
libRoadRunner: A High Performance

SBML Compliant Simulator

E. T. Somogyi 1,∗, M. T. Karlsson 2, M. Swat 1,
M. Galdzicki 3 and H. M Sauro

3∗1Biocomplexity Institute, Indiana University,
Simon Hall MSB1, Bloomington, IN 47405

2Dune Scientific, 10522 Lake City Way NE, #302 Seattle WA
3Department of Bioengineering,

University of Washington, Seattle, WA, 98195

December 5, 2013

Abstract

Summary:

We describe libRoadRunner, a cross-platform, open-source, high performance
C++ library for running and analyzing SBML-compliant models. libRoadRun-
ner was created primarily to achieve high performance, ease of use, portability
and an extensible architecture. libRoadRunner includes a comprehensive API,
Plugin support, Python scripting and additional functionality such as stoichio-
metric and metabolic control analysis.

Accessibility and Implementation:

To maximize collaboration, we made libRoadRunner open source and released
it under the Apache License, Version 2.0. To facilitate reuse, we have devel-
oped comprehensive Python bindings using SWIG (swig.org) and a C API. Li-
bRoadRunner uses a number of statically linked third party libraries including:
LLVM [4], libSBML [1], CVODE, NLEQ2, LAPACK and Poco. LibRoadRunner
is supported on Windows, Mac OS X and Linux.

Contact:

hsauro@u.washington.edu

∗to whom correspondence should be addressed

1

this version posted December 12, 2013. ; https://doi.org/10.1101/001230doi: bioRxiv preprint

https://doi.org/10.1101/001230

Supplementary information:

Online documentation, build instructions and git source repository are available
at http://www.libroadrunner.org

1 Introduction

Over last few decades researchers have developed many tools to simulate bio-
chemical networks [7]. Most of such simulators are however embedded in mono-
lithic environments, making it very difficult to reuse the code in other appli-
cations. To resolve this issue various groups have built simulators as reusable
libraries. Most notable of these are COPASI [2], libSBMLSim [9], RoadRunner
C# [7], SOSLib [5] and SBSCL [3]. Despite all these efforts, finding a simulator
that is easy-to-use, has good SBML-compliance, is capable of handling complex
models and fast enough to run thousands of models is challenging; for example,
in multi-cell simulators such as CompuCell3D. We designed libRoadRunner to
address these shortcomings and by using Just-In-Time (JIT) compilation via
Low Level Virtual Machine (LLVM), we have significantly improved computa-
tional performance as compared to existing solutions.

This version of libRoadRunner has a new internal design compared with the
previously developed C# roadRunner. The APIs are designed with the modeler
in mind, offer a wide range of functionality and provide high performance access
to model and simulation data, making libRoadRunner ideal for realtime inter-
active environments. To facilitate easy extensibility libRoadRunner provides a
plugin API making it possible to easily write extensions. Figure 1 shows the
architectural overview of libRoadRunner.

The most novel and important component of the libRoadRunner is its com-
putational core based on the LLVM. LLVM is designed for real-time optimiza-
tion and dynamic compilation of computer languages. This has allowed us to
achieve extremely low runtimes. This speed is particularly important for large
simulation applications such as multi-cell models that require many thousands
of biochemical networks to be simulated simultaneously. libRoadRunner 1.0
supports all models in the SBML test suite except for those that include delay
equations and algebraic rules.

2 Methods

2.1 LLVM Backend

We have developed a non-tracing, multi-pass JIT compiler for the SBML lan-
guage using the LLVM framework which allows us to directly JIT-compile SBML
in memory into native machine code at runtime. Our compiler treats SBML as
a statically typed, dynamically scoped declarative language allowing us to not
only generate specific code for each SBML model, but to also generate a specific
data layout that is optimized for each model. As a result the model and the
integrator share the same data layout eliminating the need to copy data between

2

this version posted December 12, 2013. ; https://doi.org/10.1101/001230doi: bioRxiv preprint

https://doi.org/10.1101/001230

the integrator and the model evaluation code. The flexible architecture of the
compiler also greatly facilitates additions of SBML extensions

2.2 Extensibility

A key design requirement of libRoadRunner was to provide a component-based
architecture. Therefore, internal components such as the integrator, steady
state solver, SBML compiler, etc., only communicate with each other through
pure virtual interfaces. This design allows us to readily add new internal com-
ponents such as a planned GPU SBML compiler, new integrators, stochastic
integrators and steady state solvers. While the easiest way to extend function-
ality is to write Python scripts using the Python API, for performance sensitive
applications developers can access the same functionality through the C++ or
C API’s. We also offer a C Plugin API that allows developers to write dynam-
ically loadable plugins in any C complaint language such as Fortran or Object
Pascal. The Plugin API is written such that it allows generic access to all
plugins. For example, scripting languages such as Python can access a plugin
without having to implement a new Python API for every plugin. The current li-
bRoadRunner distribution comes with two example plugins that illustrate how
libRoadRunner functionality can be extended. One example implements the
Levenberg-Marquardt algorithm [6] for fitting models to experimental data.

2.3 Python API

LibRoadrunner provides a comprehensive and pythonic Python module which
is designed to have the feel of the Python SciPy package (scipy.org) and exposes
the full functionality of the public C++ API. Consequently, the easiest way
to use libRoadRunner is via Python scripting. This API allows access to any
SBML element along with calculated values such as the Jacobian, eigenvalues
or the various control coefficients using the Python dictionary protocol. All
libRoadRunner data arrays are accessed directly without copying as Numpy
arrays. This provides a commonly used access protocol. Using the Python API,
modelers can create one or many RoadRunner simulator objects which offers
a very natural way of using libRoadRunner as the Reaction-Kinetics engine in
multi-cell simulators such as CompuCell3D (www.compucell3d.org).

2.4 Performance

To demonstrate the capabilities of libRoadRuner we compared it to three simu-
lator libraries: libSBMLSim, COPASI and SBSCL. We tested the ability to pass
the SBML test suite (1008 models), the ability to simulate very large models
and the ability to simulate systems with large numbers of events. Table 1 lists
the times recorded from four different libraries based on three types of models.
The first model tests the ability to scale to large numbers of state variables
defined by relatively simple ODEs. The second model tests the ability to deal
with complex SBML functions. The timings are the total wall time to complete
each process. Tests were run on a 2.6 GHz Mac Pro, OS X 10.6, and used

3

this version posted December 12, 2013. ; https://doi.org/10.1101/001230doi: bioRxiv preprint

https://doi.org/10.1101/001230

Integrator Conservation

libStruct

LAPACK

SteadyState

CVODENLEQ

SBML JIT
Compiler

LLVM

libSBML POCO

C++ API Python API C API

RoadRunner Core

Plugin API

Optimizers

Other Plugins

Figure 1: Architectural Overview of libRoadRunner.

COPASI v. 4.9.43, LibSMLSim v. 1.1 and SBSCL v. 1.3. Note, we experienced
instability of LibSBMLSim runs with >100 copies of the Brusselator system or
complex SBML.

2.5 Using libRoadRunner in multi-cell simulations

We have successfully deployed libRoadRunner as the Reaction-Kinetic solver en-
gine in CompuCell3D - a simulation environment used to build multi-cell based
models of tissues. We have used the libRoadRunner Python API to associate
each cell with a collection of libRoadRunner-based simulators. Since Compu-
Cell3D uses Python scripting to describe its models, integrating libRoadRunner
was straightforward.

Table 1: All times are in seconds. The first set of tests consisted of N copies
of the Brusselator system in a single model. The second set was a sin func-
tion implemented as a 63 element piecewise SBML functions combined with N
parameters defined by rate rules integrating the sin function. Test models are
available at libroadrunner.org.

#
Bru

sse
lat

or
s

lib
Roa

dRunner

COPASI

LibSBM
LSim

SBSCL

#
Rat

e Rules

lib
Roa

dRunner

COPASI

LibSBM
LSim

SBSCL

50 0.8 0.9 12.2 13.0 1 1.7 12.3 N/A 2.4
100 0.9 3.8 50.5 46.1 2 2.2 24.1 N/A 13:20
200 1.9 13.2 N/A 3:51 3 2.8 35.2 N/A 39:52
300 3.3 30.1 N/A 14:09 4 3.4 46.5 N/A 1:32:32
400 4.7 55.7 N/A 33:35 5 4.3 58.4 N/A 3:04:21
500 6.8 1:35 N/A 1:14:21

4

this version posted December 12, 2013. ; https://doi.org/10.1101/001230doi: bioRxiv preprint

https://doi.org/10.1101/001230

We ran the Delta-Notch patterning simulation [8] on an array of 36 adjacent
cells with different reaction-kinetics solvers and determined that the libRoad-
Runner solver led to a two fold improvement in runtime. In multi-cell simula-
tions time spent on solving reaction-kinetics models makes up only a portion of
the total runtime. Thus the two fold speedup in the overall simulation time is
significant.

3 Discussion

Decades of development has produced powerful, intuitive and feature-rich soft-
ware to simulate biochemical networks. The existing portfolio of SBML-compliant
tools satisfies the needs of most modelers. Yet, limitations of existing packages
present a significant research barrier for applications that require high perfor-
mance, excellent SBML compatibility, broad functionality and extensibility. Li-
bRoadRunner addresses these shortcomings. It is designed for researchers who
need a simulation engine for interactive desktop simulation, multicellular sim-
ulations, which often require 10,000 or more simultaneous simulations, and for
web based interactive simulation with multi-session requirements. Even though
the current version of the RoadRunner appears to be complete, we are plan-
ning a number of additional features including even better SBML compliance,
stochastic GPU integrators, parallel distributed model JIT compilation and sim-
ulation, spatial models as well as new plugins such as alternative optimizers, and
bifurcation analysis. By using an open-source, open-access development process
we hope to engage external developers which should result in higher quality and
more frequent future releases of libRoadRunner.

Acknowledgment

We wish to acknowledge Frank Bergmann who with Herbert Sauro wrote the
original roadRunner library in C# and wrote libStruct, the structural analysis
library along with Ravi Rao. Finally we wish to thank Stanley Gu for testing
libRoadRunner in his real time web based environment. Funding: Work sup-
ported by the National Institute of General Medical Sciences of the National
Institutes of Health under award numbers R01-GM081070. The content is solely
the responsibility of the authors and does not necessarily represent the official
views of the National Institutes of Health.

References

[1] Bornstein BJ, Keating SM, Jouraku A, Hucka M. (2008) LibSBML: an API
library for SBML. Bioinformatics, 24(6), 880-881.

[2] Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M.,
Xu, L., Mendes, P., and Kummer, U. (2006) COPASI a COmplex PAthway
SImulator, Bioinformatics, 22, 3067-74.

5

this version posted December 12, 2013. ; https://doi.org/10.1101/001230doi: bioRxiv preprint

https://doi.org/10.1101/001230

[3] Keller R, Dörr A, Tabira A, Funahashi A, Ziller MJ, Adams R, Rodriguez N,
Le Novre N, Hiroi N, Planatscher H, Zell A and Drger A, (2013) The systems
biology simulation core algorithm. BMC Syst Biol, 7, 55.

[4] Lattner C, Adve V (2004) LLVM: A Compilation Framework for Lifelong
Program Analysis Transformation. Proceedings of the international sympo-
sium on Code generation and optimization: feedback-directed and runtime
optimization, 75.

[5] Machné R, Finney A, Mller S, Lu J, Widder S, Flamm C. (2006) The SBML
ODE Solver Library: a native API for symbolic and fast numerical analysis
of reaction networks. Bioinformatics, 22(11, 1406-7.

[6] Marquardt D. (1963) An Algorithm for Least-Squares Estimation of Non-
linear Parameters. SIAM Journal on Applied Mathematics, 11 (2): 431441.

[7] Sauro HM and Bergmann FT (2009) Software Tools for Systems Biology in
Edison T L and Lauffenburger DA (eds) Systems Biomedicine: Concepts and
Perspectives, Academic Press, pp.289

[8] Swat,M.H., Thimas, G.L., Belmonte J.M., Shirinifard A, Hmeljak D, Glazier
J.A (2013) Multi-Scale Modeling of Tissues Using CompuCell3D, Methods
Cell Biol., 110

[9] Takizawa H, Nakamura K, Tabira A, Chikahara Y, Matsui T, Hiroi N, Funa-
hashi A. (2013) LibSBMLSim: a reference implementation of fully functional
SBML simulator., Bioinformatics, 29(11), 1474-76.

6

this version posted December 12, 2013. ; https://doi.org/10.1101/001230doi: bioRxiv preprint

https://doi.org/10.1101/001230

