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Abstract

Vaccines are the cornerstone of influenza control policy, but can suffer

from several drawbacks. Seasonal influenza vaccines are prone to

production problems and low efficacies, while pandemic vaccines are

unlikely to be available in time to slow a rapidly spreading global outbreak.

Antiviral therapy was found to be beneficial during the influenza

A(H1N1)pdm09 pandemic even with limited use; however, antiviral use

has decreased further since then. We seek to determine the role antiviral

therapy can play in pandemic and seasonal influenza control on the

population level, and to find optimized strategies for more efficient use of

treatment. Using an age-structured contact network model for an urban

population, we find that while a conservative antiviral therapy strategy

cannot replace a robust influenza vaccine, it can play a role in reducing

attack rates and eliminating outbreaks.
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1 Introduction

Influenza causes yearly epidemics, and has been responsible for four pandemics

during the last 100 years [1, 2]. Infection leads to high levels of severe

complications and death in both young children and the elderly [2, 3]. Vaccines

are widely accepted as the best tool to combat influenza [2]; however, current

vaccines exhibit several shortcomings. A new vaccine must be developed each

year, and circulating strains must be predicted months before an epidemic occurs.

In the case of a pandemic, an effective vaccine is unlikely to be available until

several months after the pandemic begins [4]. A recent meta-analysis by

Osterholm et al. revealed the influenza vaccine efficacy found in ten randomized

controlled trials to be 59% on average, and furthermore found little or no

evidence of vaccine efficacy among those under the age of 18 or over the age of

64 [5, 6]. While this finding by no means shatters our vaccine-led influenza

control efforts, it reminds us of the need to continue to develop better influenza

vaccines and therapeutics, as well as more efficient strategies to distribute these

interventions.

Antiviral drugs, such as the neuraminidase-inhibitors oseltamivir and

zanamivir, may be attractive alternatives to current vaccines. Unlike influenza

vaccines, antiviral drugs are not strain-specific [7]. When used to treat infected

individuals within 48 hours of symptom onset, antivirals reduce the probability

that an infected individual will transmit influenza to his or her contacts

[8, 9, 10, 11]. In this study, we aim for a systematic understanding of the
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population-level impact of antiviral usage, and seek to answer the following

questions. 1) For seasonal influenza, can antivirals replace vaccination,

especially in the case of poor vaccine match or a shortage in vaccine supply? 2)

In the case of a pandemic, when faced with no vaccine for several months, what

impact will the use of antivirals have? 3) Are there focused uses of antivirals that

optimize their impact? Without a greater understanding of the potential

transmission-reducing effects of antiviral drugs, we cannot confidently declare

vaccination to be the most effective influenza control strategy available.

Previous modeling studies assessing the population-level impact of antivirals

have helped establish the potential of antiviral treatment as an influenza control

strategy, but most of these studies reveal greatly varying results. Carrat et al. and

Ferguson et al. find that treating 63% or 45% of clinically ill individuals with

antivirals leads to only a 7% or 15% reduction in pandemic size, respectively

[12, 13], while a study by Pepin et al. finds that 40% coverage of infected

individuals can reduce seasonal epidemic transmission by 30% [14]. A study by

Longini et al. has also considered the impact of prophylactic treatment of close

contacts of infected individuals, and finds that prophylaxis of 80% of all exposed

individuals is nearly as effective as vaccinating 80% of the population [15].

While this study shows antiviral treatment to be an effective control measure, it

relies on specific contact prophylaxis based on unrealistically-intensive contact

tracing. Finally, a study by Black et al. published earlier this year uses

mathematical modeling to better understand why antivirals were ineffective at

containing the A(H1N1)pdm09 pandemic, and finds that early treatment and
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prophylaxis of individuals in infected households is crucial if influenza

transmission and pandemic doubling time is to be significantly reduced [16].

This study is closest in nature to our own, aiming for a quantitative assessment of

the use of antivirals in a simple epidemiological model with social structure. Our

study differs from the work of Black et al. because we aim not to explain the lack

of population-level impact of antivirals during the A(H1N1)pdm09 pandemic,

but rather to consider the scenarios under which antiviral use would be viable in

future pandemics as well as seasonal epidemics. Using a network model where

individual hosts are “nodes”, and interactions (i.e. contacts) that may allow

influenza transmission are “edges” (details in Methods below and Figure 1), we

simulate SIR epidemics to assess the impact of antiviral treatment strategies on

influenza control. We also develop a parallel intervention model of trivalent

inactivated vaccine (TIV) use, to consider the impact of antivirals as judged

against the well-understood and widely-accepted case of vaccination.

2 Results

2.1 Random Vaccination and Antiviral Treatment

To assess the potential of antiviral treatment in reducing epidemic and pandemic

attack rates, we first compare the impact of random allocation of either

vaccination or antiviral treatment. Vaccination is implemented at the coverage

levels specified (Table 1), and antiviral treatment is implemented at a range of

coverage levels (Figure 2). Antiviral coverage is reported as a proportion of the
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infected population size (e.g. 20%, 40% etc.) unless otherwise specified.

When the relaxed antiviral treatment strategy is employed against seasonal

influenza, 80% coverage of infected individuals is required to reduce epidemic

attack rates by the same amount as random vaccination. When the rapid strategy

is used, 40% coverage is required, and no large-scale epidemics emerge when

coverage is 60% (Figure 2a). In the case of a pandemic, the relaxed strategy does

not reach the population-level effectiveness of either pandemic vaccine at any

coverage level tested, and the rapid strategy is more effective than both vaccines

only at 80% coverage level (Figure 2b).

Figure 2 also displays the percent of the total population treated in each

scenario. As coverage of infected individuals increases, these values first

increase, then decrease as fewer individuals become infected, suggesting that

coverage among infected individuals, and not among the population as a whole,

is important for population-level antiviral effectiveness. Furthermore, the rapid

strategy consistently outperforms the relaxed strategy, even though fewer

members of the overall population are treated, indicating the importance of

initiating treatment soon after symptom onset.

2.2 The Limits of Vaccination

We next consider the impact of vaccine efficacy on influenza control to determine

the minimum overall vaccine efficacy beyond which antiviral use is more

effective at reducing attack rate. Here, we assume 30% antiviral coverage

(similar to coverage observed during the A(H1N1)pdm09 pandemic [17, 11, 14])
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and realistic age-based vaccine coverage levels (Table S1). We choose realistic

vaccine coverage levels to better illustrate the actual population-level impact of

vaccines, rather than their impact were they to be distributed ideally. In Figure 3,

we find that vaccines begin to reduce seasonal epidemic attack rates by more

than random, realistic antiviral treatment at vaccine efficacies between about

25% and 50%, depending on the timing of antiviral treatment. During a

pandemic, vaccines begin to outperform antivirals at efficacies between

approximately 10% and 35%, depending on treatment timing.

2.3 Focused Antiviral Control

To maximize use of antivirals, we compare several focused strategies for antiviral

use during influenza pandemics (see Figure S1 for seasonal results).

Preferentially treating children ages 5–18 results in a slight reduction in attack

rate when infected individuals are treated within 48 hours of symptom onset

(Figure 4a). When treatment occurs within 24 hours of symptom onset, this

reduction is larger. Notably, this significant reduction is achieved despite the fact

that coverage levels among the entire population are lower than when antivirals

are allocated randomly (compare to Figure 2b). In addition, it is key that the

effect of preferentially treating children does not always increase with coverage

level as all infected children are reached by 40% antiviral coverage.

When one susceptible contact of each treated infected individual is provided

with prophylactic treatment, attack rate is significantly decreased in both

antiviral treatment scenarios. However, while the impact of prophylaxis increases
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with coverage in the relaxed case, once 40% of infected individuals are treated in

the rapid case, the population-level impact of prophylaxis begins to decrease.

This is due to the greater efficacy of treatment in the rapid case, which prevents

onward transmission regardless of prophylactic treatment. It is worth noting that

the superior impact on attack rates requires higher antiviral treatment levels

among the population as a whole (compare to Figure 2b).

Lastly, we consider the impact of early treatment at 1% and 2% coverage of

the total population, with the aim of halting the momentum of the outbreak and

preventing it from becoming a large-scale epidemic. Results are compared to

epidemic likelihood when the same overall number of individuals are treated

over the course of the epidemic. We note that these coverage levels are far lower

than those achieved in the previous sections. The likelihood of reaching a

large-scale pandemic outbreak is diminished greatly in both the relaxed and rapid

cases using early treatment, and epidemics are particularly rare in the rapid case.

3 Discussion

Influenza antivirals are licensed for use in many countries but are not widely

employed during seasonal epidemics, nor were they widely prescribed during the

A(H1N1)pdm09 pandemic. In this study, our goal was to assess the potential

impact of antivirals in the case of seasonal and pandemic influenza using

conservative estimates of antiviral efficacy, and to determine if more focused (yet

still conservative) strategies could be employed to optimize the use of antivirals.
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Specifically, we chose to compare the susceptibility-reducing effects of vaccines

to the transmission-blocking ability of antiviral therapy.

We used a semi-empirical contact network model for an urban population to

study the population-level effectiveness of antiviral treatment. Network-based

models allow us to consider the individual-level and contact-level impact of

reductions in susceptibility and infectivity due to interventions, and the

age-structure of the population model allows for age-specific variation in

efficacy, coverage, and control strategies. Our results show that antiviral

treatment could significantly reduce public health burden when vaccine is either

unavailable or ineffective. Compared to an influenza vaccine of moderate efficacy

(approximately 65% for seasonal and 80% for pandemic), we find that antivirals

administered at levels higher than 40% of all infected individuals would

outperform vaccines. We note that our results represent a best-case scenario for

current influenza vaccine efficacy. For seasonal influenza, vaccine efficacy varies

considerably from year to year; indeed, the 2012 meta-analysis by Osterholm, et

al. found that the trivalent inactivated vaccine was only significantly efficacious

during eight of the twelve influenza seasons analyzed [5]. In addition, vaccine

shortages occurred in over half of influenza seasons between 1999 and 2009 [6].

As an appropriate vaccine is unlikely to be available during the first wave of

future influenza pandemics, intensive treatment of infected individuals with

antiviral drugs could be crucial in mitigating the impact of a pandemic while a

vaccine is in development. These results hold for higher pandemic

transmissibility values, similar to those observed during the 1918 pandemic
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(Figure S2). Seasonal vaccines may be available, but, as influenza pandemics are

generally caused by novel strains, such vaccines may not be efficacious enough

(10-35% efficacy) against a pandemic strain to outperform realistic antiviral

treatment strategies. Indeed, estimates of 2008 and 2009 seasonal vaccine

efficacy against the A(H1N1)pdm09 pandemic strain vary greatly [18, 19, 20].

However, it is important to emphasize that antiviral drugs are unlikely to greatly

reduce pandemic attack rates in the long run; therefore, it is still essential that an

effective vaccine be developed as quickly as possible. We also emphasize that

our results are based on conservative estimates (from household studies) of

antiviral efficacy to reduce infectivity. Our sensitivity analyses (Figure S3)

demonstrate that if reduction in infectivity is in fact higher or if future work leads

to improved antivirals, the impact of antiviral therapy could greatly increase.

Furthermore, we find that the comparative population-level effectiveness of

antiviral treatment versus vaccination is higher when network contact

heterogeneity is low (Figure S4).

When it comes to influenza vaccination, various studies have found that

prioritizing certain age groups (e.g. school-age children) [21, 22, 23] or certain

occupation groups (e.g. health care workers) [22, 24] is significantly preferred

over random distribution. Our study finds that this is not true of antiviral

distribution. Focusing on school-age children and contacts of infected individuals

certainly reduces attack rates (when preferentially treating children, this effect is

significantly greater with increasing antiviral efficacy, as demonstrated in Figure

S5), and, when children are preferentially treated, these lowered attack rates are
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achieved with fewer courses of antiviral drugs. However, the additional cost of

launching a focused antiviral campaign may outweigh the benefits. Antiviral

treatment, in itself, is a highly-optimized strategy; by primarily treating those

who are infected, it naturally captures those who are highly-connected and most

likely to spread infection. Thus, it is likely that random allocation of antivirals

will remain the preferred strategy during most influenza outbreaks. The timing of

antiviral treatment, on the other hand, both at the individual-level (early during

an individual’s infection period) and at the population-level (early during an

outbreak) does have an impact worth aiming for. Efforts should be made to treat

infected individuals as soon as possible, as this increases the efficacy of the drug

on the individual level and prevents onward transmission, and to treat infected

individuals as soon as an outbreak emerges, as this can greatly reduce the

likelihood of the outbreak becoming a large-scale epidemic. These findings are

in agreement with the recent results of Black et al. [16].

Our study does have some limitations. First, we do not consider explicitly the

impact of antiviral therapy on severe illness or mortality. Current guidance from

CDC and WHO emphasizes the importance of administering antiviral therapy to

patients who are hospitalized with severe or progressive illness caused by

suspected influenza and in high-risk outpatients. It is essential that antivirals

continue to be used as currently recommended to treat these individuals, even

when a vaccine is available. In fact, some preliminary analyses (Figure S6)

indicate that focusing on those individuals at highest risk for complications and

death due to influenza (e.g. the elderly and children below the age of five) could
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be a prudent strategy as it would result in comparable attack rates for both

seasonal and pandemic influenza to those of random antiviral allocation, but

would be expected to be more effective at reducing complications and death.

Secondly, we do not consider the risk of antiviral resistance. Although resistance

to oseltamivir and zanamivir has been limited historically [2], the 2008-2009

season brought us a strain of oseltamivir-resistant seasonal H1N1 virus that

circulated globally. We plan, in future work, to consider the impact of various

antiviral distribution strategies on the emergence and spread of resistance. Lastly,

our seasonal influenza scenario does not incorporate pre-existing immunity,

which is likely to be present in seasonal outbreaks. We expect that prior

immunity would reduce the attack rates in all scenarios (naive, vaccination,

antivirals) and would impact the distribution of antivirals among infected

individuals, but would not change our qualitative results.

While influenza antiviral therapy is significantly effective in reducing

infection burden even with random distribution, it does require active health

care-seeking behavior on the part of infected individuals. A recent study by CDC

found that of those with ILI during the fall wave of the A(H1N1)pdm09

pandemic, 40% of adults and 56% of children reported seeking health care for

their symptoms [25]. Of the adults who sought care, 26% were diagnosed with

influenza, and a further 36% were then treated with antiviral drugs [25]. Other

studies have found similar but varied estimates (∼13%–40%) for the proportion

of infected individuals who were prescribed antiviral drugs during the

A(H1N1)pdm09 pandemic [11, 17]. The success of antiviral strategies thus
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hinges on increasing health care-seeking rates for influenza by making care

accessible at locations other than hospitals and physicians’ offices, as is possible

with influenza vaccination. Our sensitivity analyses (Figure S3) show that an

increase in coverage levels can have a large impact on attack rates, and can

compensate for low antiviral efficacy or delayed treatment initiation.

4 Methods

4.1 Population Model

We use a semi-empirical contact network model which captures the interactions

that underlie respiratory disease transmission within an urban population. The

model is based on demographic data from Vancouver, British Columbia, Canada

[22, 26, 27]. Individuals in the network are assigned an age and age-appropriate

activities (school, work, hospital, etc.). Interactions among individuals reflect

household size, employment, school, and hospital data. The model population

includes 10304 individuals in the following age groups: toddlers (< 3 years of

age), preschool children (3-4), school-age children (5-18), adults (19-64), and

elderly individuals (≥ 65).

4.2 Epidemic and Pandemic Models

We define the transmissibility of a disease, T , as the average probability that an

infectious individual will transmit the disease to a susceptible contact. This per

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 26, 2013. ; https://doi.org/10.1101/001537doi: bioRxiv preprint 

https://doi.org/10.1101/001537


contact probability of transmission summarizes the susceptibility, σ (e.g.

immune response) and the infectivity, ι , (e.g. viral shedding) of individuals. The

transmissibility of a given interaction is then defined as the product of infectivity

of the infected individual and the susceptibility of the susceptible individuals

(T = ισ ). When no intervention is implemented, ι = T and σ = 1 for all

individuals. The transmissibility value is also linearly related to the key

epidemiological parameter, R0. Transmissibility values are chosen such that

seasonal influenza infects 20% of the population [1] and pandemic influenza

infects 40% [28] when no control strategies are implemented. The seasonal

transmissibility in our model is 0.0643 (R0 = 1.14) while the pandemic

transmissibility is 0.0767 (R0 = 1.36). For comparison, basic reproduction

numbers have been estimated to be about 1.2–1.4 for seasonal epidemics [1], and

to be approximately 2–3 during the 1918 pandemic [29] and 1.3–1.7 during the

A(H1N1)pdm09 pandemic [30].

Epidemics and pandemics are modeled using a susceptible-infected-recovered

(SIR) simulation model. Beginning with an entirely susceptible population,

infection is seeded at one random individual. We iteratively take each currently

infected individual, infect each of its susceptible contacts with probability, T , and

allow the infected individual to recover. 5000 such outbreaks are simulated, and

an outbreak is classified as a large-scale epidemic if over 5% of the population is

infected. Attack rate is defined as the proportion of the total population infected,

averaged over all large-scale epidemics; and epidemic likelihood is defined as the

frequency of large-scale epidemics among all outbreaks.

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 26, 2013. ; https://doi.org/10.1101/001537doi: bioRxiv preprint 

https://doi.org/10.1101/001537


4.3 Vaccination

We model the effects of a seasonal vaccine and two pandemic vaccines, one with

low coverage and high efficacy, as seen during the A(H1N1)pdm09 pandemic

[31, 32], and one with high coverage and low efficacy (See Table 1). Vaccination

is implemented as a reduction in susceptibility for each vaccinated individual

according to age-specific efficacies of trivalent inactivated vaccine (TIV) (See

Table S2 and details below).

Vaccine Efficacy: Most vaccine studies measure vaccine efficacy by

comparing attack rates in vaccinated populations to those in unvaccinated

populations, and are useful for understanding the population-level effects of

vaccine. We reviewed population-level estimates for age-specific seasonal

vaccine efficacy across multiple clinical trials, meta-analyses, and reviews

(references in Supplement). We report the summarized results of our review in

Table S3, and the vaccine efficacies used for this study in Table S2.

In our study, we incorporate vaccine efficacy at the individual-level. We

define σ as an age-specific individual-level susceptibility. We then define S∗v , the

desired attack rate among individuals who have been vaccinated in the age group

in question, as S∗v = Sn(1−E), where Sn is the expected attack rate among the

age group when no control strategies are implemented and E is the

population-level vaccine efficacy for the age group. We infer σ∗ for each age

group by fitting Sv, the true attack rate among individuals who have been

vaccinated in the age group by having a reduced level of susceptibility, σ , to S∗v
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using a two-type analytical percolation model [33].

For Figure 3, vaccine efficacy is gradually reduced by a factor, r, as,

1− (1− r)(1−σ) = σ + r(1−σ) = σnew

We note that a reduction in individual-level efficacy corresponds to an increase in

σ .

Random Vaccination: For the seasonal scenario (Figure 2a), vaccine is

distributed to 20% of the population, based on CDC data from several epidemics

occurring prior to 2009 [34]. A coverage level of 30% is employed for the 2009

pandemic vaccination scenario, based on CDC coverage data for the monovalent

A(H1N1)pdm09 vaccine [32], and the high coverage pandemic vaccination

scenario is implemented at 40% coverage, to model increased awareness and

panic which may lead to higher coverage levels in a pandemic more severe than

the relatively mild A(H1N1)pdm09 pandemic. Here, all vaccines were

distributed randomly, irrespective of age.

Realistic Vaccination: Realistic, age-specific vaccination coverage levels for

both the seasonal and pandemic vaccines are derived from CDC data (Table S1;

weighted averages in Table 1; references in Supplement). For the high coverage

pandemic vaccine, we simply double the seasonal coverage levels for each age

group. Nursing home residents are the exception, as they were already

vaccinated at 90% during the realistic seasonal scenarios. Vaccine efficacy

18
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4.4 Antivirals

We model the effects of antiviral treatment by reducing the infectivity of a

specified proportion of infected individuals over the course of an outbreak.

Individuals are selected for treatment as they became infected.

Treatment Timing, Efficacy & Coverage: Antiviral drugs reduce influenza

transmissibility if used within 48 hours of symptom onset, and become more

effective if treatment is started earlier. We model two antiviral treatment

scenarios: one in which all treated individuals are treated within 48 hours

(relaxed scenario), and one in which all treated individuals are treated within 24

hours (rapid scenario). We anticipate a realistic scenario to be a combination of

these scenarios. Timing of treatment is modeled by altering the efficacy of

antiviral drugs on individual infectivity, based on the results of household

transmission studies [8, 9, 10, 11]. Thus, antiviral effectiveness was 20% for the

relaxed scenario and 40% for the rapid scenario. Antiviral efficacy values are

reported directly in [9]. Values were calculated from the remaining studies as

E = 1− (SART/SARU), where E is antiviral efficacy, and SART and SARU are

the reported secondary attack rates among contacts of treated and untreated

individuals, respectively. If a study reported secondary attack rates separately for

contacts of individuals treated within 24 hours and within 48 hours of symptom

onset, efficacy values for both treatment scenarios were calculated. We report the

results of our review in Table S4. Finally, averages weighted by the number of

treated index cases in each study were calculated and rounded down to obtain
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conservative estimates.

The desired coverage is achieved by treating infected individual randomly.

Focused Strategies: We model three focused antiviral strategies. We model a

strategy preferentially treating children (ages 5-18) by treating a certain

proportion of infected children until the desired coverage level is achieved. If all

infected children are treated and coverage among infected individuals remains

below the desired level, antiviral drugs are distributed randomly among the

remaining age groups to achieve the designated coverage level. We implement

antiviral prophylaxis by treating a given proportion of infected individuals

randomly, and additionally selecting randomly a single susceptible contact of

each treated individual and reducing this contact’s susceptibility. We continue to

randomly choose contacts of each treated individual until a susceptible contact is

identified. If a treated individual has no remaining susceptible contacts, no

prophylaxis is given. We assume that antiviral prophylaxis reduces susceptibility

by 70% [9, 11]. Finally, we implement early antiviral treatment on the

population-level by treating all infected individuals until 1%, 2%, 3%, or 5% of

the entire population has received treatment. We compare this strategy to a

baseline scenario in which infected individuals are treated at a realistic coverage

level of 30% until the desired percentage of the entire population is treated.
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Figure 1: Urban contact network schematic and connectivity profile: (A) Simple
example of a contact network model, where circles (i.e. nodes) represent individu-
als and lines connecting them (i.e. edges) represent contacts over which influenza
can spread. Black nodes are recovered, gray are infected, white are susceptible.
Infected nodes infect susceptible contacts with probability T = ισ (where, T is the
transmissibility, ι is infectivity, σ is susceptibility). (B) The frequency distribu-
tion of number of contacts per individual, or degree in the urban contact network
model. The network contains 10,304 individuals with an average degree of 16.11.
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Figure 2: Attack rates when antivirals are allocated randomly during (A) seasonal
epidemics and (B) pandemics. Horizontal lines show attack rates in populations
using no control strategies (“naive”; solid lines) and vaccination (dotted lines; in
(B), both model pandemic vaccines are shown). Both relaxed (dark gray) and
rapid (light gray) scenarios are displayed. Percent of infected individuals treated
is shown along x-axis, and percent of total population treated is shown within the
bars. Results are only shown for those simulations in which at least 5% of the
population was infected. Error bars are not shown, as standard errors for attack
rates were all below 0.008.
TIV = trivalent inactivated vaccine
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Figure 3: Attack rates for (A) seasonal and (B) pandemic influenza when vaccines
of varying efficacy are employed at realistic, age-based coverage levels. Horizon-
tal lines show mean attack rates for naive (solid line) populations and populations
using antiviral treatment at realistic 30% coverage (dotted lines; both scenarios
shown). Sloped lines show mean attack rates for populations using vaccine; both
pandemic vaccines are shown in (B). Vaccine efficacies displayed on x-axis, per-
cent reduction in individual-level vaccine efficacy for all age groups beside each
data point. Again, results are only shown for simulations in which at least 5% of
the population was infected. Standard errors were consistently below 0.003.
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Figure 4: Impact of focused antiviral treatment strategies. (A,B) Attack rate
(y-axis) when (A) school-age children are preferentially treated or (B) ring pro-
phylaxis is used compared to random antiviral treatment (solid lines above bars) at
various levels of antiviral coverage among infected individuals. Percent of entire
population treated displayed within bars. (C) Epidemic likelihood (y-axis) when
all infected individuals are treated until a certain percentage (x-axis) of the total
population has received treatment, compared to when 30% of infected individuals
are treated until the same overall coverage levels are reached (solid lines above
bars). Results shown only for pandemic influenza. Simulations in which less than
5% of the population was infected are not shown. Standard errors were below
0.002 for (A-C).
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