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Abstract

A modular pattern, also called community structure, is ubiquitous in biological
networks. There has been an increased interest in unraveling the community
structure of biological systems as it may provide important insights into a
system’s functional components and the impact of local structures on dynamics
at a global scale. Choosing an appropriate community detection algorithm to
identify the community structure in an empirical network can be difficult,
however, as the many algorithms available are based on a variety of cost functions
and are difficult to validate. Even when community structure is identified in an
empirical system, disentangling the effect of community structure from other
network properties such as clustering coefficient and assortativity can be a
challenge. Here, we develop a generative model to produce undirected, simple,
connected graphs with a specified degrees and pattern of communities, while
maintaining a graph structure that is as random as possible. Additionally, we
demonstrate two important applications of our model: (a) to generate networks
that can be used to benchmark existing and new algorithms for detecting
communities in biological networks; and (b) to generate null models to serve as
random controls when investigating the impact of complex network features
beyond the byproduct of degree and modularity in empirical biological networks.
Our model thus allows for the systematic study of the presence of community
structure and its impact on network function and dynamics. This process is a
crucial step in unraveling the functional consequences of the structural properties
of biological systems and uncovering the mechanisms that drive these systems.

Keywords: biological networks; community structure; random graphs;
modularity; benchmark graphs

Background
Network analysis and modeling is a rapidly growing area which is moving forward

our understanding of biological processes. Networks are mathematical representa-

tions of the interactions among the components of a system. Nodes in a biological

network usually represent biological units of interest such as genes, proteins, in-

dividuals, or species. Edges indicate interaction between nodes such as regulatory

interaction, gene flow, social interactions, or infectious contacts [1]. A basic model

for biological networks assumes random mixing between nodes of the network. The

network patterns in real biological populations, however, are more heterogeneous

than assumed by these simple models [2]. Some of the common non-trivial properties
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known to exist in biological networks are degree heterogeneity, assortative mixing,

clustering coefficient, and community structure (see review by Proulx et al.[1]).

Community structure, or the presence of groups of nodes that are highly connected

within the group but only loosely connected to other groups, has especially been

found to be a central topological property [3, 4]. These groups, called modules or

communities, may correspond to well-known or understood partitions of the sys-

tem, but are based, in the context of network science, only on the configuration of

connections between and among these groups, without any a prioriknowledge of

the system’s processes.

Although community structure has been found to be a central topological feature

of biological networks such as metabolic [5], protein [6, 7], genetic [8], food-web

[9, 10] and pollination networks [11], a detailed understanding of its relationship

with other network topological properties is still limited. This is perhaps because

delineating community structure in empirical networks can prove to be a difficult

task, and the numerous community detection algorithms that exist often yield very

different results. Another approach has used empirical vertex features or labels to

independently estimate the accuracy of detection algorithms [12]. However, such

tests can have ambiguous value as a lack of correlation between observed features

and the identified communities may simply indicate that the true features driving

the network’s structure are unobserved, not that the identified communities are

incorrect.

A more straightforward method of exploring the structural and functional role

of a network property is to generate graphs which are random with respect to

other properties except the one of interest. For example, network properties such as

degree distribution, assortativity and clustering coefficient have been studied using

the configuration model [13], and models for generating random graphs with tunable

structural features [14, 15, 2] . These graphs serve to identify the network measures

that assume their empirical values in a particular network due to the particular

network property of interest. In this work, we propose a model for generating simple,

connected random networks that have a specified degree distribution and level of

community structure.

Random graphs with tunable strength of community structure can have several

purposes such as: (1) serving as benchmarks to test the performance of community

detection algorithms; (2) serving as null models for empirical networks to investigate

the combined effect of the observed degrees and the latent community structure on

the network properties; (3) serving as proxy networks for modeling network dynam-

ics in the absence of empirical network data; and (4) allowing for the systematic

study of the impact of community structure on the dynamics that may flow on a

network. Among these, the use of random graphs with tunable strength of commu-

nity structure to serve as benchmarks has received the most attention and several

such models have been proposed [16, 17, 18, 19, 20, 21]. A few studies have also

looked at the role of community structure in the flow of disease through contact

networks [22, 23, 24, 25]. However, the use of modular random graphs, which can

be defined as random graphs that have a higher strength of community structure

than what is expected at random, is still relatively unexplored in other applications.

In this study, therefore, we extend the scope of modular random graphs by using
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our model to estimate the residual structure in several empirical networks, after

controlling for the degree distribution and community structure.

Previous work
In 2002, Girvan and Newman proposed a simple model for generation of random

network with a specific configuration and strength of community structure [3]. The

model generates modular random graphs of 128 nodes, four modules (and thus

average modular size =32) and average degree=16. The connection probability in

each module, which corresponds to a Erdős-Rényi random graph, is pin and connec-

tion probability between modules is pout. This model is one of the widely-accepted

benchmarks to test community-detection algorithms, but has a limited scope due

to its several assumptions such as small network size, constant number of modules,

and fixed degree of each node in the network, which do not reflect the heterogene-

ity observed in real network systems. The model proposed by Lancichinetti et al

[16] considers heterogeneity in degree and community size, but is restrictive as it

assumes only a particular type of degree distribution (power law). A similar model

by Bagrow[17] generates modular networks with power law degree distribution and

constant community size. Yan et al[23]used a growth and preferential attachment

model to generate scale-free networks comprised of communities with power-law

degree distribution. Models for special graph types such as hierarchical networks

[18], bipartite networks [21], and networks with overlapping modules [20] have also

been proposed. These models remain limited due to their assumptions about de-

gree heterogeneity of network and its communities. The stochastic block model is

a popular generative model for producing synthetic networks with specified com-

munity structure, but like the Girvan and Newman model, it produces unrealistic

degree distributions. More recently, Karrer and Newman [26] introduced a “degree-

corrected” stochastic block model, which can be used to infer communities from

networks with arbitrary degrees, and could, in principle, also generate networks, al-

though this has not been systematically investigated yet. A recently proposed model

[19] does generate networks with a broad range of degree distributions, modular-

ity and community sizes, but it is unclear how model parameters map to desired

properties (such as degree distribution and modularity).While these models may

be sufficient for community-detection benchmarks, the model limitations constrain

their use for other purposes.

Our approach

Here, we develop and implement a simple simulation model for generating modular

random graphs using only a few intuitive parameters. Our model can generate

graphs over a broad range of distributions of network degree and community size.

The generated graphs can range from very small (<100) to large (>105) network

sizes and can be composed of a variable number of communities. In Methods below,

we introduce our algorithm for generating modular random graphs. In Results, we

show that our null modular graph remains random with respect to other important

network properties such as assortativity, clustering coefficient and path length. We

next demonstrate the applicability of the generated modular graphs to test the

accuracy of extant community detection algorithms. The accuracy of community-

detection algorithms depends on several network properties such as the network
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mean degree and strength of community structure, which is evident in our analysis.

Finally, using a few empirical biological networks we demonstrate that our model

can be used to generate corresponding null modular graphs under two different

models of randomization. We conclude the paper with some thoughts about other

applications and present some future directions.

Implementation
We present a model that generates undirected, simple, connected graphs with pre-

scribed degree distributions and a specified level of community structure, while

maintaining a graph structure that is otherwise as random (uncorrelated) as pos-

sible. Below, we introduce some notation and a metric for measuring community

structure, followed by a description of our model and the steps of the algorithm

used to generate graphs with this specified structure.

Measure of community structure

We begin with a graph G = (V,E) that is comprised of a set of vertices or nodes

V (G) = {v1, . . . , vn} and a set of edges E(G) = {e1, . . . , em}. G is undirected and

simple (i.e. a maximum of one edge is allowed between a pair of distinct nodes, and

no “self” edges are allowed). The number of nodes and edges in G is |V (G)| = n and

|E(G)| = m, respectively. The neighborhood of a node vi is the set of nodes vi is

connected to, N(vi) = {vj | (vi, vj) ∈ E, vi 6= vj , 1 ≤ j ≤ n}. The degree of a node

vi, or the size of the neighborhood connected to vi, is denoted as d(vi) = |N(vi)|.
A degree sequence, D, specifies the set of all node degrees as tuples, such that

D = {(vi, d(vi)} and follows a probability distribution called the degree distribution

with mean d.

Each community or module Ck is defined as a subset of G that contains both

nodes, V (Ck) and edges E(Ck), where both the endpoints of each edge in E(Ck) are

contained in V (Ck). Each node vi ofG has a within-degree, dw(vi) = |N(vi)∩V (Ck)|,
which is the number of within-edges connecting vi to other nodes of the same module

Ck; and a between-degree, db(vi) = |N(vi)−V (Ck)|, i.e. the number of between-edges

connecting vi to nodes in different modules (here, the minus operator represents set

difference). The strength of the community structure defined by a partition, {Ck},
can be measured as modularity, Q, and is defined as

Q =
K∑
k=1

(
ekk − a2k

)
(1)

where ekk = |E(Ck)|
|E(G)| denotes the proportion of all edges that are within module Ck,

andak = [
∑
vi∈Ck d(vi)]/2m represents the fraction of all edges that touch nodes in

community Ck. When Q = 0, the density of within-community edges is equivalent

to what is expected when edges are distributed at random, conditioned on the

given degree sequence. Values approaching Q = 1, which is the maximum possible

value of Q, indicate networks with strong community structure. Typically, values for

empirical network modularity fall in the range from about 0.3 to 0.7 [27]. However,

in theory Good et al. [28] show that maximum Q values depend on the network size

and number of modules.
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In order to generate a graph with a specified strength of community structure, Q,

equation (1) represents our first constraint, which we rewrite below in terms of the

expected value of Q, (full derivation in Additional file 1):

E[Q] =
K∑
k=1

[
dw.sk
m
−
(
d.sk
m

)2
]

(2)

where dw and d are the average within-degree and average degree, respectively,

and sk is the module size for module k. Thus, equation (2) allows us to specify dw

in terms of Q, d, m and sk, assuming that the module-specific average degree and

average within-degree are equal to d and dw, respectively. When sk = s for all k,

E[Q] reduces to dw
d
− 1

K .

We note that as the average within-degree (dw) approaches the average degree

(d), the graph, G becomes increasingly modular. Hence, the maximum modularity

for G with K modules can be estimated as:

Qmax ' sup(Q) = 1− 1

K
(3)

Model

We present a model and an algorithm that generates undirected, unweighted, simple

and connected modular random graphs. The model is specified by a network size

(n), degree distribution (pd, with mean d), an expected modularity (E[Q]), the

number of modules (K), and the module size distribution (P (s), with mean s. Here

the size of module Ck is s = |V (Ck)|). The algorithm proceeds in four steps:

1 Assign the n network nodes to K modules based on the size distribution P (s).

2 Assign degrees, d(vi), to each node vi based on pd and d. We next assign

within-degrees, dw(vi), to each node vi by assuming that the within-degrees

follow the same distribution as pd with mean dw, which is estimated based on

equation (2) above (Figure 1a).

3 Connect between-edges based on a modified Havel-Hakimi model and ran-

domize them. (Figure 1b)

4 Connect within-edges based on the Havel-Hakimi model and randomize them.

(Figure 1c and 1d)

The generated graph then has a degree distribution that follows pd with mean d,

K modules with sizes distributed as P (s), and a modularity Q ≈ E[Q]. We set an

arbitrary tolerance of ε = 0.01, such that the achieved modularity is Q = E[Q]± ε.
The graph is also as random as possible given the constraints of the degree and

community structure, contains no self loops (edges connecting a node to itself),

multi-edges (multiple edges between a pair of nodes), isolate nodes (nodes with no

edges), or disconnected components. Below, we elaborate on each of the steps of

this algorithm.

Assigning Nodes to Modules

We sample module sizes, sk, for each of theK modules from the specified module size

distribution, P (s) so that
∑
sk = n. The n nodes are then arbitrarily (without loss

of generality) assigned to each module to satisfy the sampled module size sequence.
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Assigning Degrees

Based on the degree distribution specified, a degree sequence is sampled from the

distribution to generate a degree, d(vi), for each node vi. To ensure that the degree

sequence attains the expected mean of the distribution (within a specified threshold)

and is realizable, we verify the Handshake Theorem (the requirement that the sum

of the degrees be even) and the Erdős-Gallai criterion (which requires that for each

subset of the k highest degree nodes, the degrees of these nodes can be “absorbed”

within the subset and the remaining degrees) [29], and that no node is assigned a

degree of zero.

We assume that the within-degree distribution follows the degree distribution

specified, pd, with mean dw based on equation (2). This assumption is considered

reasonable as it holds true for several of the empirical networks we analyze (shown

in Figure S1 in Additional File 1). However, our model can be extended for ar-

bitrary within-degree distributions, although the space of feasible within-degree

distributions given a specified degree distribution is restricted. Next, we sample a

within-degree sequence, dw(vi), from this within-degree distribution. (We note that

degree and within-degree sequences can be specified instead of a degree distribution

as inputs to the algorithm.) Using rejection sampling, we ensure that the within-

degree sequence attains the expected overall mean, dw within a tolerance εdw = εd

(with details in the Additional file 1), and satisfies the following conditions:

• Condition 1: d(vi) ≥ dw(vi) for all vi. To ensure this, we sort the degree

sequence and within-degree sequence, independently. If d(vi) < dw(vi) for any

vi in the ordered lists, the condition is not satisfied.

• Condition 2: a realizable within-degree sequence for each module, Ck, as de-

fined by the Handshake Theorem and the Erdos-Gallai criterion.

In addition, to ensure that each module approximately achieves the over-

all mean within-degree, dw, we specify the following constraint: min[sk] ≤
max[{dw(vi)}vi∈G]. If the sampled module sizes do not satisfy this criteria, the

module sizes are re-sampled or an error is generated. In Figure S2 of Additional

File 1, we discuss the rejection rates for the rejection sampling of both the within-

degree sequence as well as the module size distribution.

The between-degree sequence is generated by specifying db(vi) = d(vi) − dw(vi)

for each node vi. To test if the between-degree sequence is realizable, we impose

a criterion developed by Chungphaisan[30] (reviewed by Ivanyi [31]) for realizable

degree sequences in multigraphs. To do so, we imagine a coarse graph, H, where

the modules of G are the nodes of H (i.e. V (H) = {C1, C2, . . . CK}), and the

between-edges that connect modules of G are the edges of H. We note that H is

a multigraph, because G allows multiple between-edges of G to connect each pair

of modules. In this case, the degree sequence of H is D = {(Ck, d(Ck))|d(Ck) =∑
vj∈Ck db(vj), k = 1 . . .K}.
The Chungphaisan criterion then specifies that the multigraph degree sequence

{d(Ck)} on H is realizable if the following conditions are satisfied:

• Condition 1: the Handshake theorem is satisfied for {d(Ck)}:
∑K
k=1 d(Ck) =∑K

k=1

∑
vj∈Ck db(vj) is even

• Condition 2:
∑j
k=1 d(Ck) − bj(j − 1) ≤

∑K
k=j+1 min[jb, d(Ck)] for (j =

1, . . . ,K − 1).
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Here, b is defined as the maximum number of edges allowed between a pair of

nodes in H; in our case, b = max[{db(vi)}], the maximum between-degree of any

node vi ∈ G.

We also generate network graphs withQ = 0 by assuming the network is composed

of a single module with no between-edges. Thus, dw(vi) = d(vi) and db(vi) = 0 for

all vi ∈ G.

Connecting edges

Based on the within-degree sequence and between-degree sequence specified above,

edges are connected in two steps (Figure 1). Nodes that belong to different modules

are connected based on their between-degree to form between-edges (Figure 1b)

and nodes that belong to the same module are connected according to their within-

degree to form within-edges (Figure 1c and 1d).

We connect between-edges using a modified version of the Havel-Hakimi algo-

rithm. The Havel-Hakimi algorithm [32, 33] constructs graphs by sorting nodes

according to their degree and successively connecting nodes of highest degree with

each other. After each step of connecting the highest degree node, the degree list

is resorted and the process continues until all the edges on the graph are con-

nected. Here, we modify this to construct between-edges by sorting nodes by highest

between-degree, in order of highest total between-degree for the module to which

they belong, and successively connecting the node at the top of the list randomly

with other nodes. Connections are only made between nodes if they are not previ-

ously connected, belong to different modules, and do not both have within-degree

of zero (to avoid disconnected components). After each step the between-degree

list is resorted, and the process continues until all between-edges are connected.

After all between-edges have been connected, the connections are randomized using

a well-known method of rewiring through double-edge swaps [34]. Specifically, two

randomly chosen between-edges (u, v) and (x, y) are removed, and replaced by two

new edges (u, x) and (v, y), as long as u and x, and v and y belong to different mod-

ules, respectively. The swaps are constrained to avoid the formation of self loops

and multi-edges. This process is repeated a large number of times to randomize

edges.

We then connect within-edges using the standard Havel-Hakimi algorithm, applied

to each module independently. Specifically, within-edges of a module are connected

by sorting nodes of the module according to their within-degree and successively

connecting nodes of highest within-degree with each other. Connections are only

made between nodes if they are not previously connected, and do not both have

a between-degree of zero (to avoid disconnected components). After each step the

within-degree list is resorted and the process continues until all the within-edges

of the module are connected. The connections are then randomized by rewiring

through double-edge swaps [34]. We do not specify that each module be connected

(only that the full graph is connected). However, if this is required, Taylor’s al-

gorithm can be used to rewire pairs of edges until the module is connected [35].

Specifically, the algorithm selects two random edges (u, v) and (x, y) that belong to

two different disconnected components of the module. As long as (u, x) and (v, y)

are not existing edges, the (u, v) and (x, y) edges removed and (u, x) and (v, y)
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added. If k′ is connected, then we perform the rewiring operation and let kt+1 = k′.

Taylor’s theorem proves that following such operation any disconnected module can

be converted to a connected module with the same degree sequence.

Results and Discussion
Using our simulation algorithm, we were able to generate modular random graphs

of variable network size, number of communities, degree distribution, and commu-

nity size distribution. In Figure 2, we show sample networks of varying levels of

modularity, Q = 0.1, 0.3, 0.6. We note that a network with three modules can ap-

proach a maximum modularity value of 2/3 (from equation 3), and thus Q=0.6 is

a relatively high modularity for this particular network type.

Performance & Properties of Generated Graphs

Performance

Our model generates graphs that closely match the expected modularity and degree

distribution. The deviation of the observed modularity is less than 0.01 from the

expected value, given the specified partition. The modular random graphs with Pois-

son degree distribution generated by our model are similar to the ones described by

Girvan and Newman[3] with linking (pin) and cross-linking probability (pout) equal

to dw
s−1and d−dw

s(K−1) respectively. However, our model overcomes several limitations

of the model proposed by Girvan and Newman[3] and others [16, 17] by considering

heterogeneity in total degree, within-module degree distribution, and module sizes.

Unlike many of the existing models [19, 18, 21, 20], our model can generate modular

random graphs with arbitrary degree distributions, including those obtained from

empirical networks.

Structural Properties

There are several other topological properties (besides degree distribution and com-

munity structure) that can influence network function and dynamics. The most

significant of these properties are degree assortativity (the correlation between a

node’s degree and its neighbor’s degrees), clustering coefficient (the propensity of a

node’s neighborhood to also have edges among them) and average path length (the

typical number of edges between pairs of nodes in the graph). We have developed

this model to generate graphs with specified degree distribution and modularity,

while minimizing structural byproducts. Thus, it is important to confirm that we

have reached this goal with the generative model above.

To evaluate the status of other structural properties due to the generative model,

we specify graphs of n = 2000 following Poisson (λke−λ/k!), geometric (p(1−p)k−1),

and power-law ( k
−α

ζ(α) ) degree distributions with d = 10. We chose these particular

types of degree distributions as they have widely studied in the context of biolog-

ical networks[36, 37, 38]. Each network has K = 10 modules and a module size

distribution P (s = 200) = 1. We generate modular random graphs with these spec-

ifications and modularity values that range from Q = 0 to Q = 0.8, in steps of 0.1.

For each level of modularity, we generated 50 such modular random graphs and

calculated the degree assortativity (r), clustering coefficient (C ), and average path

length (L) for each network, which is illustrated in Figure 3. In networks with ran-

dom community structure ((Q = 0)), that is random graphs with specified degree
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distributions (such as those that would be generated by the configuration model

[13]), the value of r, C, and L are what are expected at random. In Figure 3, we

show that for increasing values of modularity, degree assortativity, clustering co-

efficient, and average path length remain relatively constant for all three network

types (i.e. Poisson, geometric and power-law). At the highest levels of modularity,

edge connections are constrained, particularly for the heavy-tailed geometric and

power-law degree distributions, leading to an increase in clustering coefficient. Cor-

relations between high clustering coefficient and high modularity have also been

observed before [2]. The average path length for all network types also increases at

the highest levels of modularity, likely reflecting the lack of many paths between

modules, requiring additional steps to reach nodes in different modules. Thus, our

model is able to increase levels of modularity in random graphs without altering

other topological properties significantly.

Biological networks show remarkable variation in network size, connectivity and

community size distribution, with some of them having particularly small network

size, high degree, and small module sizes (e.g. food-web networks). We therefore

tested the performance of our generated networks under deviations in the network

specifications of size, mean degree and module size distribution (results presented

in Additional file 1 Figure S3, S4 and S5). We find that the structural properties of

our generated modular random graphs remain constant, except for two constrain-

ing conditions: a) high average degree (d̄ >10) and b) low average module size

(s̄ <50). At these parameter extremes, the modular random graphs become disas-

sortative and have increased clustering coefficient. A similar observation of network

disassortativity has been made in hierarchically modular networks [39]. In these

two scenarios, the highest value of within-degree (dw(vi)) that a node can attain

is constrained by the community size, which reduces the number of possible high

within-degree nodes . As a consequence high within-degree nodes must connect to

low within-degree nodes more than expected, resulting in a disassortative network.

In these two cases, modules also become more dense and thus create more triangles

resulting in a gradual increase in clustering. Path length, on the other hand, is not

affected by these conditions and shows a consistent dependence on network size and

mean degree, which is well known [40, 41].

Application: Null Analysis of Empirical Networks

It is crucial to have random controls in the study of biological systems. Our algo-

rithm can be used to generate null models and applied to the detection of structure

in empirical biological networks. These null networks can be used to test hypothe-

ses regarding the role of modularity and other topological features of the empirical

networks. To do so, one would first use our algorithm to generate an ensemble of

networks that match the empirical degree structure and community structure, and

then compare the structural, functional, or dynamical properties of the empirical

network to those of the generated modular random graphs. We demonstrate this

application using four classes of biological networks, namely: a) a food-web, repre-

senting the trophic interactions at Little Rock Lake in Wisconsin with a network

size of 183 and average degree = 26.8 [42]; b) a protein-protein interaction network

in Saccharomyces cerevisiae (a yeast) of size= 4713 and average degree = 6.3[43]; c)
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a metabolic interaction network of Caenorhabditis elegans of size = 453 and average

degree 9.0 [44]; and d) a network of social interactions in a community of dolphins

living off Doubtful Sound, New Zealand of size = 62 and average degree = 5.1 [45]

(Figure 4, black bars). Visualizations of the dolphin social interaction network and

the food-web trophic interaction network and its modular random counterpart are

shown in Figure 5.

For each of these four empirical networks, we generate modular random graphs

(Figure 4, light gray bars) with three parameters estimated from the empirical

networks: (a) the degree sequence, pk(b) the modularity, Q and (c) the average

community size, s. We note that as our goal is to construct null models, we assume

that communities are of constant size, i.e. P (s) = 1, and that the within-degree

distribution matches the degree sequence (with estimated mean, dw). (A second

class of null models can be constructed with P (s) and the within-degree distribution

estimated from the empirical networks, and we do this in the Additional file 1).

Specifically, we generate 25 such random graphs and measure structural properties

of the generated graphs including clustering coefficient (C ), average path length

(L), degree assortativity (r).

We also generate simple random graphs based on the configuration model that

have the same degree distribution and average network degree as the empirical net-

work but are random with respect to other network properties for each of the four

empirical networks (Figure 4, dark gray bars). Our modular random graph model

identifies which network measures assume their empirical values in a particular net-

work because of (i) the observed degrees and (ii) the latent community structure.

The configuration model, on the other hand, only specifies (i) and not (ii). Com-

parison to these configuration model networks thus helps us highlight the utility

of our model to identify which empirical patterns in a network are deserving of

further investigation. Figure 4 shows the value of each of these properties for the

empirical networks as well as the ensemble mean of modular random and simple

random graphs.

From Figure 4 it is evident that none of the empirical biological networks have net-

work structure identical to their null counterparts. This suggests that the structure

of each of these biological systems is governed by more than what is specified by the

degree distribution and community structure. However, the observed network prop-

erties of empirical networks are closer to the ensemble means of the modular ran-

dom graphs, which indicates that modularity is an essential structural component

of real biological networks and that it plays an important role in influencing other

structural properties of the network. For instance, compartmentalization induced by

modularity promotes species persistence and system robustness by containing local-

ized perturbation [11, 46, 47], which might favor their selection during the course of

evolution. Our results show that the empirical networks tested have a much higher

modularity than the simple random graphs (Figure 4a) and therefore provide evi-

dence for this selection. Out of the three network properties that we tested apart

from modularity, we found clustering coefficient of the generated random graphs to

be significantly different from each of the empirical counterparts. This may point

to a functional role for “triangles” in these biological networks, significantly above

or below what is prescribed by the degree and community structure.
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Little Rock Lake food web interactions (FW): Among the four empirical networks

that we tested, the properties of the ensemble mean of null models such as assor-

tativity and path length closely match most of the observed properties of Little

Rock food web. The observed clustering coefficient of food web is strikingly lower

than either of the random graphs which confirm the observations of low clustering

in food web made by earlier studies (Figure 4d). The observed path length of this

food web is short (Figure 4c) and only slightly longer than the path lengths of ran-

dom graphs, which has also been noted before [48, 49, 50]. We note that for this

food web, the structural properties of the simple random graphs are quite similar to

those of modular random graph counterparts, suggesting that the degree distribu-

tion, particularly the high density of edges in the network governs most of the other

topological characteristics of this network. Modularity, on the other hand, seems to

play a minor role in dictating the structural properties of this network.

Yeast protein-protein interaction network (YP): The empirical yeast protein net-

work is more disassortative than the ensemble mean of null modular graphs (Figure

4b). Disassortative interactions in protein-protein interaction networks are known

to reduce interferences between functional modules and thus increase the overall

robustness of the network to deleterious perturbations [6], while also allowing for

functions to be performed concurrently [51]. The results therefore suggest that dis-

assortative interactions may be selected for in the evolution of biological networks.

From Figure 4(d) it is also evident that the yeast protein network has a higher value

of clustering coefficient than the expected value predicted by the modular random

graphs. A high value of clustering coefficient indicates that there are several alter-

nate interaction paths between two proteins, making the system more robust to

perturbation[52].

C.elegans metabolic interaction network (CM): The emphC.elegans metabolic net-

work demonstrates a shorter path length but higher clustering coefficient than both

modular and simple random graphs (Figure 4c and 4d). A high clustering coef-

ficient and short path length suggests that the graph has small-world properties,

which has been observed in other metabolic networks as well [53]. A highly disas-

sortative degree structure is also well known in metabolic networks, although the

mechanism leading to this property is unclear (see review by [36]). As the predicted

value of disassortativity of the modular random graphs is closer to the observed

value, our results suggest that the strong community structure of the metabolic

networks could be one of the factors contributing to high degree disassortativity.

(As discussed earlier, community structure leads to significant degree correlations

in small networks with long-tailed degree distributions; see Figure S3 in Additional

file 1 for an example).

Social interaction network of dolphins network at Doubtful Sound, New Zealand

(DS): The empirical social interaction network of dolphins that we investigated

demonstrated a negative assortativity (or disassortativity) similar to other real bio-

logical networks (Figure 4b). Interestingly, the assortativity value of both null mod-

ular and simple random network counterparts of the dolphin network is lowerthan
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the observed value, which suggests that the network is more assortative than ex-

pected. Degree assortativity has also been observed in other animal [54] and human

[4] social interaction networks. This result is quite intuitive for a social network and

is also referred to as homophily: more gregarious individuals tend to interact with

other gregarious individuals while introverted individuals prefer to associate with

other introverts[14]. The empirical dolphin network also demonstrated a lower value

of clustering coefficient than the expected values of either null model. Low cluster-

ing coupled with high degree assortativity indicates that dolphin populations may

be more susceptible to the propagation of infection or information, as transmission

may occur rapidly through the entire network with such properties [54, 55].

Application: Benchmark graphs for community-detection algorithms

Detecting communities in networks has been an area of intensive research in the

past decade [56] with Girvan and Newman’s seminal paper on community detection

[3]. Extant techniques such as modularity maximization, hierarchical clustering,

the clique-based method, the spin glass method etc. aim at achieving high levels of

accuracy in detecting the correct partition (for a detailed review see [56]), but have

their own set of strengths and weaknesses. Choosing the best algorithm can be a

difficult task especially as algorithms often use distinct definitions of communities

and perform well within that description. Thus, it is exceedingly important to test

community-detection algorithms against a suitable benchmark. We propose our

modular random graphs as benchmark graphs for the validation of existing and

new algorithms of community detection.

To illustrate this use, we test the performance of six popular community detec-

tion algorithms: the Louvain method [57], fast modularity method [58], the spin-

glass based method [59], the infoMAP method [60], label propagation [61] and the

random-walk based method [62] using our modular random graphs as benchmarks.

Specifically, we generate 10 modular random graphs for each level of modularity

and used these community detection algorithms to detect their community struc-

ture. We also tested the performance of the algorithms on random graphs with no

modularity (i.e. Q=0). We limit our discussion to the results of the Louvain[57] and

fast modularity method [58] in this section; with the remaining results presented in

Additional File 1s (Figures S6, S7 and S8). Figure 6 summarizes the performance of

these two algorithms, as measured by the estimated Q, for modular random graphs

with three different degree distributions (Poisson, geometric and power-law) and

two levels of mean network degree (d = 10: Fig 6(a) and (c) and d = 20: Fig 6(b)

and (d)).

At d = 10, both the Louvain method (Figure 6a) and fast modularity algorithm

(Figure 6c) overestimate the modularity for networks with weak community struc-

ture, and underestimate the modularity for networks of moderate community struc-

ture across all three network types. Both algorithms are accurate at the highest

strengths of community structure across all network types and improve in accuracy

for the more dense network (d = 20, Figure 6b and 6d). In addition to comparing

the estimated values of modularity to the known values in the modular random

graphs, we can compare the similarity in the partitions detected by the algorithms

to the true partitions. For this comparison, we use the Jaccard index, which mea-

sures the similarity between two partitions based on the proportion of the union of
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the partitions that is made up by the intersection of the partitions [63], and present

results in the Additional File 1 (Figure S9). As reflected in the results above, we

find that partitioning is inaccurate when the true community structure is weak but

improves as the Qtrue value increases. The accuracy also improves with a higher

average network degree. Both these observations have also been noted before by

Lacichinetti and Fortunato [64].

Conclusions
In summary, the model that we propose in this study generates modular random

graphs over a broad range of degree distribution and modularity values, as well as

module size distributions. We highlight that our model is specifically designed to

generate networks which have modularity evenly divided across its modules, modulo

the impact of module size. This means that we are mitigating the resolution limit

effect and indeed generating networks with the maximum modularity partition. We

also confirm that structural properties of our generated modular graphs such as

assortativity, clustering and path length remain unperturbed for a broad range of

parameter values. This important feature allows these graphs to act as benchmark

and control graphs to explicitly test hypotheses regarding the function and evolution

of modularity in biological systems.

Compartmentalization of biological networks has been an area of great interest

to biologists. What we refer to as community structure in this work is any segre-

gation of a biological system into smaller subunits inter-connected by only a few

connections. It has been suggested that modularity in a system promotes system

robustness and enhances species persistence by containing localized perturbations

[11, 47]. Metabolic networks of organisms living in a variable environment have in-

deed been found to be more modular [46]. Maintaining and selecting for modularity

in biological networks, however, comes at a great cost of reducing system complexity

[65], longer developmental time and cost of complete module replacement in case

of failure [66]. It is therefore unclear why modularity would be strongly selected

for as a structural feature of biological systems. There is also a lack of evidence

to prove that the functional localization of sub-goals overlaps with the structural

segregation of the network into community structure. Our work provides a tool for

the systematic study of network structure (through benchmark graphs) and of the

impact of connectivity and compartmentalization on system function and dynamics

(through control graphs).

The detection of community structure plays a crucial role in our topological under-

standing of complex networks. Currently the performance of community detection

methods is usually evaluated based on ground-truth from real networks. However,

determining reference communities in real networks is often a difficult task. Also,

ground truth data on empirical network partitions do not necessarily identify sys-

tem features based on network topology and thus may create a bias when analyzing

community structure. A more convenient technique of evaluating community de-

tection method is to use artificial random graphs, but has been limited as most of

the models fail to incorporate degree heterogeneity of real networks. By providing

a systematic method to generate benchmark graphs, our model can aid in the de-

velopment of more robust community detection algorithms, and therefore improve

our topological understanding of empirical networks.
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Beyond identifying the topological presence of community structure is the un-

derstanding of the evolution of community structure as well as the functional and

dynamical role of community structure. We believe this process can be facilitated by

using an appropriate class of control or null graphs. As a model for generating null

networks, our method joins a suite of random graph models, each contributing to a

hierarchy of null models. The simplest model for generating random graphs (based

on only a single parameter) is the Erdős-Rényi random graph model, which pro-

duces graphs that are completely defined by their average degree and are random in

all other respects. A slightly more complex and general model is one that generates

graphs with a specified degree distribution (or degree sequence) and but are ran-

dom in all other respects [67, 68, 13]. These models can be extended to sequentially

include additional independent structural constraints, such as degree distribution

and clustering coefficient [2], or degree structure and community structure, as we

have demonstrated here. A further extension to this work will be designing models

that generate random graphs with multiple structural constraints. For example, our

model can be combined with the one proposed by Bansal [2009] to generate random

graphs with specified degree distribution as well as tunable strength of modularity

and clustering coefficient.
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Figures

Figure 1 Schematic representation of the steps of our algorithm. The algorithm assigns a
within-degree and between-degree to each node, which are represented here as half-within-edges
and half-between-edges respectively (Figure 1a). The half-between-edges are then connected using
a modified version of the Havel-Hakimi algorithm, and to remove degree correlations, the
between-edges are randomized (Figure 1b). Finally, the half-within-edges are connected using the
standard Havel-Hakimi algorithm for each module (Figure 1c) and the within-edges are
randomized to remove degree correlations (Figure 1d).

Figure 2 Modular random graphs with n = 150,m = 375,K = 3, P (s = 50) = 1and pk is power
law with modularity values of : a) Q=0.1; b) Q=0.3; and c) Q=0.6. As the modularity increases,
the ratio of the total number of edges within modules to the number of edges in the network
increases (i.e. overlinedw increases), while the remaining parameter values (degree distribution,
network mean degree, number of modules) are held constant.
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Figure 3 Values of (a) Assortativity, r, (b) clustering coefficient,C, and (c) path length, L in
modular random graphs do not vary significantly with increasing modularity (Q). Each graph has

n = 2000 nodes, a mean degree d = 10 and K = 10 modules with P (s = 200) = 1. The data
points represent the average value of 50 random graphs. Standard deviations are plotted as error
bars.

Figure 4 Comparisons of empirical, null modular networks and simple random graphs: The Figure
summarizes network statistics of the empirical network as well as the ensemble mean of two types
of random graphs in terms of (a) Modularity, Q ; (b) Assortativity, r ; (c) Path length, L and (d)
Clustering coefficient, C. The path length value for the empirical Yeast-Protein interaction
network is missing as the network contains disconnected components. Error bars denote standard
deviation from the ensemble mean of the generated random graphs. Errors bars for modular
random graphs in Figure 5(a) have been omitted as the value of modularity (Q) match the
empirical networks perfectly. FW= Little Rock food web, YP= Yeast protein interaction network,
CM= C.elegans metabolic network and DS= Dolphin social network. of the empirical graphs.

Figure 5 Visualization of empirical and random graphs of social interaction of dolphins and
food-web trophic interactions at the Little Rock Lake in Wisconsin. Figure (a) is the empirical
network of Dolphin social network, (b) its modular random graph, and (c) its simple random
graph. Figure (d) is the empirical network for the food-web trophic interaction at Little Rock Lake
in Wisconsin, (e) is its modular random graph and (f) its simple random graph counterpart.
Modular random graphs have generated to match the overall degree distribution, network mean
degree, the level of modularity and the number of modules of the empirical graphs. Simple
random graphs have been generated to match the overall degree distribution and network mean
degree of the empirical graphs.

Figure 6 Performance of the Louvain method (top row)[57] and fast modularity algorithm
(bottom row)[58] in networks with mean degree 10 (left column) and mean degree 20 (right
column). Fill circles, open circles and triangles represent networks with Poisson, geometric and
power-law degree distributions, respectively. Each data point represents the average over ten
modular random graphs. Error bars have been omitted as they were smaller than the symbols. The
solid line is the reference line where estimated modularity is equal to the input modularity.
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Additional file 1 — Supplementary Analysis

Additional analysis of algorithm with figures
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