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Abstract.— The multi-species coalescent has provided important progress for evolutionary

inferences, including increasing the statistical rigor and objectivity of comparisons among

competing species delimitation models. However, Bayesian species delimitation methods

typically require brute force integration over gene trees via Markov chain Monte Carlo

(MCMC), which introduces a large computation burden and precludes their application to

genomic-scale data. Here we combine a recently introduced dynamic programming

algorithm for estimating species trees that bypasses MCMC integration over gene trees

with sophisticated methods for estimating marginal likelihoods, needed for Bayesian model

selection, to provide a rigorous and computationally tractable technique for genome-wide
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species delimitation. We provide a critical yet simple correction that brings the likelihoods

of different species trees, and more importantly their corresponding marginal likelihoods, to

the same common denominator, which enables direct and accurate comparisons of

competing species delimitation models using Bayes factors. We test this approach, which

we call Bayes factor delimitation (*with genomic data; BFD*), using common species

delimitation scenarios with computer simulations. Varying the numbers of loci and the

number of samples suggest that the approach can distinguish the true model even with few

loci and limited samples per species. Misspecification of the prior for population size θ has

little impact on support for the true model. We apply the approach to West African forest

geckos (Hemidactylus fasciatus complex) using genome-wide SNP data data. This new

Bayesian method for species delimitation builds on a growing trend for objective species

delimitation methods with explicit model assumptions that are easily tested.

(Keywords: Bayes factor, model testing, phylogeography, RADseq, simulation, speciation)

Genomic data are having a dramatic impact on our ability to resolve the tree of life

Faircloth et al. (2012), but delimiting species at the tips of the tree remains to see

comparable gains. New species delimitation methods are increasing in statistical rigor and

objectivity as a result of adopting a multispecies coalescent model Fujita et al. (2012),

although expanding these methods to truly embrace genome-scale data may be limited by

their reliance on gene trees. Individually, gene trees can be estimated quickly using fast

heuristic methods Stamatakis (2006), but combining hundreds or thousands of gene trees

into a single species delimitation framework presents serious computational challenges and

a poor prognosis for genome-wide species delimitations. Thus far, species delimitation

studies using gene trees have been limited to approximately 20 loci Carstens et al. (2013),

but as many studies trend toward large phylogenomic datasets exceeding 100s of loci
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O’Neill et al. (2013); Wagner et al. (2013); Smith et al. (2013) there is a real need for

genomically-enabled species delimitation approaches.

New methods for estimating species trees without gene trees Bryant et al. (2012);

Patterson et al. (2012) open the doors for a remedy. The SNAPP method Bryant et al.

(2012) estimates species trees directly from biallelic markers (e.g., SNP or AFLP data),

and bypasses the necessity of having to explicitly integrate or sample the gene trees at each

locus. The method works by estimating the probability of allele frequency change across

ancestor/descendent nodes. Given a species tree, the probability of the allele frequencies at

a given locus is the probability of a site given a gene tree multiplied by the probability of

the gene tree given the species tree, summed over all possible gene tree topologies and

integrated over all possible gene tree branch lengths Bryant et al. (2012). The result is a

posterior distribution for the species tree, species divergence times, and effective population

sizes, all obtained without the estimation of gene trees.

Comparisons among candidate species delimitation models that contain different

numbers of species is relatively easy with the use of Bayes factors Grummer et al. (2013),

and the existing approach (Bayes factor delimitation; BFD) uses traditional DNA sequence

data to simultaneously estimate gene trees and species trees. The approach requires the

estimation of marginal likelihoods for each competing model, and recent work provides a

number of solutions for estimating these values Baele et al. (2012). Bayes factor species

delimitation has a number of advantages over other Bayesian species delimitation

approaches Yang and Rannala (2010). A significant advantage is the ability to integrate

over species trees during the species delimitation procedure, which removes the constraint

of specifying a guide tree that represents the true species relationships. The species tree is

usually uncertain, and incorrect guide trees can bias Bayesian species delimitation Leaché

and Fujita (2010). Another advantage is the ability to compare non-nested models that

contain different numbers of species, or different assignments of samples to species

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2013. ; https://doi.org/10.1101/001172doi: bioRxiv preprint 

https://doi.org/10.1101/001172
http://creativecommons.org/licenses/by-nc-nd/4.0/


Grummer et al. (2013). Currently, the approach has several limitation. It’s use for

heuristically searching among all possible species assignments is hampered by the need to

predefine the number of species and sample assignments. Methods including the GMYC Pons

et al. (2006), SpeDeSTEM Ence and Carstens (2011), and BROWNIE O’Meara (2010) are more

appropriate heuristic tools for producing species assignments when the researcher has no

preconceived species delimitation models to test. Finally, BFD, as well as the other species

delimitation methods listed previously, rely at some point on gene tree estimation, and are

therefore not easily extended to genome data.

Here, we incorporate Bayesian multispecies coalescent species delimitation using

genome-wide SNP data (or other types of biallelic markers, including AFLP data into the

SNAPP method), but with a critical new addition. First, we describe the approach and show

that marginal likelihoods for alternative species delimitation models are not directly

comparable. We solve this problem by adding proportionality constants that bring

marginal likelihoods to the same scale for comparing competing species trees with Bayes

factors. Second, we use computer simulations to verify that our approach works over broad

parameter and data quantity values when the number of species is known. Finally, we

conduct empirical species delimitation using genome-wide SNP data for West African

forest geckos (Hemidactylus fasciatus complex). We test a four-species hypothesis for this

group that was supported by a previous study Leaché and Fujita (2010) based on five

independent nuclear loci and Bayesian species delimitation (BPP).

Species Delimitation Without Gene Trees

We start with n individuals and m unlinked biallelic markers typed in these individuals,

with alleles designated as 0 and 1. Suppose each individual is assigned to one of k

populations/species. A Bayesian method implemented in the software package SNAPP

Bryant et al. (2012) uses the marker data and species assignments to estimate the species
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phylogeny. However, the assignment of individuals to species and the number of species is

often uncertain, so we would like to compare multiple species delimitations that make

different assumptions about sample assignments and k. Such comparisons are

straightforward to accomplish in a Bayesian framework using Bayes factors Kass and

Raftery (1995). Suppose we want to use an n×m matrix of biallelic markers y to compare

two competing species assignments a1 = (a11, . . . , a1n) and a2 = (a21, . . . , a2n), where a1j

and a2j are the corresponding species indicators for individual j. For example, an

assignment a = (1, 1, 2, 2, 3, 3, 1) says that individuals 1, 2, 7 belong to species 1,

individuals 3 and 4 belong to species 2, and individuals 5 and 6 belong to species 3. The

Bayes factor comparing the two assignments is

BF12 =
Pr(y | a1)

Pr(y | a2)
, (1)

where

Pr(y | aj) =

∫
Pr(y | θj, aj)Pr(θj)dθj (2)

is a marginal likelihood, θj is a set of all model parameters that define a species tree model

corresponding to species assignment aj, Pr(y | θj, aj) is the likelihood function, and Pr(θj)

is a prior density of model parameters (we will use Pr(·) to designate both probability and

density). In order to compare multiple species delimitation models, one can rank these

models by their corresponding marginal likelihoods (2). Selecting the highest ranked model

is a statistically consistent procedure, meaning that the highest ranked model is guaranteed

to be the correct model as the amount of data increases, assuming the correct model is

being considered. The software package SNAPP has an implementation of path sampling to

approximate marginal likelihoods of the form (2), but the current implementation of the

software rescales these likelihoods in a way that makes marginal likelihoods incomparable.

We explain this rescaling and the corresponding remedy below.
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Proportionality Constants for Bayes Factor Species Delimitation

We use SNAPP Bryant et al. (2012); RoyChoudhury et al. (2008) to bypass the explicit

integration over the space of gene trees using an algorithm for computing the likelihood

Pr(y | θj, aj) =
m∏
l=1

Pr(yl | θj, aj),

where l indexes one of m unlinked loci under study, yl is a vector of markers at locus l and

y = (y1, . . . ,ym). The above algorithm starts by compressing the data matrix y into

sufficient statistics. For each locus l, sufficient statistics for species tree estimation are

sl = (sl1, . . . , slk) and nl = (nl1, . . . , nlk), where sli is the number of 1 alleles at locus l in

individuals belonging to species i and nli is the number of individuals with nonmissing data

at locus l in species i, and k is the number of species Bryant et al. (2012); RoyChoudhury

et al. (2008). Therefore, associated with these sufficient statistics is the likelihood

Pr(s,n | θj, aj) =
m∏
l=1

Pr(sl,nl | θj, aj).

As a result, the path sampling implemented in SNAPP computes the marginal likelihood,

Pr(s,n | aj) =

∫ m∏
l=1

Pr(sl,nl | θj, aj)Pr(θj)dθj,

that also corresponds to the sufficient statistics rather than to the original data. This

procedure does not affect the estimation of the species tree, the original objective of SNAPP,

but since different species assignments change the allele counts within species (i.e. the

sufficient statistics), the marginal likelihoods provided by SNAPP for different species

delimitation models are incomparable. However, the original marker data likelihood is

equal to the sufficient statistics data likelihood up to a proportionality constant. By

computing this constant for each species assignment, we can bring SNAPP marginal
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likelihoods to the same scale and perform model ranking and Bayes factor calculations.

Let nj
li be the number of individuals with nonmissing data at locus l in species i

under species assignment aj and let sjli be the number of 1 alleles at locus l in individuals

belonging to species i under species assignment aj. Notice that the number of species kj

depends on j. Then, for locus l and assignment j,

Pr(sjl ,n
j
l | θj, aj) =

 kj∏
i=1

(
nj
li

sjli

)Pr(yl | θj, aj),

where nj
l = (nj

l1, . . . , n
j
lkj

) and sjl = (sjl1, . . . , s
j
lkj

). This means that we can compute the

corrected marginal likelihood of species assignment aj as

Pr(y | aj) =
Pr(sj,nj | aj)∏m
l=1

∏kj
i=1

(nj
li

sjli

) ,
where sj = (sj1, . . . , s

j
m), nj = (nj

1, . . . ,n
j
m) and Pr(sj,nj | aj) is the marginal likelihood

that can be approximated by SNAPP. Marginal likelihoods of two species delimitation

models can be plugged into formula (1) to compare the models using Bayes factors.

Materials and Methods

Computer Simulations

The multispecies coalescent SNP simulator SimSNAPP Bryant et al. (2012) was used to

generate polymorphic biallelic markers on a predefined species tree (100 replicates per

simulation). The species tree is asymmetric and contains four species (Fig. 1), and is

equivalent in divergence times and population sizes to a species tree used in two other

simulation studies Liu and Pearl (2007); Bryant et al. (2012). We alter the species
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assignments of the true model to test several common species delimitation scenarios,

including species lumping (two species are combined into one), splitting (one species is

arbitrarily split into two species), and misclassification of samples to different species. We

simulated SNP datasets containing either 100, 500, or 1000 polymorphic biallelic

characters. Each separate marker is unlinked given the species tree. We conducted

additional simulations sampling either two, five, or ten samples per species to examine the

influence of sampling design on species delimitation.

Our simulation framework allows us to properly specify the prior distributions for

parameters that most empiricists typically must estimate from the data. In most cases, we

specified prior distributions to closely match the values used during simulation. Doing so

allowed us to focus on the performance of the species delimitation framework instead of

problems associated with prior misspecification. We analyzed the simulated data using a

correctly specific prior for the population size parameter, θ (gamma(2,333)), which results

in an accurate prior mean = 0.006. However, we are also interested in understanding how

misspecified priors might impact our ability to accurately delimit species. Therefore, we

also conducted simulations with a gamma prior off target by orders of magnitude to result

in a “low” prior mean = 0.0001 (gamma(2,20000)), and a “high” prior mean = 0.01

(gamma(2,200)).

We analyzed the simulated datasets using a modified version of SNAPP that includes

proportionality constants. Posterior probability distributions for the species tree,

divergence times, and population sizes are a product of the analysis, yet estimating the

marginal likelihood is the immediate goal for Bayes factor model comparison. Estimating

the marginal likelihood requires extra computation compared to typical Bayesian inference

Baele et al. (2012), and path sampling and stepping-stone methods work well in the

context of Bayes factor delimitation of species using multilocus DNA sequence data

Grummer et al. (2013). We conducted path sampling with 48 steps to estimate the
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marginal likelihood. Each path sampling step is a power posterior differing only in its

power, β. When β = 1 the samples are taken from the posterior and the analysis is

informed by the data. When β = 0, the prior is sampled without any influence of the data

Baele et al. (2012). Intermediate β values alter the ratio of data and prior, and therefore

path sampling can accurately estimate the marginal likelihood Baele et al. (2012). An

Markov chain Monte Carlo (MCMC) chain length of 200000 with a pre-burnin of 50000

was sufficient to achieve large effective sample sizes and apparent stationarity.

The strength of support from Bayes factor (BF; equation 1) comparisons of

competing models was evaluated using the framework of Kass and Raftery (1995). A

positive BF test statistic (2× loge) reflects evidence in favor of model 1, whereas negative

BF values are considered as evidence favoring model 2. The BF scale is as follows:

0 < 2× loge BF < 2 is not worth more than a bare mention, 2 < 2× loge BF > 6 is positive

evidence, 6 < 2× loge BF < 10 is strong support, and 2× loge BF > 10 is decisive.

Empirical Data

We applied BFD* to new SNP data collected for West African forest geckos in the

Hemidactylus fasciatus complex. A previous species delimitation study utilizing five

nuclear loci found strong support for at least four unique evolutionary lineages within

Hemidactylus fasciatus using the Bayesian species delimitation method BPP Leaché and

Fujita (2010). The validity of the four species was debated Bauer et al. (2011); Fujita and

Leaché (2011), but we consider the four species scenario (Fig. 2a) a logical starting point

for testing competing species delimitation models (Fig. 2b-g). The alternative species

delimitation models that we test include lumping species (Fig. 2b-d), splitting species (Fig.

2e-f), and reassigning samples between species (Fig. 2g).

To collect genome-wide sampling of SNPs, we followed the laboratory protocols for

double-digest RADseq (ddRADseq) described in Peterson et al. (2012). We collected data
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for 46 West African forest geckos in the Hemidactylus fasciatus complex, allocated into our

preferred taxonomy as follows: H. coalescens (n = 6; Cameroon, Congo, Gabon), H.

eniangii (n = 9; Cameroon, Equatorial Guinea, Nigeria), H. fasciatus (n = 16; western

Ghana), and H. kyaboboensis (n = 15; Ghanas Togo Hills). By simultaneously

characterizing and genotyping samples, ddRADseq has the desirable property of greatly

reducing ascertainment bias Hohenlohe et al. (2010); Helyar et al. (2011). For each

individual, we extracted high-molecular weight genomic DNA from liver or muscle tissue,

checked the quality on agarose gels and measured the concentration using a Qubit.

Overnight double digestion with SbfI and MspI used 0.5 µg of DNA. Fragments were

purified with Agencourt AMPure beads before ligation of barcoded Illumina adaptors onto

the fragments. Equimolar amounts of each sample were pooled prior to size selection using

a Blue Pippin Prep. Final library amplification used proofreading Taq and Illumina’s

indexed primers. We used two quality control measures prior to sequencing, including

quantitative PCR to accurately measure DNA concentration of adaptor-associated

fragments, and a BioAnalyzer run to confirm the sizes of fragments. The final libraries

were sequenced (50-bp, single-end run) on one Illumina HiSeq 2000 lane at the Vincent J.

Coates QB3 Genomic Sequencing Facility at UC Berkeley.

Raw Illumina reads were filtered for contaminating adaptors and primers using the

FASTX-Toolkit. We processed the filtered data using STACKS Catchen et al. (2011), a

group of programs and scripts that perform additional filtering based on sequence quality

and identifies putative loci and haplotypes for each individual, and organizes them into a

MySQL database. Working per individual, we used ustacks to create putative loci by

grouping reads that differ by a threshold of three mismatches. This threshold amounts to

7.7% nuclear divergence for 39-bp fragments (50-bp sequence minus the five-bp barcode and

partial SbfI site), which we view as high for intraspecific diversity but necessary to capture

potential admixture between divergent populations. The program ustacks then uses a
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maximum likelihood algorithm to determine haplotypes for each individual Hohenlohe

et al. (2010). We removed putative loci with more than twice the standard deviation of

coverage depth to filter out repetitive elements and stacks of paralogous loci. Unique loci

from all individuals were aggregated into a “Catalog” using cstacks, keeping track of the

haplotype diversity within each locus with a mismatch threshold of three, which reflects a

range of divergences that could constitute potential cryptic species. We resolved haplotypes

for each individual for each locus in the catalog using sstacks. The program populations

outputs haplotype files from which we reconstituted alignments for downstream analyses

using our own scripts. Since each RAD locus may contain multiple linked SNPs, we

assembled a final data matrix containing a single SNP selected at random from each locus.

We analyzed two assemblies of the empirical data that differed in the level of

missing data. One assembly contained no missing data, and therefore had only a small

number of loci (57), whereas lowering our tolerance for missing data to 10% resulted in a

matrix containing 1202 loci. We analyzed these data using the modified version of SNAPP,

which was implemented as a plug-in to the BEAST 2 Bouckaert et al. (2013). We

conducted path sampling with 48 steps (100000 MCMC steps, 10000 pre-burnin steps) to

estimate the marginal likelihood. The software is open source and is available for download

from http://code.google.com/p/snap-mcmc/. We have created a wiki-page for BFD* that

provides detailed steps on how to install the program, set up the XML file, and run the

analyses (http://www.beast2.org/wiki/index.php/BFD*/).

Results

The Importance of Proportionality Constants in Species Tree Comparisons

A comparison of marginal likelihood values estimated both with and without

proportionality constants, and their influence on Bayes factor comparisons of species trees,
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is shown in Figure 3. Under simulation, uncorrected marginal likelihoods are higher

compared to their corrected counterparts estimated with proportionality constants (Fig

3a). Arbitrarily lumping species reduces the number of parameters, yet the uncorrected

marginal likelihood values increase, which is a counterintuitive result that is rectified with

the use of corrected marginal likelihoods. The incorrect estimation of marginal likelihoods

leads to a strong bias in BF comparisons of species trees, and the uncorrected values tend

to reject the true model in favor of less complex models containing fewer species (i.e.,

models that lump species) with decisive support (Fig. 3b).

Bayes factor comparisons of candidate species trees with corrected marginal

likelihoods consistently favor the true model over the competing models as reflected by the

positive BF values (Table 1). Reassigning samples to the wrong species, or lumping species

together are rejected decisively across all simulations (2× loge BF ≥ 70; Table 1).

Arbitrarily splitting a species into two putative sister species produces strong 2× loge BF

values (>6), and although most simulation replicates supported the true model, some

replicates supported the alternative model when the θ prior was misspecified (Table 1).

This result indicates that species delimitation models that incorrectly parse weakly

diverged populations, or that split populations connected by moderate to high gene flow,

could be difficult to distinguish using BFD*. Acquiring decisive BF support for these

spurious grouping may be quite difficult.

Sampling Intensity

We might expect that fluctuations in sampling intensity (i.e., loci or individuals) might

impact our ability to discriminate alternative species delimitation models. Species tree

simulation studies have demonstrated that accuracy increases with the number of loci

Bryant et al. (2012); Heled and Drummond (2010); Leaché and Rannala (2011), and we

expect that discriminating the true species delimitation model from alternatives should
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become easier with more data. Under the simulation conditions used here, species

delimitation with as few as 100 SNPs is adequate for at least strong (split model) or

decisive (reassignment and lump models) BF support for the true model (Table 1).

Increasing the number of SNPs results in more decisive BF support for the true model.

However, BF support for the true model in relation to the split model provides only

marginal improvement with even up to 1000 SNPs (Table 1).

Coalescent methods can also gain information by including more individuals for

each species Maddison and Knowles (2006). We find that increasing the number of samples

for each species increases the BF support for the true model (Table 1). This pattern is

strongest under models that reassign samples or lump species, which become easier to

distinguish from the true model as the number of samples increases (while holding the

number of loci constant). For instance, lumping species produces an average 2× loge BF

score of +27.1 when including only two samples per species, but the 2× loge BF score

increases to +61.8 and +148.6 when sampling five or 10 samples per species, respectively

(Table 1). Arbitrarily splitting a species is the most difficult scenario to distinguish from

the true model, and adding more samples per species adds a relatively small contribution

to the BF scores. The 2× loge BF scores for two, five, and 10 species under the split model

are +6.8, + 8.4, and + 9.8, respectively (Table 1).

Empirical Data

Sequencing on the Illumina HiSeq 2000 platform provided 124+ million raw sequence

reads, and resulted in an average SNP coverage of 127.6x. We find the typical trade-off

between missing data and high sample representation as is found in other studies utilizing

RADseq data Wagner et al. (2013); Rubin et al. (2012); Cariou et al. (2013), namely, the

data matrix with the lowest tolerance for missing data has the fewest number of SNPs

shared across all samples, and the data matrix with the largest numbers of SNPs has the
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largest proportion of missing data. For example, a data matrix that is 99.2% complete

contains only 129 SNPs, whereas a data matrix allowing 7% missing data (i.e., a SNP can

be missing in ≤3 of the 46 samples) contains 1087 SNPs.

Our preferred four-species model is rejected in favor of a five-species model that

splits the Bioko Island samples of H. eniganii into a separate species, and this result

receives decisive support using a small data matrix with 129 SNPs and no missing data, as

well as a larger matrix of 1087 SNPs with approximately 10% missing data. Models that

lump species or reassign samples between species consistently rank low and are rejected

decisively using Bayes factors (Table 2). The specific ranking for these alternative models

fluctuates with the number of SNPs, which indicates that either the amount of information

content and/or missing data have the potential to impact model ranks. Ultimately, the

specific rankings for these models seem unimportant given their decisive rejection.

Discussion

Hemidactylus Species Delimitation

Allopatric divergence is the primary mechanism producing diversity in geckos belonging to

the Hemidactylus fasciatus complex. These geckos are restricted to rainforest habitats, and

their distributions match those of the major blocks of rainforest. Four species in the group

have become reproductively isolated from each other as a result of habitat fragmentation,

which has driven allopatric speciation, and one new species appears to be the result of

island colonization. The Bioko Island in the Gulf of Guinea harbors a distinct species that

is not currently described. We previously found significant support for recognizing the

Bioko Island population as a distinct species using five nuclear genes, though we took

a“conservative” approach and only recognized four species Leaché and Fujita (2010). The
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new SNP data analyzed here provide decisive Bayes factor support for a five-species model

that allocates the Bioko Island samples into a separate species (Table 2).

There is a growing suite of coalescent-based species delimitation methods that instill

greater objectivity into species delimitation when the appropriate genetic data are

available. Understandably, these methods have set afire the necessary discussions over the

merit and utility of coalescent-based species delimitation, particularly with concerns over

the bias in the rate of lumping or splitting. With the statistical framework of

coalescent-based species delimitation methods, these failure to split or lump largely fall

into the categories of type I and type II error rates. Common to all methods of species

delimitation is the ultimate goal of accurately documenting and quantifying biodiversity

that can provide a stable taxonomy. Because of their greater transparency and objectivity,

coalescent-based species delimitation methods are an important step forward in attaining

this goal.

Genomic Species Delimitation

Combining data from morphology, ecology, behavior, and genetics is the goal of a

pluralistic integrative taxonomy Padial et al. (2010); Leaché et al. (2009). While there is

currently no inferential framework that can analyze these disparate data types jointly, a

component of growing importance is the development of more objective species

delimitation tools that take advantage of coalescent theory Fujita et al. (2012). Indeed,

recent progress in statistical species delimitation has largely focused on genetic data Fujita

et al. (2012); Carstens et al. (2013), likely due to the ease with which they can be

abundantly collected even for non-model organisms. Species delimitation with genomic

data has desirable properties for systematics, including well-established methodological and

statistical foundations, more transparent objectivity over other datatypes, such as

morphology Fujita et al. (2012), and easily-tested model assumptions pertaining to gene
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flow, selection, or population substructure. Currently, RADseq and sequence capture

approaches allow the collection of thousands of loci for hundreds of individuals, producing

datasets that are too large and complex for traditional Bayesian and maximum likelihood

analyses; indeed, the accumulation of data is outpacing the development of appropriate

analytical tools Sousa and Hey (2013). Nevertheless, we have developed a phylogenomic

approach that utilizes SNPs — an important source of genetic variation — to accomplish

species delimitation and the documentation of biodiversity, a central goal of systematics

with large ramifications for all of biology Fujita et al. (2012).

Marginal Likelihoods and Bayes Factors

Obtaining accurate estimates for the marginal likelihood of models forms the foundation

for Bayes factor model comparison. The harmonic mean estimator consistently

overestimates the marginal likelihood, and is the least desirable approach Baele et al.

(2012). The power posterior approaches including path sampling and stepping-stone

sampling both work well in the context of species delimitation Grummer et al. (2013).

Estimating the marginal likelihood using power posteriors requires a substantial amount of

computational effort. For example, analyses of our 1202 locus empirical dataset using path

sampling required approximately 14.6 days of computation time on an Intel Xeon E5-2650

2.0 GHz 16 core computer with 32 GB of memory. These computation times are not

insurmountable when investigating a small set of candidate models, but they could become

untenable if the approach is used to rank a large number of models. New methods for

Bayesian model selection, including “model-switch stepping-stone sampling”, can decrease

the computation time by directly estimating the Bayes factor between two competing

models instead of estimating the marginal likelihood for each model separately Baele et al.

(2013). Alternatively, one could try to approximate the joint posterior distribution of
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species trees and species assignments via MCMC Choi and Hey (2011), but scaling this

approach to genomic data will be challenging computationally.

Using Bayes factor delimitation of species overcomes some of the pitfalls of

alternative species delimitation approaches, perhaps the most obvious being circumventing

the need to predefine a fixed species tree, which can result in biased support for incorrect

models Leaché and Fujita (2010). This is accomplished by integrating over species trees

and other model parameters during marginal likelihood calculations. In addition, marginal

likelihoods provide a convenient way to rank alternative, even non-nested, models with the

advantage of automatic model complexity penalization Baele et al. (2012). Finally,

marginal likelihood ranking and Bayes factor model comparison do not require the

taxonomist to assign prior probabilities to alternative models, which seem difficult to

specify for the case of species delimitation.

Supplementary Material

Supplementary material, including data files and/or online-only appendices, can be found

in the Dryad data repository at http://datadryad.org, doi:xx.xxx/dryad.xxxxx.
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Leaché, A. D. and M. K. Fujita. 2010. Bayesian species delimitation in west african forest

geckos (hemidactylus fasciatus). Proceedings of the Royal Society B: Biological Sciences

277:3071–3077.
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Figure 1: The fully-specified species tree used to simulate SNP data for Bayes factor species
delimitation (a). Perturbations to the true model include (b) splitting a species into two
false species, (c) lumping two distinct species into one, and (d) reassigning a sample into the
wrong species. Simulations are conducted with SNP matrices of different sizes (100, 500,
1000), variable sampling within species (2, 5, 10), and with different theta priors (correct,
high, low). Species tree divergence times are in units of expected mutations per site.
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Figure 2: Geographic sampling of Hemidactylus fasciatus complex geckos (numbers in sym-
bols indicate sample sizes), and our preferred current taxonomy (a). BFD* is used to test
the alternative species delimitation models outlined in b-g
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Figure 3: Comparisons of the behavior of corrected and uncorrected marginal likelihoods
(a), and their influence on Bayes factor comparisons of candidate species trees (b). The
simulated data used in this comparison include 500 SNPs and 5 samples per species.
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Table 1: Simulation results for BFD* species delimitation. Results are mean values

(and standard deviations) across 100 simulation replicates.

Marginal likelihood (loge) Bayes factor (2× loge)
Loci Samples θ prior true reassign lump split reassign lump split
500 5 correct -2228.3 (45.8) -2411.2 (53.3) -2527.4 (58.7) -2234.0 (50.0) +365.8 (41.2) +598.2 (61.8) +8.4 (1.4)
500 5 low -2224.4 (45.9) -2411.1 (54.1) -2531.8 (60.2) -2228.6 (46.0) +373.5 (42.9) +614.9 (64.8) +8.5 (1.5)
500 5 high -2229.8 (38.0) -2411.4 (43.9) -2527.2 (47.2) -2234.1 (39.0) +363.2 (33.0) +594.8 (62.1) +8.5 (17.2)
100 5 correct -449.7 (20.5) -486.3 (23.0) -508.0 (24.9) -452.9 (20.4) +73.3 (20.9) +116.6 (29.7) +6.4 (1.8)
1000 5 correct -4441.1 (73.8) -4797.8 (87.1) -5028.2 (98.5) -4445.9 (73.7) +713.3 (72.0) +1174.2 (108.4) +9.5 (1.6)
500 2 correct -1072.2 (35.3) -1139.1 (40.7) -1136.1 (40.7) -1075.6 (35.2) +133.8 (27.2) +127.8 (27.1) +6.8 (1.2)
500 10 correct -3143.3 (81.4) -3358.0 (82.8) -3746.7 (105.6) -3148.2 (81.8) +429.3 (59.3) +1206.8 (148.6) +9.8 (1.7)
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Table 2: Empirical results for BFD* species delimitation in the Hemidactylus

fasciatus complex. Models are presented in Figure 3.

129 SNPs 1087 SNPs
Model Species ML Rank BF ML Rank BF
a. Current taxonomy 4 -832.7 2 – -14049.3 2 –
b. Lump western forests 3 -849.5 3 +33.6 -16340.2 6 +4581.7
c. Lump central forests 3 -886.4 6 +107.4 -15326.2 5 +2553.8
d. Lump western & central forests 2 -895.3 7 +125.3 -17632.8 7 +7167.0
e. Split fasciatus 5 -849.8 4 +34.2 -14065.6 3 +32.6
f. Split eniangii 5 -823.0 1 -19.4 -13419.6 1 -1259.4
g. Reassign Bioko Island 4 -861.7 5 +57.9 -14394.6 4 +690.6

ML = Marginal likelihood (loge)
BF = Bayes factor (2× loge)
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