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ABSTRACT 24	
  

Key biological properties such as high genetic diversity and high evolutionary 25	
  

rate enhance the potential of certain RNA viruses to adapt and emerge. 26	
  

Identifying viruses with these properties in their natural hosts could dramatically 27	
  

improve disease forecasting and surveillance. Recently, we discovered two novel 28	
  

members of the viral family Arteriviridae: simian hemorrhagic fever virus (SHFV)-29	
  

krc1 and SHFV-krc2, infecting a single wild red colobus (Procolobus rufomitratus 30	
  

tephrosceles) in Kibale National Park, Uganda. Nearly nothing is known about 31	
  

the biological properties of SHFVs in nature, although the SHFV type strain, 32	
  

SHFV-LVR, has caused devastating outbreaks of viral hemorrhagic fever in 33	
  

captive macaques. Here we detected SHFV-krc1 and SHFV-krc2 in 40% and 34	
  

47% of 60 wild red colobus tested, respectively. We found viral loads in excess of 35	
  

106-107 RNA copies per milliliter of blood plasma for each of these viruses. 36	
  

SHFV-krc1 and SHFV-krc2 also showed high genetic diversity at both the inter- 37	
  

and intra-host levels. Analyses of synonymous and non-synonymous nucleotide 38	
  

diversity across viral genomes revealed patterns suggestive of positive selection 39	
  

in SHFV open reading frames (ORF) 5 (SHFV-krc2 only) and 7 (SHFV-krc1 and 40	
  

SHFV-krc2). Thus, these viruses share several important properties with some of 41	
  

the most rapidly evolving, emergent RNA viruses. 42	
  

  43	
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INTRODUCTION 44	
  

Certain RNA viruses have biological properties that make them particularly likely 45	
  

to emerge	
  [1]. High genetic diversity, high evolutionary rates, and high viral loads 46	
  

are all thought to enhance the potential of some RNA viruses to adapt to 47	
  

changing environments by evading immune responses within hosts or enabling 48	
  

the invasion of new host populations [2,3]. It is widely accepted that identifying 49	
  

and characterizing such viruses in their natural hosts is important for disease 50	
  

monitoring and prevention [4-7]. For example, the origin of human 51	
  

immunodeficiency virus (HIV)-1, group M (the strain responsible for the AIDS 52	
  

pandemic) from simian immunodeficiency viruses (SIVs) of wild chimpanzees in 53	
  

Central Africa [8] underscores the importance of “pandemic prevention,” as well 54	
  

as the importance of non-human primates as reservoirs of potentially important 55	
  

viruses. 56	
  

The simian hemorrhagic fever viruses (SHFVs) are a poorly understood 57	
  

group of single stranded, positive-sense RNA viruses within the family 58	
  

Arteriviridae that have only recently been detected in wild primates [9,10]. Almost 59	
  

everything known about these viruses comes from the type strain of simian 60	
  

hemorrhagic fever virus (SHFV-LVR), which caused several “explosive” disease 61	
  

outbreaks in captive macaques (Macaca assamensis, M. arctoides, M. 62	
  

fasciularis, M. nemestrina, and M. mulatta) between 1964 and 1996. [11-14]. The 63	
  

lethality of SHFV infection in these Asian Old World monkeys (OWMs) suggested 64	
  

that macaques were highly susceptible to the virus, and were therefore unlikely 65	
  

to be natural hosts of SHFV-LVR. Further investigation revealed that monkeys of 66	
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several African OWM species – specifically patas monkeys (Erythrocebus patas), 67	
  

grivets (Chlorocebus aethiops), and Guinea baboons (Papio papio) – could 68	
  

persistently harbor SHFV-LVR in captivity without signs of disease [15]. Although 69	
  

this finding implicated African OWMs as the immediate source of SHFV-LVR in 70	
  

the captive outbreaks, neither SHFV-LVR nor any of its relatives had ever been 71	
  

identified in a wild animal until recently [9,16].  72	
  

In 2011, we discovered two highly divergent simian arteriviruses infecting 73	
  

a single wild red colobus (Procolobus rufomitratus tephrosceles) in Kibale 74	
  

National Park, Uganda (hereafter Kibale), which we named SHFV-krc1 and 75	
  

SHFV-krc2 [9]. Subsequently, we discovered additional, highly divergent simian 76	
  

arteriviruses in red-tailed guenons (Cercopithecus ascanius) from the same 77	
  

location [10]. Here we characterize SHFV-krc1 and SHFV-krc2 in 60 red colobus 78	
  

from Kibale. We show that these viruses infect a high proportion of red colobus in 79	
  

this population, replicate to high titers in infected monkeys, and have high genetic 80	
  

diversity, both within and among hosts. Our findings demonstrate that these 81	
  

viruses possess properties that are associated with the rapid evolutionary 82	
  

adaptability characteristic of many emerging RNA viruses.   83	
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MATERIALS AND METHODS 84	
  

Arterivirus genome organization and nomenclature. SHFV genomes contain 85	
  

a duplication of four open reading frames (ORFs) relative to the other viruses in 86	
  

the Arteriviridae family: porcine reproductive and respiratory syndrome virus 87	
  

(PRRSV), equine arteritis virus (EAV), and lactate dehydrogenase-elevating virus 88	
  

of mice (LDV). Previous publications regarding SHFV have treated the naming of 89	
  

these additional ORFs inconsistently. For clarity, we have adopted the 90	
  

nomenclature scheme presented in [17], and have included a schematic (Figure 91	
  

1) to maintain continuity with previous publications. 92	
  

Ethics statement. All animal use in this study followed the guidelines of 93	
  

the Weatherall Report on the use of non-human primates in research. Specific 94	
  

protocols were adopted to minimize suffering through anesthesia and other 95	
  

means during capture, immobilization, and sampling of the non-human primates. 96	
  

These included use of anesthesia during capture (Ketamine/Xylazine, 97	
  

administered intramuscularly with a variable-pressure pneumatic rifle), 98	
  

minimization of immobilization time and the use of an anesthetic reversal agent 99	
  

(Atipamezole) to reduce recovery time, and conservative limits on blood sample 100	
  

volumes (<1% body weight), as previously described [9]. Following sampling, all 101	
  

animals were released back to their social group without incident [18]. All 102	
  

research was approved by the Uganda Wildlife Authority (permit 103	
  

UWA/TDO/33/02), the Uganda National Council for Science and Technology 104	
  

(permit HS 364), and the University of Wisconsin Animal Care and Use 105	
  

Committee (protocol V01409-0-02-09) prior to initiation of the study.  106	
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Study site and sample collection. Red colobus were sampled between 107	
  

2/5/2010 and 7/22/2012 in Kibale National Park, Uganda, a 795 km2 semi-108	
  

deciduous park in western Uganda (0°13’-0°41’ N, 30°19’-30°32’ E) known for its 109	
  

exceptional density of primates belonging to diverse species. Blood was 110	
  

separated using centrifugation and plasma was frozen immediately in liquid 111	
  

nitrogen for storage and transport to the United States. Samples were shipped in 112	
  

an IATA-approved dry shipper to the USA for further analysis at the Wisconsin 113	
  

National Primate Research Center in accordance with CITES permit #002290 114	
  

(Uganda). 115	
  

Molecular methods. Samples were processed for sequencing in a 116	
  

biosafety level 3 laboratory as described previously [9,10]. Briefly, for each 117	
  

animal, one ml of blood plasma was filtered (0.45µm) and viral RNA was isolated 118	
  

using the Qiagen QIAamp MinElute virus spin kit (Qiagen, Hilden, Germany), 119	
  

omitting carrier RNA. DNase treatment was performed and cDNA synthesis was 120	
  

accomplished using random hexamers. Samples were fragmented and 121	
  

sequencing adaptors were added using the Nextera DNA Sample Preparation Kit 122	
  

(Illumina, San Diego, CA, USA). Deep sequencing was performed on the Illumina 123	
  

MiSeq (Illumina, San Diego, CA, USA).  124	
  

SHFV detection by quantitative RT-PCR. We developed a multiplex 125	
  

quantitative RT-PCR (qRT-PCR) assay to quantify plasma viral RNA of both 126	
  

SHFV-krc1 and SHFV-krc2 in each sample. Taqman assays were designed with 127	
  

amplification primers specific for either SHFV-krc1 (5’-128	
  

ACACGGCTACCCTTACTCC-3’ and 5’- TCGAGGTTAARCGGTTGAGA-3’) or 129	
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SHFV-krc2 (5’-AACGCGCACCAACCACTATG-3’ and 130	
  

5’GCGTGTTGAGGCCCTAATTTG-3’). The SHFV-krc1 probe (5’-Quasar 670-131	
  

TTCTGGTCCTCTTGCGAAGGC-BHQ2-3’) and SHFV-krc2 probe (5’-6-Fam-132	
  

TTTGCTCAAGCCAATGACCTGCG-BHQ1-3’) were also virus-specific. The 133	
  

fluorophores used do not produce overlapping spectra, so no color compensation 134	
  

was required. Viral RNA was reverse transcribed and quantified using the 135	
  

SuperScript III One-Step qRT-PCR system (Invitrogen, Carlsbad, CA) on 136	
  

a LightCycler 480 (Roche, Indianapolis, IN). Reverse transcription was carried 137	
  

out at 37°C for 15 min and then 50°C for 30 min followed by two minutes at 95°C 138	
  

and 50 cycles of amplification as follows: 95°C for 15 sec and 60°C for 1 min. 139	
  

The reaction mixture contained MgSO4 at a final concentration of 3.0 mM, 150 ng 140	
  

random primers (Promega, Madison, WI), with all 4 amplification primers at a 141	
  

concentration of 600 nM and both probes at a concentration of 100 nM. 142	
  

Genetic analyses. Sequence data were analyzed using CLC Genomics 143	
  

Workbench 5.5 (CLC bio, Aarhus, Denmark) and Geneious R5 (Biomatters, 144	
  

Auckland, New Zealand). Low quality (<Q25) and short reads (<100bp) were 145	
  

removed and the full genome sequences for each virus were acquired using de 146	
  

novo assembly. Due to the approximately 52% nucleotide sequence similarity 147	
  

between the genomes of SHFVkrc1 and SHFV-krc2, and the high frequency of 148	
  

co-infections in our animal cohort, we devised a method to minimize mapping of 149	
  

SHFV-krc1 reads to SHFV-krc2 (and vice versa) within a co-infected animal. 150	
  

Briefly, total reads from a co-infected animal were mapped to the SHFV-krc1 151	
  

consensus sequence generated from de novo assembly and “unmapped reads” 152	
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were collected, then mapped to the SHFV-krc2 consensus sequence obtained 153	
  

from de novo assembly. The resulting SHFV-krc2 consensus sequence was then 154	
  

used as the reference for mapping and collecting unmapped reads to map to the 155	
  

SHFV-krc1 consensus sequence generated from de novo assembly. This 156	
  

process was repeated until changes between the reference and the consensus 157	
  

sequences were not observed for either virus. Using this method, reads 158	
  

corresponding to SHFV-krc1 and SHFV-krc2 were reliably segregated in co-159	
  

infected animals, with less than 0.2% of SHFV-specific reads mapping to both 160	
  

viruses. The average coverage per genome was 5,654x (range 118-19,115x) for 161	
  

SHFV-krc1 variants and 2,264 (range 94-6,613x) for SHFV-krc2 variants. For 162	
  

intra-host genetic analysis, sequencing reads were mapped to the corresponding 163	
  

consensus sequence for each variant. Single nucleotide polymorphism (SNP) 164	
  

reports were generated in Geneious, with a minimum coverage threshold of 100 165	
  

reads and a minimum frequency threshold of five percent.  166	
  

Evolutionary analyses. The synonymous nucleotide diversity (πS) and 167	
  

the non-synonymous nucleotide diversity (πN) were estimated for each ORF 168	
  

individually from SNP reports generated by mapping sequencing reads to their 169	
  

corresponding consensus sequence. We estimated πS = ns/Ls and πN = nn/Ln, 170	
  

where ns is the mean number of pairwise synonymous differences; nn is the 171	
  

mean number of pairwise synonymous differences; Ls is the number of 172	
  

synonymous sites; and Ln is the number of nonsynymous sites. Ls and Ln were 173	
  

estimated by the method described in [19]. To compare viruses across different 174	
  

hosts, variant consensus sequences were aligned by the CLUSTAL algorithm in 175	
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MEGA 5.05 [20]. Estimating πS and πN separately for each ORF in each virus 176	
  

from co-infected animals, we used a factorial analysis of variance to test for main 177	
  

effects of the virus (SHFV-krc1 vs. SHFV-krc2) and the ORF, and for virus-by-178	
  

ORF interactions. In the case of πS, there were highly significant main effects of 179	
  

virus (F1, 459 = 41.31; p < 0.001) and of ORF (F13, 459 = 14.07; p < 0.001), but 180	
  

there was not a significant virus-by-ORF interaction (F13, 459 = 1.35; n.s.). In the 181	
  

case of πN, there were significant main effects of virus (F1, 459 = 4.42; p = 0.036) 182	
  

and of ORF (F13, 459 = 53.26; p < 0.001), and there was a highly significant virus-183	
  

by-ORF interaction (F13, 459 = 4.39; p < 0.001). Sliding window analysis involved 184	
  

estimating πS and πN in a sliding window of 9 codons, numbered according to the 185	
  

numbering in the sequence alignment of the first codon in the window. 186	
  

Layercake visualization. We developed a specialized visualization tool 187	
  

called LayerCake for this dataset. This tool allows visual comparison of variants 188	
  

for multiple individuals simultaneously, encoding sequences as bands of color, 189	
  

with redder sections of the band corresponding to regions with a higher 190	
  

proportion of polymorphic reads. Downloadable versions of the krc1 and krc2 191	
  

datasets are available, along with a generalized tutorial for interpreting 192	
  

LayerCake displays, at http://graphics.cs.wisc.edu/Vis/LayerCake/.  193	
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RESULTS 194	
  

Sample collection and infection frequency of SHFV-krc1 and SHFV-krc2 in 195	
  

Kibale red colobus. Blood samples were collected from 60 adult red colobus 196	
  

residing in the Kanyawara area of Kibale over a period of 2.5 years. These 197	
  

animals represent approximately half of a defined social group, but comprise a 198	
  

relatively small proportion of the total red colobus population in Kibale [21]. All 199	
  

animals appeared normal and healthy at the time of sampling. RNA was isolated 200	
  

from the blood plasma of each animal and “unbiased” deep sequencing was 201	
  

performed on an Illumina MiSeq machine as previously described [9,10]. De 202	
  

novo assembly and iterative mapping of sequencing reads yielded 52 near full-203	
  

length SHFV consensus sequences (GenBank accession numbers KC787607-204	
  

KC787658). Twenty-four animals (40.0%) were infected with SHFV-krc1, and 28 205	
  

animals (46.7%) were infected with SHFV-krc2. Twenty-one animals (35.0%) 206	
  

were co-infected with both SHFV-krc1 and SHFV-krc2 (Figure 2). 207	
  

Viral loads of SHFV-krc1 and SHFV-krc2 in the Kibale red colobus. To 208	
  

estimate the viral load of SHFV-krc1 and SHFV-krc2 in infected red colobus, a 209	
  

strain-specific qRT-PCR assay was designed to amplify highly conserved regions 210	
  

in ORF7 of the SHFV-krc1 and SHFV-krc2 genomes. This assay was used to 211	
  

assess the viral burden in cell-free plasma for each animal found to be positive 212	
  

by deep sequencing. SHFV-krc1 viremia was consistently high, averaging 213	
  

5.1x107 vRNA copies/ml plasma, (range: 1.5x106-1.9x108 copies/ml plasma) 214	
  

(Figure 3A). SHFV-krc2 loads were more varied (range: 3.4x104-4.1x107 215	
  

copies/ml) and significantly lower than SHFV-krc1 with an average plasma titer of 216	
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7.5x106 vRNA copies/ml plasma (p = 0.0001, two-tailed t-test). Although 217	
  

instances of mono-infection were scarce relative to co-infection, mono/co-218	
  

infection status did not impact the load of either virus to a statistically significant 219	
  

extent (mono- vs. co-infected: p = 0.063 for SHFV-krc1, p = 0.089 for SHFV-krc2, 220	
  

two-tailed t-test, Figure 3B,C).  221	
  

Consensus-level genetic diversity among SHFV-krc1 and SHFV-krc2 222	
  

variants. To quantify the genetic diversity of SHFV-krc1 and SHFV-krc2 within 223	
  

the red colobus population, we examined similarity among the 24 SHFV-krc1 and 224	
  

28 SHFV-krc2 variants by comparing the nucleotide consensus sequences of 225	
  

each viral variant (Figure 4). These consensus sequences represent the majority 226	
  

nucleotide base present at each position of the genome for the viral population 227	
  

within each host. Because RNA viruses often exist within a host as a highly 228	
  

heterogeneous population (i.e. “mutant swarm”), the consensus sequence may 229	
  

not actually be present in the within-host viral population [22,23]. Nevertheless, 230	
  

the construction of consensus sequences allowed us to compare the average 231	
  

viral population of each variant (i.e. inter-host diversity). For SHFV-krc1, percent 232	
  

pairwise nucleotide identity between variants ranged from 86.9%–99.5%. A 233	
  

highly related core group (SHFV-krc1 from red colobus 06, 28, 33, 22, 25, 34, 54, 234	
  

31, 40, 05, 56, 44, 08, 45, 01) with pairwise nucleotide identities ranging from 235	
  

94.5%–99.3% comprised 63% of the variants (Figure 4A). A distinct second 236	
  

group (SHFV-krc1 from red colobus 09, 30, 10, 18, 07, 60) with a slightly wider 237	
  

range of similarity (92.0%–99.5% pairwise nucleotide identity) made up an 238	
  

additional 21% of variants. A similar pattern, with two distinct groups, was 239	
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observed for SHFV-krc2 variants (range: 89.67%–99.48% pairwise nucleotide 240	
  

identity, Figure 4B). However, patterns of SHFV-krc1 genetic similarity among 241	
  

hosts were different from patterns of SHFV-krc2 similarity among hosts. (data not 242	
  

shown). Interestingly, SHFV-krc1 variants from red colobus 13 and 61 were 243	
  

highly dissimilar to all other SHFV-krc1 variants identified, with pairwise 244	
  

nucleotide identities ranging from 86.8%–88.7%.  245	
  

Within-host genetic diversity of SHFV-krc1 and SHFV-krc2. To 246	
  

examine the genetic diversity of SHFV-krc1 and SHFV-krc2 within individual 247	
  

monkeys, we calculated the non-synonymous and synonymous nucleotide 248	
  

diversity, πN and πS respectively, for each within-host viral population using deep 249	
  

sequencing reads from each viral variant. Comparing πN and πS from specific 250	
  

regions of a viral genome can reveal the mode of natural selection acting on a 251	
  

region. For example, πN < πS is indicative of negative selection acting to remove 252	
  

deleterious protein-coding mutations, while πN > πS is suggestive of positive 253	
  

selection acting to drive beneficial protein-coding mutations to fixation. We found 254	
  

that, overall, negative selection acting against deleterious non-synonymous 255	
  

mutations predominated for both SHFV-krc1 and SHFV-krc2. In SHFV-krc1, πS 256	
  

exceeded πN by a ratio of over 6:1, whereas in SHFV-krc2, πS exceeded πN by a 257	
  

ratio of nearly 5:1. Both πS and πN were significantly greater in SHFV-krc1 than in 258	
  

SHFV-krc2 (p = 0.002 and p = 0.021, paired t-test), indicating greater overall 259	
  

nucleotide diversity in SHFV-krc1 than in SHFV-krc2 (Figure 5). A positive 260	
  

correlation between viral load and both πS and πN was observed. However, mean 261	
  

πS and πN did not differ significantly between co-infected monkeys and those 262	
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infected with only SHFV-krc1 or SHFV-krc2 (data not shown).  263	
  

 The organization of ORFs in the genomes of SHFV-krc1 and SHFV-krc2 264	
  

was the same as described previously	
  (Figure 1) [9,10,17], so we used a factorial 265	
  

analysis of variance approach to investigate πS and πN in ORFs in both viruses. 266	
  

In general, 3’-proximal ORFs displayed more non-synonymous diversity than 5’-267	
  

proximal ORFs, suggesting that the proteins encoded by 5’-proximal ORFs may 268	
  

be more functionally constrained than those encoded by 3’-proximal ORFs. 269	
  

However, the extent to which underlying RNA structures may have affected this 270	
  

analysis is unknown [24-26]. ORF5 showed the highest mean πN in SHFV-krc1 271	
  

and among the highest in SHFV-krc2 (Figure 6). In the case of both SHFV-krc1 272	
  

and SHFV-krc2, a sliding window plot of 9 codons revealed peaks of πN 273	
  

corresponding to codons 1-46 and 64-100 of ORF5 (Figure 7A,B). The latter 274	
  

peak (codons 64-100) also involved high πS, suggesting a mutational hotspot. 275	
  

Interestingly, πN was substantially higher in ORF3 of SHFV-krc2 than of SHFV-276	
  

krc1 (Figure 6). Sliding window analysis revealed a substantial peak of πN 277	
  

between codons 141-173 of SHFV-krc2 ORF3 (Figure 7C) that greatly exceeded 278	
  

πS, suggesting strong positive selection in this region of SHFV-krc2. This peak of 279	
  

πN corresponded to a region of variable length rich in acidic residues. An 280	
  

analogous peak of πN in ORF3 of SHFV-krc1 was not found, although a unique 281	
  

peak of πN was identified between codons 50 and 68 (Figure 7D). Of note, a high 282	
  

degree of variability in predicted N-glycosylation [27] was associated with each 283	
  

instance of elevated πN in ORF3 and ORF5 for both SHFV-krc1 and SHFV-krc2. 284	
  

For peaks of πN found in regions of ORF3 and ORF5 that shared sequence with 285	
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an overlapping alternative ORF, sliding window plot analysis in the alternative 286	
  

ORFs revealed peaks of πS demonstrating that observed elevations in πN were 287	
  

ORF-specific, as expected [28,29] (data not shown).  288	
  

Unique patterns of inter- and intra-host variation can be visualized on a 289	
  

genome-wide scale for all SHFV-krc1 and SHFV-krc2 variants using our custom-290	
  

built LayerCake software: http://graphics.cs.wisc.edu/Vis/LayerCake/.	
   	
  291	
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DISCUSSION 292	
  

This study provides the first systematic analysis of SHFV genetic diversity in a 293	
  

population of wild non-human primates. Our findings show that SHFV-krc1 and 294	
  

SHFV-krc2 have a high frequency of infection in the red colobus population of 295	
  

Kibale, and that these viruses achieve high titers in the blood of infected 296	
  

monkeys. Our study also details, for the first time, the genetic diversity of SHFV-297	
  

krc1 and SHFV-krc2 both within and among infected hosts. We draw particular 298	
  

attention to the signatures of natural selection identified throughout the genomes 299	
  

of these viruses, with an emphasis on signatures of positive selection identified in 300	
  

ORFs 3 and 5.  301	
  

To date, primates from only two species – the red colobus and red-tailed 302	
  

guenon – have been found to harbor simian arteriviruses in the wild [9,10]. 303	
  

However, the origins and host-ranges of these viruses are not clear. Our findings 304	
  

support the hypothesis that simian arteriviruses are endemic to African OWMs 305	
  

and cause little to no clinical disease in these hosts. However, when introduced 306	
  

into Asian OWMs, these viruses may be lethal, as exemplified by SHFV-LVR	
  307	
  

[13,30]. This pattern of pathogenesis is similar to SIV [31] and, like SIV, the 308	
  

simian arteriviruses appear to be well host-adapted, which suggests an ancient 309	
  

evolutionary relationship between these viruses and their African OWM hosts. 310	
  

This is in contrast to the arterivirus PRRSV, which emerged suddenly in pig 311	
  

populations across the globe in the 1980’s	
  [32]. Taken together, this implies that 312	
  

the prevalence and diversity of the Arteriviridae, including the simian arterivirus 313	
  

group, may be greater than currently appreciated.  314	
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SHFV-krc1 and SHFV-krc2 display many biological properties associated 315	
  

with the potential for rapid evolution – a feature that is shared by many emergent 316	
  

RNA viruses. For example, high diversity at the population level (inter-host 317	
  

diversity) can facilitate speciation, and related yet distinct viruses can recombine 318	
  

[31,33]. High within-host diversity also enables a virus to escape the host 319	
  

immune response, alter tropism, and infect new host species [34,35]. In these 320	
  

contexts, high viral load increases the probability of transmission by “widening” 321	
  

the population bottleneck that often reduces the fitness of an RNA virus upon 322	
  

transmission [36-38]. Such features enhance the ability of a virus to adapt to 323	
  

changing environments and have been implicated in the ability of some viruses to 324	
  

transmit across species barriers [2]. Although the arteriviruses in general are 325	
  

considered to be highly specific for their hosts, we note that SHFV-LVR and 326	
  

related viruses have been transmitted between primate species from 327	
  

presumptive African primate hosts into Asian macaques on several occasions 328	
  

[11-14,30]. Recent work suggests that the capacity for SHFVs to infect multiple 329	
  

primate species is not unique to SHFV-LVR, as experimental infection of 330	
  

macaques with SHFV-krc1 resulted in viral replication and clinical disease 331	
  

(unpublished data). The biological properties of SHFV-krc1 and SHFV-krc2 in a 332	
  

natural host that we have identified herein may help explain the propensity of the 333	
  

SHFVs to infect primates of species other than their natural host. Future 334	
  

investigation of these viruses should provide further insight into the full extent of 335	
  

their cross-species transmission potential.  336	
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Our analysis shows that SHFV-krc1 and SHFV-krc2 are not merely highly 337	
  

divergent forms of the same virus, but in fact possess unique and distinct 338	
  

biological properties. Nucleotide diversity was consistently higher in SHFV-krc1 339	
  

than in SHFV-krc2. This is likely a result of the higher viral loads observed for 340	
  

SHFV-krc1, reflecting more extensive viral replication and a correspondingly 341	
  

higher rate of accumulation of within-host mutations [39]. This hypothesis is 342	
  

supported by positive correlations between viral load and both synonymous and 343	
  

non-synonymous nucleotide diversity (data not shown). Interestingly, viral load 344	
  

and nucleotide diversity for both SHFV-krc1 and SHFV-krc2 were not significantly 345	
  

impacted by the presence of the other virus (Figure 3). When viewed in light of 346	
  

the competitive exclusion principle [40] this finding suggests that the two viruses 347	
  

may occupy discrete niches within the red colobus host (e.g. tissue tropisms), 348	
  

possibly resulting in distinct aspects of infection that could contribute to the 349	
  

observed differences in infection frequency (Figure 2) and viral burden (Figure 3).  350	
  

The most significant difference in nucleotide diversity that we observed 351	
  

between SHFV-krc1 and SHFV-krc2 was found in ORF3 (Figures 6 and 7), which 352	
  

codes for the putative envelope glycoprotein GP3. GP3 of SHFV-krc1 and SHFV-353	
  

krc2 appears similar in topology to GP3 of other arteriviruses, with predicted N- 354	
  

and C-terminal membrane-spanning domains separated by a heavily 355	
  

glycosylated ectodomain. While the precise function of GP3 in the arterivirus life-356	
  

cycle remains elusive, GP3 is thought to be an important determinant of tissue 357	
  

tropism [41,42]. GP3 is also immunogenic [43,44] and glycans attached to the 358	
  

GP3 ectodomain may play a role in evasion of the humoral immune response 359	
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through the shielding neutralizing antibody epitopes [45]. It is possible that GP3 360	
  

has multiple functions, as GP3 of PRRSV and LDV have been found in both 361	
  

virion-associated and soluble secreted forms [46-50]. Our analysis revealed a 362	
  

distinct region of non-synonymous diversity suggestive of positive selection in 363	
  

ORF3 of SHFV-krc2 (codons 141-173) (Figure 7D). This region contained an 364	
  

unusually high density of acidic residues and multiple, variable putative N-365	
  

glycosylation sites. Although a similar region was not found in ORF3 of SHFV-366	
  

krc1, a unique peak of non-synonymous diversity was identified between codons 367	
  

50-68 of ORF3 in SHFV-krc1 that was also suggestive of positive selection. 368	
  

Finally, another difference between SHFV-krc1 and SHFV-krc2 was that no 369	
  

signal sequence cleavage site could be identified in GP3 of any SHFV-krc1 370	
  

variant, while a clear signal sequence cleavage site was found C-terminal to the 371	
  

first predicted transmembrane domain in GP3 of SHFV-krc2 [51]. The most likely 372	
  

explanation of this finding is that the signal sequence cleavage site of GP3 in 373	
  

SHFV-krc2 is not utilized, as has been shown for GP3 of EAV [43,49]. Although 374	
  

the functional significance of these differences between GP3 of SHFV-krc1 and 375	
  

GP3 of SHFV-krc2 is presently unclear, the potential effect of GP3 on the 376	
  

immune response and its putative role as a determinant of host cell tropism may 377	
  

help to explain why SHFV-krc2 mono-infections are twice as common as SHFV-378	
  

krc1 mono-infections (Figure 2), despite the significantly lower viral loads of 379	
  

SHFV-krc2 relative to SHFV-krc1 (Figure 3A).  380	
  

Despite the differences we observed between SHFV-krc1 and SHFV-krc2 381	
  

in ORF3, we found nearly identical patterns of non-synonymous and 382	
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synonymous nucleotide diversity in ORF5, which – by analogy to other 383	
  

arteriviruses – codes for the major envelope glycoprotein GP5	
  [17,52]. Two 384	
  

distinct peaks of non-synonymous diversity were found in the 5’-proximal region 385	
  

of ORF5, which corresponds to the protein’s predicted ectodomain (Figure 7). 386	
  

This region of GP5 contains the primary neutralizing antibody epitope of PRRSV, 387	
  

EAV, and LDV  [53-56], as well as an immunodominant “decoy” epitope in 388	
  

PRRSV that may serve to subvert neutralizing antibody responses [57]. These 389	
  

epitopes align closely with more 3’-proximal peak of non-synonymous diversity 390	
  

we identified in SHFV-krc1 and SHFV-krc2 (data not shown), suggesting that 391	
  

antibody pressure in the red colobus may select for escape mutations in SHFV-392	
  

krc1 and SHFV-krc2, resulting in the observed genetic diversity of this region.  393	
  

Glycans in this region of the GP5 ectodomain – in addition to aiding viral 394	
  

attachment through the binding of host molecules (e.g. sialoadhesin for PRRSV) 395	
  

[58] – are also implicated in evasion of humoral immune responses by 396	
  

arteriviruses. Pigs infected with PRRSV variants containing partially de-397	
  

glycosylated GP5 mount significantly more robust neutralizing antibody 398	
  

responses [45,59]. A similar observation was made for LDV in mice, and the 399	
  

abolishment of N-glycosylation sites in GP5 had the additional effect of altering 400	
  

the tissue tropism of these “neurotropic” LDV strains [60,61]. Putative N-401	
  

glycosylation sites were variably found in association with each peak of non-402	
  

synonymous nucleotide diversity identified ORF5/GP5 of both SHFV-krc1 and 403	
  

SHFV-krc2 (Figure 7). However, in contrast to the GP5 ectodomains of PRRSV, 404	
  

EAV, and LDV, a highly conserved hydrophobic stretch of approximately thirty 405	
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amino acids separated these two regions of diversity, and was predicted to form 406	
  

an additional transmembrane domain in both SHFV-krc1 and SHFV-krc2 [62-64]. 407	
  

A domain that spans the membrane once in this region would place the N-408	
  

terminal portion of GP5 – including the region corresponding to the more 5’-409	
  

proximal peak of non-synonymous nucleotide diversity – within the virion. While 410	
  

this possibility cannot be formally excluded, the high sequence diversity of this 411	
  

region – including multiple putative N-glycosylation sites – suggests that this 412	
  

scenario is unlikely. Nevertheless, it is conceivable that this region interacts 413	
  

extensively with the membrane of the virion and its functional significance, 414	
  

although obscure, is highlighted by its conservation across all other known 415	
  

simian arteriviruses including SHFV-LVR, SHFV-krtg1, and SHFV-krtg2 (data not 416	
  

shown).  417	
  

The findings presented in this study show that SHFV variants contain high 418	
  

genetic diversity within their hosts. This presents the possibility that SHFV-krc1 419	
  

or SHFV-krc2 could evolve rapidly within the red colobus, perhaps gaining 420	
  

virulence, similar to the recent emergence of highly pathogenic PRRSV in pigs in 421	
  

China and Southeast Asia [65,66]. As the red colobus population of Kibale faces 422	
  

the stressors of deforestation and a changing climate, monitoring these infections 423	
  

may be important to the conservation of this already endangered wild primate 424	
  

[67].   425	
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FIGURE LEGENDS 652	
  

 653	
  

Figure 1. Schematic of the SHFV genome. (A) ORFs as they are referred to in 654	
  

Lauck et al., 2011 [9], labeled sequentially 5’-3’: ORF1a-ORF9. Asterisks denote 655	
  

ORFs identified in SHFV-krc1 and SHFV-krc2 not reported in Lauck et al., 2011 656	
  

[9]. (B) ORFs as they are named in Snijder et al., 2013 [17], labeled 5’-3’: 657	
  

ORF1a-ORF7, with duplicated ORFs designated by a “prime” (e.g. ORF2a’). 658	
  

Expression products are given in bold.  659	
  

 660	
  

Figure 2. Infection of the Kibale red colobus with SHFV-krc1 and SHFV-661	
  

krc2. SHFV-krc1 (green) and SHFV-krc2 (purple) infections were identified by 662	
  

“unbiased” deep sequencing and confirmed by strain-specific qRT-PCR.  663	
  

 664	
  

Figure 3. Viral loads of SHFV-krc1 and SHFV-krc2 in the Kibale red colobus. 665	
  

Comparison of SHFV-krc1 (green) and SHFV-krc2 (purple) viral loads from all 666	
  

animals positive for either virus (A) and viral loads from mono-infections vs. co-667	
  

infections of SHFV-krc1 (B) and SHFV-krc2 (C). RNA was isolated from blood 668	
  

plasma and quantitative RT-PCR was performed using strain-specific primers 669	
  

and probes designed from deep sequencing data. Statistical significance was 670	
  

assessed using a two-tailed t-test performed on log-transformed values (CI = 671	
  

95%).  672	
  

 673	
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Figure 4. Pairwise comparison of nucleotide identity among variants of 674	
  

SHFV-krc1 and SHFV-krc2 from Kibale red colobus (RC). Full coding 675	
  

sequences for each isolate were aligned using CLC Genomics Workbench. 676	
  

Numbers show percent nucleotide identity between two variants within (A) SHFV-677	
  

krc1 or (B) SHFV-krc2. Colors highlight similarity, with red representing the most 678	
  

similar sequences and yellow representing sequences with the lowest degree of 679	
  

nucleotide identity. The same color scale was used for (A) and (B).  680	
  

 681	
  

Figure 5. Overall nucleotide diversity of SHFV-krc1 and SHFV-krc2. Mean (± 682	
  

S.E.) πS (A), πN (B), and πN/πS (C) in monkeys infected with SHFV-krc1 (green) 683	
  

and SHFV-krc2 (purple). Paired t-tests were performed to compare mean values 684	
  

between SHFV-krc1 and SHFV-krc2. 685	
  

 686	
  

Figure 6. Nucleotide diversity SHFV-krc1 and SHFV-krc2 ORFs. Interaction 687	
  

graphs comparing mean πS (A) and πN (B) in ORFs from SHFV-krc1 (green) and 688	
  

SHFV-krc2 (purple). In the case of πN there was a significant ORF-by-virus 689	
  

interaction (F13, 459 = 4.39; p < 0.001). Comparison of mean πs (blue) to πN 690	
  

(red) within ORFs of SHFV-krc1 (C) and SHFV-krc2 (D) revealed substantial 691	
  

differences among ORFs within each virus. 692	
  

 693	
  

Figure 7. Nucleotide diversity across ORF5 and ORF7 of SHFV-krc1 and 694	
  

SHFV-krc2. Mean πS (blue) and πN (red) in sliding windows of 9 codons across 695	
  

the coding region of ORF5 (A,B) and ORF3 (C,D). Overlapping ORFs are shown 696	
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at the bottom. Grey boxes represent predicted transmembrane domains, with 697	
  

striped grey boxes representing a hydrophobic region unique to the SHFVs. 698	
  

Green lines depict putative sites of N-glycosylation, with dashed green lines 699	
  

showing sites that are variably glycosylated. Yellow boxes show predicted signal 700	
  

peptide cleavage sites that vary in location in GP5 of SHFV-krc1 and SHFV-krc2 701	
  

and were not found in GP3 of SHFV-krc1. The purple box corresponds to the 702	
  

unique region of highly variable acidic residues found only in ORF3 of SHFV-703	
  

krc2. 704	
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C. D.ORF3 of SHFV-krc1 ORF3 of SHFV-krc2
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A. B.ORF5 of SHFV-krc1 ORF5 of SHFV-krc2
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