CNV data collection

become more precise. In the next section, we briefly mention several other possible ways to improve
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the method for finding driver genes.

IV. CONCLUSIONS AND DISCUSSION

In summary, we have provided evidence suggesting that the segment lengths of CNV amplifications

and deletions in cancer cells follow a power-law distribution instead of the commonly assumed

exponential distribution. This evidence suggests a generative mechanism of preferential attachment:

many long amplifications and deletions lead to even more long amplifications and deletions. Even

though our data analysis rules out exponentially distributed segment lengths, and the evidence for

power-law distribution is compelling, other distributions (such as log-normal or stretched exponential,

see Table VI in Appendix A) cannot be completely excluded on the basis of this evidence.

Especially in cases where only a small sample of data is available to estimate the prior distribution

from the data, knowledge about the statistics of CNV data allows us to improve our analytic tools.

As an example, we have demonstrated how the technique for finding cancer driver genes described in

[9] can be modified to incorporate the power-law distribution and, as our preliminary results indicate,

how the power-law-based scan-statistics algorithm outperforms the exponential one. Once inferred,

the set of cancer driver genes can be used as input to cancer progression extraction algorithms to

derive progression models from static cancer patient data (see e.g., [3, 4, 6, 5]), leading to improved

diagnostics, prognostics, and targeted therapies.

We note in conclusion that, despite its promise, these results represent an analysis that remains

largely preliminary in nature. More recent single-cell single molecule genomic data have shed light

on the significant heterogeneity and temporality that exist in cancer progression – namely, a tumor

consists of a heterogeneous population of cell-types and the cells of different cell-types interact dy-

namically going through rapidly-changing cell-states. Thus, more sophisticated oncogenomic analysis

tools will need to generalize the mathematics described here much further, in which the null model

must include a mixture of distributions, with the parameters of the distribution fluctuating as cancer

progresses. Consequently, the tool to find cancer driver genes can be further improved in several

ways. For example, we will need to incorporate a preferential attachment model to the segmenter

that analyzes the genomic data from each cell-type; use more accurate priors of the distribution

of breakpoints that are known to occur in different cell-types; apply more sophisticated statistical

tools for picking high-scoring intervals by incorporating prior biological knowledge (carefully, so as

to avoid Bayesian bias); and include such information (i.e., how pathways affect the cell-states) in
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combination with precise correction for multiple hypothesis testing in order to make the final results

more meaningful. But, to keep the focus on just the algorithmic/mathematical nature of this problem,

the formulation developed here has been kept rudimentary; thus, a more practical description of a

complete solution has remained outside the scope of this paper.
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APPENDIX A

SEGMENT-LENGTH DISTRIBUTION

Let AV GC and STDC (resp AV GN and STDN ) denote the average segment-length and the

standard deviation of all segments derived from tumor (resp blood-derived normal) cells.

Fig. 2: Segment length distribution and fitted functions for all three datasets: LUSC, OV, GBM. The
thresholds are AV GC ± 2STDC .

Fig. 3: Segment length distribution and fitted functions for OV ‘Normals’. That is, all segments with
segment values in [AV GC − 2STDC , AV GC + 2STDC ].

best exponential fit best power-law fit
function R2 function R2

LUSC Nrm e−0.020 0.70 x−1.30 0.57
OV Nrm e−0.033 0.89 x−2.65 0.92
GBM Nrm e−0.016 0.50 x−1.09 0.43

TABLE III: Distribution fits of the ‘Normals’.
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Treshold OV
AMP DEL

th PL EXP th PL EXP
α R2 λ R2 α R2 λ R2

±1.0 1.00 1.41 0.90 0.024 0.64 −1.00 1.20 0.85 0.015 0.52
AV GC ± 2STDC 0.76 1.39 0.91 0.014 0.67 −0.87 1.30 0.91 0.013 0.64
AV GC ± 1.5STDC 0.59 1.79 0.93 0.031 0.81 −0.66 1.82 0.93 0.028 0.75
AV GC ± 1STDC 0.36 1.94 0.93 0.030 0.84 −0.46 1.99 0.90 0.033 0.85
AV GN ± 5STDN 0.21 2.11 0.88 0.0251 0.85 −0.27 2.21 0.85 0.0343 0.87
AV GN ± 3STDN 0.11 1.85 0.85 0.0255 0.87 −0.18 1.99 0.86 0.0343 0.89
AV GN ± 2STDN 0.06 1.79 0.83 0.025 0.89 −0.13 1.96 0.86 0.034 0.90
0.0 0.00 1.79 0.83 0.025 0.89 0.00 1.96 0.86 0.034 0.90

TABLE IV: Using the OV dataset, this table shows how different tresholds influence the power-law
and exponential fits.

Fig. 4: OV deletions segment length distributions for different thresholds: 0, AV GC±1SDC = −0.46
and −1.

Fig. 5: Distribution of segment values of all segments (left), all positive segment values (middle) and
negative segment values (right), on a log-log scale

APPENDIX B

PROOF OF PROPOSITION III.1

The Model: We assume that, at any genomic location, a breakpoint (starting point) may occur as

a Poisson process at a rate of µ ≥ 0. We consider two different µ’s: one for amplifications µAMP and

one for deletions µDEL, but we drop the subscript when no confusion arises. Segments are modeled
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best exponential fit best power-law fit
function R2 function R2

LUSC Amp e−0.27x 0.96 x−1.26 0.97
LUSC Del e−0.48x 0.94 x−1.58 0.99
OV Amp e−0.26x 0.96 x−1.50 0.99
OV Del e−0.30x 0.91 x−1.22 0.99
GBM Amp e−1.51x 1.00 x−2.71 1.00
GBM Del e−0.41x 0.91 x−1.39 0.97

TABLE V: Exponential and power-law fits for non-log data.

best exponential fit best power-law fit best log-normal fit
R2 R2 R2

LUSC Amp 0.65 0.86 0.82
LUSC Del 0.45 0.79 0.77
OV Amp 0.67 0.91 0.77
OV Del 0.64 0.91 0.86
GBM Amp 0.39 0.71 0.71
GBM Del 0.60 0.78 0.76

TABLE VI: Exponential (ce−λx), power-law (cx−α) and log-normal ( 1

x
√
2πσ2

e−
(ln(x)−σ)2

2σ2 ) fits.

as vectors. Starting at a breakpoint x and moving left (or right) with probability 1
2
. The length t of

each segment is distributed according to a power-law distribution: t−α, with 1 ≤ α ≤ 2. Let ε be the

constant that represents the shortest length an interval could possibly have.

Proposition B.1. Assuming that segment lengths are power-law distributed :

1) The probability that an interval I = [a, b] is broken is as follows:

P ([a, b] broken) = 1− e−µ(b−a)×

e
−µ ε

α−1

2

[
a2−α−ε2−α

2−α

]
×

e
−µ ε

α−1

2

[
(G−b)2−α−ε2−α

2−α

]
;

2) The probability that an interval I = [a, b] is increased is as follows:

P ([a, b] increased) = 1− e−µ ε
α−1

2

[
b2−α−(b−a+ε)2−α

2−α

]
×

e
−µ ε

α−1

2

[
(G−a)2−α−(b−a+ε)2−α

2−α

]
.

Proof:

1) We wish to estimate the probability that the interval [a, b] is ‘ broken’. This is the probability

that there exists a deleted interval I that intersects with [a, b]:
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P ([a, b] broken) = P (∃I : I ∩ [a, b] 6= ∅ and I is deleted).

Instead, we compute P ([a, b] is NOT broken) by computing:

(P1) The probability that no deletion occurs starting in the interval [a, b],

(P2) The probability that each deletion starting in [0, a] does not overlap [a, b], and

(P3) The probability that each deletion starting in [b,G] does not overlap [a, b].

It follows that P ([a, b] is NOT broken) = P1 × P2 × P3. Thus,

P ([a, b] broken) = 1− P ([a, b] is NOT broken).

(P1) P ( no deletion starts in [a, b]) = e−µ(b−a). This equation follows immediately from the

assumption that breakpoints are generated by a Poisson process. Note that we drop the

subscript DEL in µDEL.

(P2) P ( each interval starting in [0, a] does not overlap with [a, b]) can be broken down as the

following infinite sum:

P ( each interval starting in [0, a] does not overlap with [a, b]) =

P ( no deletions start in [0, a])

+ P (1 deletion starts in [0, a])× P (the deleted interval ∩ [a, b] = ∅)

+ P (2 deletions start in [0, a])× P (both deleted intervals ∩ [a, b] = ∅)

+ . . .

By the assumption that breakpoints are generated as a Poisson process,

the probability P (n deletions start in [0, a]) = (µa)n e
−µa

n!
for each n. The probability P (1 deleted interval ∩

[a, b] = ∅) can be computed as follows. From our model it follows that P ( deleted interval ∩

[a, b] = ∅ | 1 deletion starts in [0, a]) is the probability that each deletion starting at x in the

interval [0, a] does not reach all the way to a:

P ( deleted interval ∩ [a, b] = ∅ | 1 deletion starts in [0, a])

= 1
2
+ 1

2
1
a

(∫ a−ε
0

∫ a−x
ε

cε,Gt
−αdtdx+ ε

)
,

where:
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– The constant cε,G depends on the length ε and G and is computed below.

– The 1
2
’s are to take into account the possibility that the deletion moves left instead of

right.

– The last term +ε takes into account the possibility that the starting point of the deleted

interval is in [a− ε, a].

The preceding equation can be simplified as follows:

P ( deleted interval ∩ [a, b] = ∅ | 1 deletion starts in [0, a])

= 1
2
+ 1

2
1
a

(∫ a−ε
0

∫ a−x
ε

cε,Gt
−αdtdx+ ε

)
= 1

2
+ 1

2a

(
cε,G
1−α

∫ a−ε
0

[(a− x)1−α − ε1−α] dx+ ε
)

= 1
2
+ 1

2a

(
cε,G
1−α

[(
− (a−(a−ε))2−α

(2−α) − ε1−α(a− ε)
)
+
(
a2−α

2−α

)]
+ ε
)

= 1
2
+ 1

2a

(
cε,G
1−α

[
a2−α−ε2−α

2−α − ε1−α(a− ε)
]
+ ε
)

= 1
2
+ 1

2a

(
cε,G
(1−α)

[
a2−α−ε2−α

2−α − ε1−α(a− ε)
]
+ ε
)
.

There are a few points to make regarding this derivation:

– We ignore the integration constants, as they cancel each other out.

– Since α ≥ 1, and cε,G, a ≥ 0, the term cε,G
2a(1−α) is negative.

We thus need to show that
[
a2−α−ε2−α

2−α − ε1−α(a− ε)
]

is always negative to obtain a

positive probability. This follows from the mean-value theorem. Namely, for any function

f that is concave and increasing the following holds:

f(x)− f(x− δ) ≤ δf ′(x− δ)

the function f(x) = x2−α

2−α is concave and increasing with f ′(x) = x1−α. If we let x = a

and δ = a− ε then x− δ = ε and we have

a2−α

2− α
− ε

2− α
≤ (a− ε)ε1−α,

from which it follows that a2−α−ε2−α
2−α − ε1−α(a− ε) is negative.

The normalizing constant cε,G can be computed as follows. It has to be such that∫ G

ε

cε,Gt
−αdt = 1.
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It follows that
cε,G = (

∫ G
ε
t−αdt)−1

=
(
G1−α

1−α −
ε1−α

1−α

)−1
.

Since α > 1 and G� ε this approaches

≈
(
ε1−α

1−α

)−1
= α−1

ε1−α
.

Using cε,G = α−1
ε1−α

, we can simplify P ( deleted interval ∩[a, b] = ∅ | 1 deletion starts in [0, a])

as follows:

= 1
2
+ 1

2a

(
α−1
ε1−α

1
(1−α)

[
a2−α−ε2−α

2−α − ε1−α(a− ε)
]
+ ε
)

= 1
2
+ 1

2a

(
− 1
ε1−α

[
a2−α−ε2−α

2−α − ε1−α(a− ε)
]
+ ε
)

= 1
2
+ 1

2a

(
−εα−1

[
a2−α−ε2−α

2−α

]
+ (a− ε) + ε

)
= 1− εα−1

2a

[
a2−α−ε2−α

2−α

]
.

Since deletions are assumed to be independent events that can overlap it follows that

P (n deleted intervals ∩ [a, b] = ∅ | n deletions starts in [0, a]) = P ( deleted interval ∩

[a, b] = ∅ | 1 deletion starts in [0, a])n

Hence, we get the following series:

P2 = e−µa + (µa)1
e−µa

1!
(1− w) + (µa)2

e−µa

2!
(1− w)2 + . . .

with w = εα−1

2a

[
a2−α−ε2−α

2−α

]
.

It follows that

P2 = e
−µa ε

α−1

2a

[
a2−α−ε2−α

2−α

]
,

which can be simplified to

P2 = e
−µ ε

α−1

2

[
a2−α−ε2−α

2−α

]
.

(P3) P ( each interval starting in [b,G] does not overlap with [a, b]) is computed in the same

way as P2, but now starting at x ∈ [b,G] and moving left. In this case
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P ( deleted interval ∩ [a, b] = ∅ | 1 deletion starts in [b,G])

= 1
2
+ 1

2
1

G−b

(∫ G
b+ε

∫ x−b
ε

cε,Gt
−αdtdx+ ε

)
= 1− εα−1

2(G−b)

[
(G−b)2−α−ε2−α

2−α

]
,

and we obtain

P3 = e
−µ ε

α−1

2

[
(G−b)2−α−ε2−α

2−α

]
.

It follows that

P ([a, b] broken) = 1− e−µ(b−a)×

e
−µ ε

α−1

2

[
a2−α−ε2−α

2−α

]
×

e
−µ ε

α−1

2

[
(G−b)2−α−ε2−α

2−α

]
.

2) In an analogous fashion, we calculate the probability that the interval [a, b] is‘ increased’. This

is the probability that there exists a deleted interval I that includes [a, b]:

P ([a, b] increased) = P (∃I : [a, b] ⊆ I and I is amplified).

We compute P ([a, b] is NOT increased) by computing:

(P1) The probability that each interval starting in [0, a] does not include [a, b], and

(P2) The probability that interval starting in [b,G] does not include [a, b].

The computation of P1 (and P2) is exactly like that of deletions, except for the fact that we can

to integrate over all intervals reaching up to b (down to a). In the case of P1, we solve

P ([a, b] ⊆ amplified interval | 1 amplification starts in [0, a])

= 1
2
+ 1

2
1
a

(∫ a−ε
0

∫ b−x
ε

cε,Gt
−αdtdx+ ε

)
= 1− εα−1

2a

[
b2−α−(b−a+ε)2−α

2−α

]
,

and in the case of P2

P ([a, b] ⊆ amplified interval | 1 amplification starts in [b,G])

= 1
2
+ 1

2
1

G−b

(∫ G
b+ε

∫ x−a
ε

cε,Gt
−αdtdx+ ε

)
= 1− εα−1

2(G−b)

[
(G−a)2−α−(b−a+ε)2−α

2−α

]
.
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We obtain:
P ([a, b] increased) = 1− e−µ ε

α−1

2

[
b2−α−(b−a+ε)2−α

2−α

]
×

e
−µ ε

α−1

2

[
(G−a)2−α−(b−a+ε)2−α

2−α

]
.

APPENDIX C

DETECTING DRIVER GENES

Cancer amplifications deletions normals
OV (337) 13416 10237 82633
LUSC (201) 3637 1832 46215
GBM (299) 2131 3959 41458

TABLE VII: Number of deleted and amplified segment for three TCGA data sets using a threshold
of AV GC ± 2STDC .
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Cancer Gene Function Location Power-law Exponential
OV BRCA1 TSG 17: (41196312..41277500) no no

BRCA2 TSG 13: (32889617..32973809) no no
ERBB2 OG 17: (37844393..37884915) no no
K-ras OG 12: (25358180..25403854) yes (25289555..25421243) yes (25177510..26726740)
AKT2 OG 19: (40736224..40791302) no no
PIK3CA OG 3: (178866311..178952500) no no
c-MYC OG 8: (128748315..128753680) next (128797789..128989029) no
p53 TSG 17: (7571720..7590868) no no

LUSC CDKN2A TSG 9: (21967751..21994490) yes (18947155..28723296) yes (21983401..21993651)
FGFR1 OG 8: (38268656..38326352) yes (38303346..38369274) no
PDGFR OG 4: (55095264..55164412) no no
SOX2 OG 3: (34650005..34652461) no no
WHSC1L1 OG 8: (38132560..38239790) next (38303346..38369274) no

GBM EGFR ONCG 7: (55086725..55275031) next (55049021..55065490) next (54998411..55043660)
MDM2 ONCG 12: (69201971..69239320) no no
PDGFR ONCG 5: (149493402..149535422) no no
CDK4 ONCG 12: (58141510..58146230) no no
Rb TSG 13: (48877883..49056026) no no
p53 TSG 17: (7571720..7590868) no no
PTEN TSG 10: (89623195..89728532) no no
CDKN2A TSG 9: (21967751..21994490) yes (21973069..21983401) yes (21973069..21983401)

TABLE VIII: List of genes with their locations that are commonly altered in OV, LUSC and GBM cancer cells, and whether or not they were
found by the power-law and exponential methods using the three highest scoring non-overlapping intervals. The OV and GBM genes were taken
from the Kegg database ( http://www.genome.jp/dbget-bin/www bget?ds:H00027 and http://www.genome.jp/dbget-bin/www bget?ds:H00042);
the LUSC genes, for which no Kegg entry exists, are commonly amplified/deleted LUSC driver genes from [10] (mentioned on page 519). A
gene is considered ‘found’ if the selected interval intersects with the region containing the gene. In this table ‘next’ indicates within 100kbp
from a border of the gene interval. The parameters µ, α, and λ were estimated from the data as in [9] and Table I, with the exception of α of
LUSC del which was set to 1, as the computation of RR score assumes α ≥ 1. Segments shorter than 104 base pairs (corresponding to the
distance between two probes) and longer than 107 base pairs were excluded.

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted January 2, 2014. 

; 
https://doi.org/10.1101/001651

doi: 
bioR

xiv preprint 

http://www.genome.jp/dbget-bin/www_bget?ds:H00027
http://www.genome.jp/dbget-bin/www_bget?ds:H00042
https://doi.org/10.1101/001651

	Introduction
	Evidence and Fitting
	Generative Model

	Improving tools through More Accurate Statistical Null-Models 
	Statistical Method for Detecting Cancer Genes
	Performance Comparison

	Conclusions and Discussion
	Appendix A: Segment-length distribution
	Appendix B: Proof of proposition III.1
	Appendix C: Detecting driver genes

