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Abstract 
We present a new open-source algorithm, Scalpel, for sensitive and specific discovery of 
INDELs in exome-capture data. By combining the power of mapping and assembly, Scalpel 
searches the de Bruijn graph for haplotype-specific sequence paths (contigs) that span each 
exon. The algorithm reports a single path for homozygous exons, two paths for heterozygous 
exons, and multiple paths for more exotic variations. A detailed repeat composition analysis 
coupled with a self-tuning k-mer strategy allows Scalpel to outperform other state-of-the-art 
approaches for INDEL discovery.  We extensively compared Scalpel with a battery of >10000 
simulated and >1000 experimentally validated INDELs between 1 and 100bp against two recent 
algorithms for INDEL discovery: GATK HaplotypeCaller and SOAPindel. We report anomalies 
for these tools in their ability to detect INDELs, especially in regions containing near-perfect 
repeats which contribute to high false positive rates. In contrast, Scalpel demonstrates superior 
specificity while maintaining high sensitivity.  We also present a large-scale application of 
Scalpel for detecting de novo and transmitted INDELs in 593 families with autistic children from 
the Simons Simplex Collection. Scalpel demonstrates enhanced power to detect long (≥20bp) 
transmitted events, and strengthens previous reports of enrichment for de novo likely gene-
disrupting INDEL mutations in children with autism with many new candidate genes. The source 
code and documentation for the algorithm is available at http://scalpel.sourceforge.net. 

Introduction 
Enormous advances in next-generation sequencing technologies and computational variation 
analysis have made it feasible to study human genetics in unprecedented detail. The analysis of 
Single Nucleotide Variations (SNVs) has become a standard technique and high quality 
software is available for discovering SNVs with high confidence [1,2]. However, the same level 
of performance and reliability is not yet available for detecting of INsertions and DELetions in 
DNA sequences (INDELs) [3]. INDELs are the second most common sources of variation in 
human genomes and the most common structural variant [4]. Many INDELs map within human 
genes at functional loci, and have been shown to influence many human traits and diseases by 
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introducing frame-shifts or otherwise interrupting the protein coding sequence. When located 
within microsatellites (simple sequence repeats, SSRs, of 1 to 6bp motifs), INDELs typically 
alter the length of the repeat motif and have been linked to more than 40 neurological diseases 
in humans [5]. INDELs have been also shown to have an important genetic component in 
autism spectrum disorders [6]: de novo INDELs that are likely to severely disrupt the encoded 
protein are significantly more abundant in affected children than in their unaffected siblings. 
 
Although INDELs play such an important role in human genetics, detecting them within next-
generation sequencing data is still problematic for several reasons: (1) reads overlapping the 
INDEL sequence are more difficult to map [7] and reads supporting INDEL events may be 
aligned with multiple mismatches rather than with a gap; (2) irregularity in capture efficiency 
near the edges of the coding region and non-uniform read distribution across the target region 
increase the number of false positives called at these sites in whole exome data; (3) increased 
error rates makes detection of INDELs very difficult within microsatellites;	
  and, as shown in this 
study, (4) the presence of localized, near identical repetitive sequences can confound the 
analysis, creating a high rate of false positives. For these and other reasons the size of INDELs 
detectable by available software tools has been relatively small, rarely more than a few dozen 
base pairs [8]. Consequently our understanding of INDEL origins and functional effects lags 
behind SNVs.  
 
Two major paradigms are currently used for detecting INDELs in next-generation sequencing 
data. The first, and most common approach is to first map all the input fragments to the 
reference genome using any of the available read mappers (BWA, Bowtie, Novoalign, etc.). 
Mutations are then revealed by differences between the reference and the reads mapped at the 
particular location, although the available algorithms are not as effective for mapping across 
INDELs of more than a few bases. Advanced approaches exploit the information in paired-end 
reads to perform local realignments to detect longer mutations, e.g., GATK UnifiedGenotyper [1, 
2] and Dindel [9]. In principle these methods can identify INDELs of size up to half the read 
length, although in practice their sensitivity is greatly reduced for variants of more than 20bp. 
Split-read methods, such as Pindel [10] and Splitread [11], can theoretically find deletions of any 
size, but their power is limited by the short read length of current next-generation sequencing 
technologies and suffer the same drawbacks of mapping approaches for long insertions. 
 
The second paradigm consists of performing de novo whole-genome assembly of the input 
reads. Variations are then detected by computing differences between the assembled contigs 
and the reference genome [12,13]. In principle this paradigm has the potential to detect larger 
mutations since it is unbiased by the reference sequence, but in practice is less sensitive: 
whole-genome sequence assemblers have been designed with the goal of reconstructing the 
high level structure of a genome, while detecting structural variations requires a fine-grained 
and localized analysis of the sequence composition to report homozygous and heterozygous 
mutations.  
 
Recently three approaches have been developed that use de novo assembly specifically for 
variation discovery: GATK HaplotypeCaller, SOAPindel [14] and Cortex [15]. According to the 
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GATK documentation (http://www.broadinstitute.org/gatk/), the HaplotypeCaller calls SNPs and 
INDELs simultaneously via local de-novo assembly of the haplotypes. Although this is the 
recommended tool using the GATK software package, the details have not been published and 
remain unknown. SOAPindel is the variation caller from the Short Oligonucleotide 
Analysis Package (SOAP). Our new method shares some similarity with this algorithm, although 
it differs in several important ways to enhance sensitivity and specificity of the results (see 
Methods for details). Finally Cortex is a de-novo sequence assembler that uses colored de 
Bruijn graphs for detecting and genotyping simple and complex genetic variants in an individual 
or population. However Cortex was tailored for whole-genome sequencing data and not 
demonstrated to account for the wide coverage fluctuations in exome-capture data. Thus, it is 
not used for comparison in this paper. 
 
We present a novel DNA sequence micro-assembly pipeline, Scalpel, for detection of SNPs, 
insertion, and deletions within exome-capture data (Fig. 1). By combining the power of mapping 
and assembly, Scalpel searches for haplotype-specific sequence paths (contigs) that span each 
exon. The assembler reports a single path for homozygous exons, two paths for heterozygous 
exons, and multiple paths for more exotic variations. For example, if the sample has an insertion 
in just one of the two haplotypes, the assembler would discover the INDEL and also the 
unmodified reference sequence. After the sequences are assembled, they are aligned using a 
sensitive gapped sequence aligner to the reference exon to identify variants. Thanks to this 
approach, Scalpel is able to accurately discover and validate larger and more complex 
mutations with increased power compared to standard mapping methods. Moreover, the 
algorithm includes an on-the-fly analysis of the repeat composition of each exon, coupled with a 
self-tuning k-mer strategy, which allows Scalpel to outperform current state-of-the-art 
approaches for INDEL discovery in exons with complex repeat structure. 

We extensively compared Scalpel with >10,000 simulated and >1,000 experimentally validated 
INDELs between 1 and 100bp against GATK HaplotypeCaller and SOAPindel. We report 
anomalies for these tools in the ability to detect INDELs, especially in regions containing near-
perfect repeats, which leads to a high false positive rate. In contrast, Scalpel demonstrates 
superior specificity while maintaining high sensitivity without bias towards insertions or deletions. 
We also present a large-scale application of Scalpel to analyze de novo and transmitted INDELs 
in 593 (2372 individuals) families with autistic children from the Simons Simplex Collection [16]. 
We demonstrate more power to detect long transmitted events, and confirm a strong enrichment 
for de novo gene disrupting INDEL mutations in children with autism, and we identify many new 
candidates. 
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   Figure	
  1.	
  Overview	
  of	
  the	
  Scalpel	
  algorithm	
  workflow.	
  

Results 

Experimental validation of variants in one single exome 
It is now established that standard mapping methods have reduced power to detect large 
(≥20bp) INDELs [14, 15] and we confirm this result in this paper using simulated reads 
(Supplementary Note 1). However, the performance of variation discovery tools changes 
dramatically when applied to real data. In order to elucidate these anomalies, we performed a 
large-scale validation experiment involving ~1000 INDELs from one single exome. The 
individual has a severe case of Tourette Syndrome and obsessive compulsive disorder (sample 
id: K8101) and was sequenced to ≥20 reads per base pair over 80% of the exome target using 
the Agilent 44MB SureSelect capture protocol and Illumina HiSeq2000 paired-end reads, 
averaging 90bp after trimming. INDELs were called using three different pipelines according to 
their best practices: Scalpel, SOAPindel and GATK HaplotypeCaller (see online Methods). 
Interestingly, there is only ~37% concordance between all the pipelines, and each method 
reports a variable number of INDELs unique to that pipeline (Fig. 2a). Note that such low 
concordance is in close agreement with the recent analysis reported by O’Rawe et al. [3], and is 
much lower than the concordance for SNVs (~60%).  
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From this analysis alone, it is hard to judge the quality of INDELs unique to each pipeline, as 
these could either represent superior sensitivity or poor specificity. Interestingly, the size 
distribution of all INDELs called by each pipeline (Fig. 2b) has a clear bias towards deletions for 
the HaplotypeCaller and towards insertion for SOAPindel. Scalpel instead shows a well-
balanced distribution between insertions and deletions, in agreement with other studies of 
human INDEL mutations [8].  

 
Figure	
   2.	
   Concordance	
   of	
   INDELs	
   between	
   pipelines.	
   (a)	
   Venn	
  Diagram	
   showing	
   the	
   percentage	
   of	
   INDELs	
   shared	
  
between	
  the	
  three	
  pipelines.	
  (b)	
  Size	
  distribution	
  for	
  INDELs	
  called	
  by	
  each	
  pipeline.	
  The	
  whole	
  set	
  of	
  INDELs	
  detected	
  by	
  
the	
   pipeline	
   are	
   colored	
   in	
   grey	
   (“All”),	
  while	
   INDELs	
   only	
   called	
   by	
   the	
   pipeline	
   and	
  not	
   by	
   the	
   others	
   are	
   colored	
   in	
  
orange	
  (“Unique”).	
  

We further investigated the performance of the algorithms by a focused resequencing of a 
representative sample of the candidate INDELs. Specifically we performed deep re-sequencing 
of selected INDELs from all the tools using the more recent 250bp Illumina MiSeq sequencing 
protocol (see online Methods).  Based on the data depicted in Figure 2a, we selected a total of 
1000 INDELs according to the following five categories: 

1. 200 random INDELs from the intersection of all pipelines.  
2. 200 random INDELs only found by HaplotypeCaller. 
3. 200 random INDELs only found by SOAPindel 
4. 200 random INDELs only found by Scalpel. 
5. 200 random INDELs of size ≥ 30bp from the union of all three algorithms. 

 
Figure 3 shows the validation results for each INDEL category. Due to possibly ambiguous 
representation of an INDEL we “left-normalize” the coordinates of the reported INDELs using 
the approach of O’Rawe et al. [3]. However, some ambiguity can still remain, especially inside 
microsatellites, so we computed validation rates using two different approaches for comparing 
INDELs. (1) Position-based: an INDEL is considered valid if there is a mutation with the exact 
same starting position in the validation data (Fig. 3a). (2) Exact-match: an INDEL is considered 
valid if there is a mutation in the validation data that not only starts at the same coordinate but 
also has the same sequence composition (Fig. 3b).  
 
As reported in prior studies, INDELs that are detected by all pipelines have a high validation rate 
and their sizes follow a lognormal distribution, and thus dominated by the smallest events 
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(Supplementary Fig. 1). However, the rate of INDELs passing validation varies dramatically for 
each tool. Respectively, only 22% and 55% of the HaplotypeCaller and SOAPindel INDELs 
could be validated even when the less strict position-based approach was used, whereas 77% 
of Scalpel’s specific INDELs are true positive. Even worse is the outcome for the long INDELs: 
overall less than 10% passed validation, with SOAPindel and HaplotypeCaller calling the 
majority of these as erroneous INDELs (Table 1). The high false-positive rate for long deletions 
is also highlighted in Figure 3c where the validation rate by INDEL size for each variant caller is 
reported. HaplotypeCaller and SOAPindel show bias towards erroneous long deletions and 
insertions respectively. 
 

 
Figure	
  3.	
  Results	
  of	
  MiSeq	
  validation.	
  (a)	
  Validation	
  rate	
  for	
  different	
  INDEL	
  categories	
  using	
  position-­‐based	
  match.	
  (b)	
  
Validation	
  rate	
  for	
  different	
  INDEL	
  categories	
  using	
  exact-­‐match.	
  Results	
  are	
  reported	
  separately	
  for	
  each	
  tool	
  (“Scalpel”,	
  
“HaplotypeCaller”,	
  and	
  “SOAPindel”),	
  for	
  all	
  INDELs	
  of	
  size	
  ≥	
  30bp	
  from	
  the	
  union	
  of	
  the	
  mutations	
  detected	
  by	
  all	
  three	
  
pipelines	
  (“LongIndels”),	
  and	
  for	
  INDELs	
  in	
  the	
  intersection	
  (“Intersection”).	
  Validation	
  results	
  are	
  further	
  organized	
  into	
  
three	
  groups:	
  validation	
  for	
  all	
  INDELs	
  (“All	
  INDELs”),	
  validation	
  only	
  for	
  INDELs	
  within	
  microsatellites	
  (“SSRs-­‐only”),	
  and	
  
validation	
  for	
  INDELs	
  that	
  are	
  not	
  within	
  microsatellites	
  (“No-­‐SSRs”).	
  (c)	
  Stacked	
  histogram	
  of	
  validation	
  rate	
  by	
  INDEL	
  
size	
  for	
  each	
  variant	
  caller.	
   INDELs	
  that	
  passed	
  validation	
  are	
  marked	
  with	
  green	
  color	
  (“Valid”),	
  while	
  INDELs	
  that	
  did	
  
not	
  pass	
  validation	
  are	
  marked	
  with	
  grey	
  color	
  (“Invalid”).	
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Since detecting INDELs within microsatellites is particularly challenging, we further divide the 
results to report the relative validation rate for this class of mutations separately. SOAPindel 
shows an appreciably higher rate of false-positives when only INDELs within microsatellites are 
considered (“SSRs-only” in Fig. 3a and 3b). When microsatellites are excluded (“no-SSRs” in 
Fig. 3a and 3b), the performance of SOAPindel and HaplotypeCaller drops significantly, while 
the Scalpel validation rate is only slightly reduced. This result is in agreement with the size 
biases highlighted in Figure 2b: microsatellites mutations are typically short in size, and when 
removed from the whole set, the remaining longer INDELs belong to the set that generates the 
size bias. Also note that Figure 3a and Figure 3b illustrates the relative abundance of INDELs 
called within microsatellites for each tool, although HaplotypeCaller seems to filter against these. 
Finally, it is important to observe that, when switching from position-based to exact-match, 
INDELs within microsatellites show significant reduction in validation rate. This phenomenon is 
due to their high instability and higher error rates, and as a result it is not unusual to have more 
than one candidate mutation at a microsatellite locus. 
	
  
Table	
   1.	
   Validation	
   rate	
   for	
   INDELs	
   specific	
   to	
   each	
   pipeline.	
   PPV	
   is	
   the	
   positive	
   predictive	
   value	
   computed	
   as	
  
#TP/(#TP+#FP),	
  where	
  #TP	
  is	
  the	
  number	
  of	
  true-­‐positive	
  calls	
  and	
  #FP	
  is	
  the	
  number	
  of	
  false-­‐positive	
  calls.	
  	
  

Tool	
   Valid	
  
(all)	
  

Invalid	
  
(all)	
  

PPV	
  (%)	
  
(all)	
  

Valid	
  
(≥30bp)	
  

Invalid	
  
(≥30bp) 

PPV	
  (%)	
  
(≥30bp) 

Scalpel	
   145	
   43	
   77.1	
   13	
   1	
   92.8	
  
SOAPindel	
   101	
   99	
   50.5	
   8	
   129	
   5.8	
  
HaplotypeCaller	
   45	
   155	
   22.5	
   7	
   62	
   11.3	
  

We further investigated the low validation rate for the long INDELs category by inspecting the 
sequence composition of all false-positive long INDELs. Specifically, we selected all 129 
SOAPindel long mutations that did not pass validation and reassembled them using Scalpel. 
The majority of these mutations (115) overlap repeat structures where the reference contains a 
perfect or near-perfect repeat structure (Supplementary Fig. 2), and the associated assembly 
graph contained a repeat induced cycle. In contrast, of the 62 false-positive long INDELs from 
HaplotypeCaller, only 16 overlap a repeat structure. The remaining false positive deletions 
appear to be due to an aggressive approach used by the algorithm when processing soft-
clipped sequences. On careful inspection of these data, the soft-clipped reads in false positive 
INDELs for HaplotypeCaller have a different form from the validation data, are highly variable, 
and are conjectured to be mapping artifacts of reads from different genomic locations 
(Supplementary Fig. 3).   

Detecting de novo and transmitted INDELs in the Simons Simplex Collection 

The Simons Simplex Collection (SSC) is a permanent repository of genetic samples from 2,700 
families operated by SFARI (http://sfari.org) in collaboration with 12 university-affiliated 
research clinics. Each simplex family has one child affected with autism spectrum disorder, and 
unaffected siblings. Each genetic sample also has an associated collection of phenotype 
measurements and assays. The results presented in this section are based on a subset of the 
SSC composed of 593 families (2372 individuals). Specifically this subset of the SSC collection 
corresponds to families that have been examined in three recent studies: 343 families from 
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Iossifov et al. [6] (CSHL), 200 families from Sanders et al. [17] (Yale), and 50 families from 
O'Roak et al. [18] (University of Washington). We selected only family units of four individuals 
(father, mother, proband, one unaffected sibling), referred to as “quads,”for all analyses in this 
study. 

Transmitted	
  mutations	
  

Using Scalpel we detected a total of 3.3 million INDELs in 593 families, corresponding to an 
average of ~1400 (=3388139/(4*593)) mutations per individual. Accounting for population 
frequencies of each INDEL, there were 27795 distinct transmitted INDELs across the exomes. 
Figure 4a shows the histogram of INDELs sizes by annotation category. Although we detected 
INDELs only within the exome-capture target regions, we find close agreement between the 
size distributions reported by us and the one reported by Montgomery et al. [8] on low coverage 
whole-genome data from 179 individuals from 3 different population groups (YRI, CEU, 
CHB/JPT). We also compared the set of INDELs detected by Scalpel with the GATK-
UnifiedGenotyper based mapping pipeline used by Iossifov et al. [6], and observe superior 
power to detect longer insertions, which supports the results obtained on simulated data 
(Supplementary Fig. 4). This result is also in agreement with the observation that insertions 
are harder to detect than deletions when using short reads.  

Despite targeting exons, INDELs are more abundant in introns than other genic locations in the 
collection [4,19] (Supplementary Fig. 5). Within the coding sequence (CDS), frame-preserving 
INDELs are more abundant than frame shifts (Fig. 4b). Also, in agreement with MacArthur et al. 
[19], we detected a large number of so-called loss-of-function (LOF) variants in protein-coding 
genes. Since these are all transmitted events in healthy parents and transmitted equally to 
autistic and non-autistic individuals, they demonstrate a high level of variation in functional gene 
content between healthy humans. Mutations are found at lower frequency in the population 
when located in protein-coding sequences compared to intronic regions (Fig. 4c). Finally, for 
each annotation category, we observe an enrichment of deletions over insertions 
(Supplementary Table 1), with an overall 2:1 ratio across all the classes. Similar trends were 
reported in previous studies [8,20]. 

To estimate the positive predictive rate of Scalpel to discover transmitted mutations, we 
performed targeted re-sequencing of 31 long (≥29bp) transmitted INDELs. Excluding INDELs 
that failed to sequence (4), 21 passed validation (out of 24), which gives an 87% true 
positive rate. For three INDELs we could not judge the result of the validation because they 
were either too long (≥70bp) for being validated using 143bp reads or they were located in a 
very complex region that was not possible to confidently align. 
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Figure	
   4.	
   	
   Transmitted	
   mutations	
   in	
   593	
   families.	
   (a)	
   Size	
   distribution	
   of	
   insertions	
   and	
   deletions	
   by	
   annotation	
  
category.	
  (b)	
  Size	
  distribution	
  of	
  INDELs	
  within	
  coding	
  sequence	
  (CDS).	
  A	
  spike	
  is	
  clearly	
  visible	
  for	
  INDELs	
  with	
  size	
  of	
  
multiple	
   of	
   three.	
   (c)	
   Histogram	
   of	
   INDELs	
   frequency	
   by	
   annotation	
   category	
   showing	
   how	
   frame-­‐shifts	
   are	
   typically	
  
found	
  at	
  low	
  frequencies	
  in	
  the	
  population.	
  

De	
  novo	
  mutations	
  

In our prior work, we had reported that de novo likely gene disruptions (LGD) mutations, 
including frame-shift INDELs, are significantly more abundant in affected children with autism 
than in unaffected siblings by nearly a 2:1 ratio [6]. Other smaller studies came to similar 
conclusions [17,18,21]. Here we reanalyzed these data with Scalpel to detect de novo INDELs 
with the goals of confirming such signal, predict additional candidates that could have been 
missed by the older pipeline, and extend the analysis to a larger number of families. In order to 
narrow down the list of candidate genes as best as possible, we excluded all mutations that are 
common in the population, and, used stringent coverage filters (see online Methods) to select a 
total of 97 high quality de novo INDELs. Table 2 shows that, even after extending the population 
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size from 343 [6] to 593, the same 2:1 enrichment for LGD mutations is confirmed: 35 frame 
shifts in autistic children vs. 16 in siblings (p-value 0.01097).  
 
Table	
  2.	
  Summary	
  of	
  De	
  Novo	
  INDELs	
  in	
  593	
  SSC	
  Families	
  in	
  different	
  contexts.	
  “Aut”	
  stands	
  for	
  autistic	
  child	
  and	
  
“Sib”	
  for	
  his/her	
  sibling;	
  “M”	
  stands	
  for	
  males	
  and	
  “F”	
  for	
  females.	
  

INDEL	
  effect	
   Aut	
   Sib	
   Aut	
  M	
   Aut	
  F	
   Sib	
  M	
   Sib	
  F	
   Total	
  
Frame	
  shift	
   35	
   16	
   25	
   10	
   12	
   4	
   51	
  
Intron	
   13	
   16	
   11	
   2	
   6	
   10	
   29	
  
Intergenic	
   2	
   0	
   2	
   0	
   0	
   0	
   2	
  
No	
  frame	
  shift	
   4	
   5	
   4	
   0	
   1	
   4	
   9	
  
Splice-­‐site	
   2	
   0	
   2	
   0	
   0	
   0	
   2	
  
UTR	
   2	
   2	
   2	
   0	
   0	
   2	
   4	
  
Total	
   58	
   39	
   46	
   12	
   19	
   20	
   97	
  

 

In addition to finding novel mutations, in a few cases Scalpel was able to correct the size of the 
INDEL reported by other algorithms. Notably a 2 bp intronic deletion reported by the GATK-
based pipeline was revised and confirmed to be a 33 bp deletion (Supplementary Note 2 and 
Supplementary Figs. 6-8). Similarly two closely located candidate LGD deletions of 2 bp and 4 
bp respectively, turned out to be a single longer non-deleterious 6 bp deletion (Supplementary 
Note 2 and Supplementary Figs. 9 and 10). Finally, we performed targeted re-sequencing of 
102 candidate INDELs; 84 were confirmed as de novo mutations, 11 were invalid and 7 failed to 
sequence, giving an 88% positive predictive rate for Scalpel. 

Table 3 shows the list of de novo frame-shift LGD mutations in autistic children (the complete 
list of 97 de novo INDELs in all 593 families is reported in Supplementary Table 2). Sanders et 
al. [17] had previously only reported SNVs in their study, but our analysis of only these 200 
families reports the same strong enrichment for LGD INDEL mutations in autistic children: 11 
frame-shift LGDs INDEL mutations in autistic children compared to only 4 in their healthy 
siblings. This reanalysis reveals an important novel component of deleterious INDEL mutations 
and their associated genes that had been previously missed. Over the entire set of 593 families, 
we find a significantly high overlap between the LGD target genes and the set of 842 FMRP-
associated genes [22], in agreement with the previously reported results [6]. Specifically 8 out of 
35 LGDs in autistic children overlap with the 842 FMRP-associated genes.  

Finally we compared the list of de novo variants detected by Scalpel with the list of de novo 
mutations discovered by the GATK-UnifiedGenotyper based mapping pipeline used by Iossifov 
et al. [6]. We found 21 mutations that were reported by GATK but not found by Scalpel. After 
manual inspection of these loci, we observed that 7 of these mutations where below the 
coverage thresholds used by Scalpel, while the rest of the variants were located in regions hard 
to assemble either because of the presence of a complex repeat or because of coverage 
dropping below the threshold required by Scalpel to generated a complete assembly.  
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Table	
  3.	
  Likely	
  Gene-­‐Disrupting	
  (LGD)	
  frame-­‐shift	
  INDELs	
  in	
  children	
  affected	
  with	
  autism.	
  The	
  “Family	
  ID”	
  column	
  
indicates	
  the	
  ID	
  of	
  the	
  relevant	
  family.	
  The	
  “Study”	
  column	
  shows	
  the	
  study	
  in	
  which	
  the	
  family	
  was	
  previously	
  analyzed:	
  
CSHL,	
  YALE	
  or	
  University	
  of	
  Washington	
  (WASH).	
  Under	
  “Gender,”	
  M	
  stands	
  for	
  males	
  and	
  F	
  for	
  females.	
  The	
  “Location”	
  
column	
  reports	
  the	
  location	
  of	
  the	
  variant	
  in	
  chr:position	
  format.	
  The	
  “Variant”column	
  shows	
  detail	
  for	
  reconstructing	
  the	
  
haplotype	
  around	
  the	
  de	
  novo	
  variant	
  relative	
  to	
  the	
  reference	
  genome	
  as	
  follows:“ins(seq)”indicates	
  an	
  insertion	
  of	
  the	
  
provided	
  sequence	
  “seq”;	
  and	
  “del(N)”	
  denotes	
  a	
  deletion	
  of	
  N	
  nucleotides.	
  The	
  “Gene”	
  column	
  reports	
  the	
  affected	
  gene.	
  
The	
   “Amino	
  Acid	
   Position”	
   column	
   shows	
   the	
   position	
   of	
   the	
   first	
   incorrectly	
   encoded	
   amino	
   acid	
  within	
   the	
   encoded	
  
protein/the	
   length	
  of	
   the	
  protein.	
  When	
  a	
  mutation	
  affects	
  multiple	
   isoforms	
  of	
  a	
   transcript,	
   the	
  earliest	
  proportionate	
  
coordinate	
   is	
   given.	
   “FMRP	
   target”	
   indicates	
  whether	
   the	
   corresponding	
   gene's	
   RNA	
  was	
   found	
   to	
   physically	
   associate	
  
with	
  FMRP	
  [22].	
  	
  

Family	
  
ID	
  

Study	
   Gender	
   Location	
   Variant	
   Gene	
   Amino	
  Acid	
  
Position	
  

FMRP	
  	
  
Target	
  

13548	
   CSHL	
   F	
   11:11314680	
   del(8)	
   GALNTL4	
   522/608	
   no	
  

12858	
   CSHL	
   F	
   9:37015071	
   del(1)	
   PAX5	
   111/392	
   no	
  

12952	
   CSHL	
   M	
   7:104748101	
   del(1)	
   MLL5	
   1066/1859	
   yes	
  

13646	
   CSHL	
   M	
   9:35060456	
   del(5)	
   VCP	
   515/807	
   no	
  

13548	
   CSHL	
   F	
   11:11314690	
   del(1)	
   GALNTL4	
   521/608	
   no	
  

12673	
   CSHL	
   M	
   22:40661587	
   del(4)	
   TNRC6B	
   451/1834	
   yes	
  

12939	
   CSHL	
   M	
   17:42399124	
   del(2)	
   SLC25A39	
   112/360	
   no	
  

13018	
   CSHL	
   M	
   7:100201680	
   del(1)	
   PCOLCE	
   101/450	
   no	
  

13176	
   CSHL	
   F	
   14:68272015	
   del(1)	
   ZFYVE26	
   397/2540	
   no	
  

12950	
   CSHL	
   M	
   7:138968840	
   del(4)	
   UBN2	
   1063/1348	
   no	
  

13096	
   CSHL	
   M	
   7:150164232	
   del(1)	
   GIMAP8	
   149/666	
   no	
  

12653	
   CSHL	
   M	
   6:170593076	
   ins(A)	
   DLL1	
   431/724	
   no	
  

13616	
   CSHL	
   M	
   4:47571001	
   ins(G)	
   ATP10D	
   1001/1427	
   no	
  

13092	
   CSHL	
   M	
   19:49004781	
   ins(AGGTCAG)	
   LMTK3	
   307/1490	
   yes	
  

13162	
   CSHL	
   M	
   6:72889392	
   ins(A)	
   RIMS1	
   196/1693	
   no	
  

13439	
   CSHL	
   M	
   10:53458250	
   ins(A)	
   CSTF2T	
   354/617	
   no	
  

13590	
   CSHL	
   M	
   15:80137554	
   ins(A)	
   MTHFS	
   147/147	
   no	
  

13398	
   CSHL	
   M	
   1:151377904	
   ins(CGTCATCA)	
   POGZ	
   1194/1402	
   no	
  

13552	
   CSHL	
   M	
   21:38877834	
   del(1)	
   DYRK1A	
   496/764	
   no	
  

13168	
   CSHL	
   F	
   11:119214625	
   del(1)	
   MFRP	
   342/580	
   no	
  

12323	
   CSHL	
   M	
   9:96439930	
   del(1)	
   PHF2	
   1088/1097	
   no	
  

13471	
   CSHL	
   M	
   1:152286920	
   del(2)	
   FLG	
   147/4062	
   no	
  

12705	
   CSHL	
   M	
   10:428609	
   ins(C)	
   DIP2C	
   657/1557	
   yes	
  

12235	
   YALE	
   M	
   13:99100553	
   del(2)	
   FARP1	
   1040/1046	
   no	
  

12099	
   YALE	
   M	
   21:38845117	
   del(2)	
   DYRK1A	
   48/764	
   no	
  

12507	
   YALE	
   M	
   16:89350772	
   del(4)	
   ANKRD11	
   725/2664	
   yes	
  

13618	
   YALE	
   F	
   8:37702146	
   del(2)	
   BRF2	
   374/420	
   no	
  

12383	
   YALE	
   M	
   3:52454425	
   del(1)	
   PHF7	
   129/382	
   no	
  

11808	
   YALE	
   F	
   6:31525440	
   ins(TG)	
   NFKBIL1	
   124/367	
   no	
  

13739	
   YALE	
   F	
   X:153135039	
   del(2)	
   L1CAM	
   401/1258	
   no	
  

13000	
   YALE	
   M	
   17:8424205	
   del(1)	
   MYH10	
   755/2008	
   yes	
  

11712	
   YALE	
   M	
   1:53416507	
   del(2)	
   SCP2	
   70/524	
   no	
  

11282	
   YALE	
   M	
   1:155317483	
   ins(CTTG)	
   ASH1L	
   2589/2965	
   yes	
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13618	
   YALE	
   F	
   15:93524061	
   del(4)	
   CHD2	
   965/1829	
   no	
  

13447	
   WASH	
   F	
   6:157527665	
   del(4)	
   ARID1B	
   1784/2237	
   yes	
  

 

Discussion 

Assembly is the missing link towards high accuracy and increased power for INDEL mutation 
discovery for two reasons: (1) it allows the algorithm to break free from the expectations of the 
reference and (2) extends the power of the method to detect longer mutations. These features 
are crucial for the analysis of inherited and somatic mutations. Although these ideas have been 
explored recently in the literature, currently available tools for variant detection suffer from a 
high error rate. Scalpel is a powerful new method for detecting INDELs in NGS data that 
combines the power of assembly and mapping into a single unified framework. While featuring 
an enhanced power to detect longer mutations, Scalpel does not lose specificity thanks to a 
detailed repeat composition analysis combined with a self-tuning k-mer strategy. We 
demonstrate the superior specificity of Scalpel by comparing it with state-of-the-art INDEL 
callers on 1000 validated INDELs from one single exome. Such a large-scale re-sequencing 
experiment was fundamental to explain the sources of errors of current variant detection 
software, especially in regions containing near-perfect repeats. A large-scale application to 
detect de novo and transmitted INDELs in families with autistic children from the Simons 
Simplex Collection reveals the enhanced power of Scalpel to detect long (≥20bp) transmitted 
events and confirms a strong enrichment for de novo likely gene-disrupting (LGD) INDELs 
mutations in children with autism. Such results also hold for a larger collection of 1303 SSC 
families (not presented in this study). Although in this paper we show results only for exome-
capture data, the Scalpel algorithm is agnostic to the sequencing protocol and can be used for 
whole-genome data as well. We envision that Scalpel will play an important role in the near 
future for the analysis of inherited and somatic mutation in human studies.    
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Online Methods 

The Scalpel pipeline 
Scalpel is designed to perform localized micro-assembly of specific regions of interest in a   
genome with the goal of detecting insertions and deletions with high accuracy. It is based on the 
de Bruijn graph assembly paradigm where the reads are decomposed into overlapping k-mers, 
and directed edges are added between k-mers that are consecutive within any read [23]. Figure 
1 shows the high level structure of the pipeline. (1) The pipeline begins with a fast alignment of 
the reads to the reference genome using BWA [24]. Importantly, these alignments are not 
directly used to call variations, but only to localize the analysis by identifying all the reads that 
have similarity to a given locus. Reads are then extracted in the region of interest (e.g., exon) 
including: (i) well-mapped reads, (ii) soft-clipped reads, and (iii) reads that fail to map, but are 
anchored by their mate. The latter two classes correspond to locations where the mapper 
encountered trouble aligning the reads, especially because of the large INDELs present, so it’s 
necessary to include them in the assembly. (2) Once localized, the algorithm computes an on-
the-fly assembly of the reads in the current region using the de Bruijn graph paradigm, 
specifically, reads are decomposed into overlapping k-mers (starting with a default k=25) and 
the associated graph is constructed. (3) Using the reference sequence, one source node and 
one sink node are then selected according to the procedure described later in the “Graph 
traversal” section. (4) An on-the-fly analysis of the repeats in each region is used to 
automatically select the k-mer size to be used for the assembly, described in section “Repeat 
analysis”. (5) The graph is then exhaustively examined to find end-to-end haplotypes paths that 
span the region. (6) After the sequences are assembled, they are aligned to the reference to 
detect candidate mutations using a sensitive gapped sequence aligner based on the Smith 
Waterman algorithm [25] targeted at the reference window. Finally, the above assembly process 
is applied using a sliding window approach over each target region. By default a window size of 
400bp is used with a sliding factor of 100bp. The sliding window strategy is fundamental to 
handle the highly non-uniform read distribution across the target (see Supplementary Fig. 11). 
A window size of 400bp is large enough to assemble the majority of the exons into a single 
contig since ~95% of the human exon-targets are shorter than 400bp (see Supplementary Fig. 
12), however each assembly task is small enough for using in-depth techniques to optimize the 
assembly. 

Graph construction 
Two critical components of the Scalpel algorithm are (i) construction of the de Bruijn graph and 
(ii) detection of haplotype paths spanning the targeted region. Reads aligning to the region are 
extracted and decomposed into overlapping k-mers. In order to model the double stranded 
nature of the DNA, a bidirected de Bruijn graph is constructed [26, 27]. The graph is then 
compressed by merging all non-branching chains of k-mers into a single node. Tips and low 
coverage nodes are removed according to input threshold parameters to remove obvious 
sequencing errors. Note that, differently from traditional de Bruijn graph assemblers, Scalpel 
does not use any threading strategy to resolve collapsed repeats. Threading allows resolution of 
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repeats whose lengths are between k and the read length. However we observed in both real 
and simulated data that, due to the localized graph construction, if a bubble were not covered 
end-to-end by the reads, threading would either disconnect the graph or introduce errors. 
Repeats are instead handled differently as explained in the next section. 

Repeat Analysis 
Due to the highly non-uniform read depth distribution across the targeted region and the 
presence of near-perfect repeats that can mislead the assembly (Supplementary Note 3 and 
Supplementary Fig 13), Scalpel implements a detailed repeat composition analysis coupled 
with a self-tuning k-mer strategy. Specifically, when assembling a window, Scalpel inspects both 
the base pair composition of the corresponding reference sequence as well as the resulting de 
Bruijn graph for the presence of cycles in the graph or near-perfect repeats in the assembled 
sequences. If a repeat structure is detected, the graph is discarded and a larger k-mer is 
selected. This process continues until a maximum k-mer length is reached, which is a function 
of the read length. If no k-mer value can be chosen to avoid the presence of repeats, the region 
is skipped and the next available region from the sliding window scheme is analyzed.  This 
conservative strategy reduces the number of false-positive calls in highly repetitive regions, and, 
according to our experiments, skips less than 2% of possible windows in the human exome.  
 
The proposed self-tuning k-mer strategy is similar to the dynamic approach used by SOAPindel 
to reconnect a broken path in low coverage regions. However, SOAPindel searches for unused 
reads with gradually shorter k-mers until a path is formed or the lower bound on k-mer length 
has been reached. Scalpel instead starts from a small k-mer value (input parameter) first and 
then gradually increases it, such that the smallest possible k-mer value is used for each region. 
This strategy has the advantage of better handling of repetitive sequences, highly polymorphic 
regions, and sequencing errors: source and sink have higher chance to be selected (see section 
“Graph traversal”) and a smaller k-mer reduces the chance of fragmented assembly in low 
coverage regions. 

Graph traversal 
Once a valid de Bruijn graph is constructed, Scalpel examines the graph to find end-to-end 
haplotype sequence-paths that span the target window. Because the coverage from exome 
capture data is highly non-uniform, a special selection algorithm is used to find the edges of 
each window where coverage is present. First, two nodes in the graph are labeled as source 
and sink according to the following procedure: the reference sequence of the target region is 
scanned left-to-right to detect the first sequence of k bases that exactly matches one of the k-
mers from the nodes in the graph, this node will be marked as the source. In a similar fashion 
the sink node is detected scanning the reference sequence right-to-left. Since every region is 
first inspected for repeats, source and sink can be safely selected at this stage. After the source 
and sink nodes are identified, all possible source-to-sink paths are enumerated up to a max 
number (default 100,000) using a depth-first search (DFS) traversal of the graph, similarly to 
Sutta assembly algorithm [28]. Note that since the regions to assemble are very small, time and 
space computational complexities associated with large-scale whole-genome assembly are not 
relevant and an exact brute-force strategy can be efficiently applied. If there are no repeat 
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structures in the graph, all the candidate haplotype paths are enumerated and aligned to the 
portion of the reference sequence delimited by source and sink k-mers using the standard 
Smith-Waterman-Gotoh alignment algorithm with affine gap penalties. The list of candidate 
mutations is then generated. Under typical conditions, the assembler reports a single path for 
homozygous mutations and two paths for heterozygous mutations. For example, if the sample 
has an insertion in only one of the two haplotypes, the assembler would discover the INDEL and 
also the unmodified reference sequence. Note that a traditional sequence assembler would 
have selected only one of these two paths (usually with higher coverage) and discarded the 
other one. Scalpel instead examines both paths to distinguish, for example, between 
homozygous and heterozygous mutations. However, in practice, various factors in real data 
complicate the detection process and, sometimes, multiple paths are reported in the case of 
more exotic variations. For example, the Illumina sequencing platform is particularly error prone 
around microsatellites (e.g., homopolymer runs) and, as a consequence, multiple candidate 
alleles are elucidated by the data at these loci. Highly polymorphic regions are also prone to 
generate multiple haplotype paths and could be computationally demanding: if the distance 
between multiple nearby mutations is too large to infer phasing information, each of the 
associated bubbles in the graph will give rise to two different paths. 

Exome capture data 
Exome capture for the sample K8101 was carried out using the Agilent 44MB SureSelect 
protocol and then sequenced on Illumina HiSeq2000 with average read length of 100bp. More 
than 80% of the target region was covered with depth of 20 reads or more. All of the HiSeq data 
have been submitted to the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under 
project accession number SRX265476.  

MiSeq validation 
1000 INDELs were selected for MiSeq validation (see the Results section for selection criteria). 
PCR primers were designed using Primer 3 (http://primer3.sourceforge.net) to produce 
amplicons ranging in size from 200 to 350 bp, with INDELs of interest located approximately in 
the center of each amplicon. Primers were obtained from Sigma-Aldrich® in 96-well mixed plate 
format, 10 µmol/L dilution in Tris per Oligo. Upon arrival, all primers were tested for PCR 
efficiency using a HAPMAP DNA sample (Catalog ID NA12864, Coriell Institute for Medical 
Research, Camden, NJ, USA) and LongAmp® Taq DNA Polymerase (New England Biolabs, 
Beverly, MA, USA). PCR products were visually inspected for amplification efficiency using 
agarose gel electrophoresis. For the validation experiment, the same PCR protocol as above 
was performed using sample K8101-49685 genomic DNA as template. PCR product was 
verified on E-Gel® 96 gels (Invitrogen Corp., Carlsbad, CA, USA) and subsequently pooled for 
ExoSAP-IT® (Affymetrix Inc., Santa Clara, CA, USA) cleanup. The cleanup product was further 
purified using QIAquick PCR Purification Kit (QIAGEN Inc., Valencia, CA, USA) and quantified 
by Qubit® dsDNA BR Assay Kit (Invitrogen Corp.). Library construction for the MiSeq Personal 
Sequencer platform (Illumina Inc.) was performed based on the TruSeq DNA Sample Prep LS 
protocol (Illumina®), omitting the DNA fragmentation step. Finally, before being loaded onto the 
MiSeq machine, the quality and quantity of the sample was again verified using the Agilent DNA 
1000 Kit on the Agilent Bioanalyzer and with quantitative PCR (Kapa Biosystems Inc., Woburn, 
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MA, USA). This protocol generated high quality 250 bp reads (paired end) with an average 
coverage of 47018X over the validated INDELs (see Supplementary Fig. 14). All of the MiSeq 
data have been submitted to the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) 
under project accession number SRX386284.  

Alignment 
Sequencing reads from K8101 exome-capture data were aligned using BWA (v0.6.2-r126) with 
default parameters to the human reference HG19. Alignments were converted from SAM format 
to sorted, indexed BAM files with SAMTools (v0.1.18). The Picard tool (v1.91) was used to 
remove duplicate reads. These BAM files were used as input for all the INDEL callers used in 
this study. Reads coming from the re-sequencing experiments were also aligned using BWA. 
However, if the INDEL approaches half the size of the read length, even after target re-
sequencing, mapping the reads containing the INDEL is problematic. The problem is 
emphasized if the INDEL is located towards the ends of the read (instead of in the middle). To 
avoid this problem we aligned sequencing reads containing long INDELs (≥30 bp) using 
Bowtie2 [29] instead of BWA. Bowtie2 offers an end-to-end alignment mode that searches for 
alignments involving all of the read characters, also called an "untrimmed" or "unclipped" 
alignment. Specifically, we used the following parameter settings: “--end-to-end --very-sensitive 
--score-min L,-0.6,-0.6 –rdg 8,1 –rfg 8,1 --mp 20,20”.  

Variant Calling 
INDELs for K8101 were called using Scalpel, GATK HaplotypeCaller and SOAPindel as follows: 
 
Scalpel. Scalpel (v0.1.1 beta) was run on the indexed BAM using the following parameter 
setting: “--single --lowcov 1 --mincov 3 –outratio 0.1 --intarget”. INDELs showing high coverage 
unbalance were then removed (chi-square k-mer score > 20). 
 
GATK. GATK software tools (v2.3-9) were used for improvement of alignments and genotype 
calling and refining with recommended parameters. BAM files were re-aligned with the GATK 
IndelRealigner, and base quality scores were re-calibrated by the GATK base quality 
recalibration tool. Genotypes were called by the GATK UnifiedGenotyper and HaplotypeCaller. 
GATK was used to filter high-quality INDELs by hard criteria: "QD < 2.0, ReadPosRankSum < -
20.0 FS > 200.0”. We also tested the most recent release of the GATK toolkit (v2.7-4) and we 
observed the same bias towards long deletion reported in the Results section of the paper.  
 
SOAPindel. SOAPindel (v 2.0.1) was run on the indexed BAM file using default parameters. 
According to SOAPindel documentation, putative INDELs are initially assumed to be located 
near the unmapped reads whose mates mapped to the reference genome. SOAPindel then 
executes a local assembly (kmer=25 by default) on the clusters of unmapped reads. The 
assembly results were aligned to reference in order to find the potential INDELs. To distinguish 
true and false positive INDELs, SOAPindel generates Phred quality scores, which take into 
consideration the depth of coverage, INDEL size, number of neighboring variants, distance to 
the edge of contig, and position of the second different base pair.  Only those INDELs filtered by 
internal threshold are retained in the final INDEL call set. 
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Finally, for all pipelines we selected only INDELs located within the regions targeted by the 
exome capture protocol. 

Analysis of De Novo INDELs related to Autism 
After eliminating all candidate positions that are common in the population, and thus unlikely to 
be related to the disorder, we re-assembled each region associated with the candidates INDELs 
across the family members using a more sensitive parameter setting for Scalpel.  Specifically 
we reduce the starting k-mer value to 10 and turned off the removal of low coverage nodes. This 
step was important to adjust for possible allele imbalance favoring the reference allele over the 
mutation in the parents, but was impractical to do initially for the whole collection: lowering the k-
mer and keeping all the nodes in the graph significantly increase the computation complexity of 
the algorithm. Then we selected de novo INDELs with chi-square k-mer score ≤ 10.84.The chi-
square k-mer score is computed using the standard formula for the chi-square test statistics (χ2) 
but applied to the k-mer coverage of the reference and alternative alleles for the mutation 
according to the following formula:  

Χ! =
𝐶!! − 𝐶!! !

𝐶!!
+   

𝐶!! − 𝐶!! !

𝐶!!
 

where 𝐶!! and 𝐶!! are the observed k-mer coverage for the reference and alternative alleles, and 
𝐶!!  and 𝐶!!  are the expected coverage such that 𝐶!! = 𝐶!! = 𝑡𝑜𝑡𝐶𝑜𝑣/2 . Finally we enforced 
parents to have at least a k-mer coverage of 15 over the assembled region. 

System requirements and software availability 
Scalpel is written in Perl and C++. The source code is freely available as an open-source 
software project on the SourceForge website at https://sourceforge.net/projects/scalpel/. It 
usually takes 2-3 hours to process one exome-capture data set (80% of target at ≥ 20X) using 
10 CPUs and requiring a minimum of 3GB of RAM. 
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