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ABSTRACT12

Predicting the future evolutionary state of a population is a primary goal of evolutionary13

biology. One can differentiate between forward and backward predictability, where forward14

predictability is the probability of the same adaptive outcome occurring in independent15

evolutionary trials, and backward predictability is the likelihood of a particular adaptive16

path given the knowledge of the starting and final states. Most studies of evolutionary17

predictability assume that alleles along an adaptive walk fix in succession with individual18

adaptive mutations occurring in monomorphic populations. However, in nature, adaptation19

generally occurs within polymorphic populations, and there are a number of mechanisms20

by which polymorphisms can be stably maintained by natural selection. Here we21

investigate the predictability of evolution in monomorphic and polymorphic situations by22

studying adaptive walks in diploid populations using Fisher’s geometric model, which has23

been previously found to generate balanced polymorphisms through overdominant24

mutations. We show that overdominant mutations cause a decrease in forward25

predictability and an increase in backward predictability relative to diploid walks lacking26

balanced states. We also show that in the presence of balanced polymorphisms, backward27

predictability analysis can lead to counterintuitive outcomes such as reaching different final28

adapted population states depending on the order in which mutations are introduced and29

cases where the true adaptive trajectory appears inviable. As stable polymorphisms can be30

generated in both haploid and diploid natural populations through a number of31

mechanisms, we argue that natural populations may contain complex evolutionary histories32

that may not be easily inferred without historical sampling.33
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INTRODUCTION34

Predicting evolution is one of the fundamental challenges of evolutionary biology (reviewed35

in de Visser and Krug (2014)). This question became particularly prominent with36

Gould’s famous thought-experiment on “replaying the tape of life” (Gould, 1990). Gould37

wondered whether we would regenerate the observed evolutionary history of the world if we38

reset our evolutionary history to any point in the past and let evolution retake its course39

from there. More generally, we can ask whether it is possible to predict the path or the40

final destination of the evolutionary process from a given starting point. It is also possible,41

however, to ask whether we can reconstruct the true evolutionary trajectory given the final42

adapted state (Weinreich et al., 2006). This distinction between types of predictability is43

rarely made (however see Nourmohammad et al. (2013) and Szendro et al. (2013)), so44

we formalize the methods for studying predictability and utilize these distinctions to study45

the impact of polymorphism on the predictability of evolution.46

Forward predictability of evolution: We define forward predictability as the47

probability of observing a particular future evolutionary outcome from a known starting48

state. Previous experimental evolution studies have generally (but not always) focused on49

the forward predictability of evolution. This type of analysis can be done at a number of50

levels, including the predictability of overall fitness changes, phenotypic shifts and different51

levels of genotypic changes (pathways, genes, and individual mutations).52

For example, Ferea et al. (1999), Cooper et al. (2003) and Fong et al. (2005) evolved53

independent replicates of microbes and observed similar changes in gene expression and54

growth rate in the evolved clones. A large study of 145 parallel long-term experimental55

evolutions with Escherichia coli grown at elevated temperature showed that the same56

genes and pathways were repeatedly targeted for mutations in independent populations57

(Tenaillon et al., 2012) as did a study of 40 replicate Saccharomyces cerevisiae batch58
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culture evolutions (Lang et al., 2013) and a study that sequenced clones from 10 replicate59

evolutions for each of 13 different genetic backgrounds (Kryazhimskiy et al., 2014).60

Tenaillon et al. (2012) also observed a high degree of parallel evolution at the level of61

individual nucleotides, but nucleotide level parallelism was rarely observed by Lang et al.62

(2013). Herron and Doebeli (2013) evolved E. coli under multiple carbon sources and63

repeatedly observed the evolution of two distinct ecotypes with differential ability to grow64

on each carbon source. By sequencing independent replicate clones of both ecotypes, they65

found the same genes, and sometimes the same exact mutations invading these replicate66

populations and differentiating the ecotypes. These studies suggest that evolution is indeed67

forward predictable to a surprising degree.68

Repeated evolution has been observed at both the genetic and morphological levels in69

natural systems as well (reviewed in Stern (2013)). Kvitek et al. (2008) showed that70

highly divergent yeast strains isolated from oak trees had similar growth rates across a71

panel of diverse growth conditions. Studies of Anolis lizards in the Caribbean show72

repeated independent adaptive radiations into similar niches across the islands (Losos,73

1998). In addition, a study of the adaptive radiation of cichlid fish in Lake Tanganyika74

showed convergent morphological evolution when the skeletal morphology of the various75

species was compared to their phylogeny (Muschick et al., 2012).76

Backward predictability of evolution: In addition to Gould’s thought-experiment, one77

can study predictability in a historical manner. Given the current state, we can try to78

predict the ancestral state or the evolutionary path that resulted in the current state of the79

study system. We call this backward predictability, as it requires us to look backward in80

time. For example, one can try to predict exactly how corn or rice became domesticated81

from one or more wild ancestors (Matsuoka et al., 2002; Molina et al., 2011), identify82

the ancestral species that gave rise to Darwin’s Finches (Darwin, 1872; Sato et al., 2001),83
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or reconstruct the ancestral state of a particular protein (Ortlund et al., 2007).84

Alternatively, if we already know the ancestral state, we can try to predict the particular85

order of mutations or phenotypic states that led to the evolution of the current state.86

Weinreich et al. (2006) conducted a seminal study of backward predictability in this87

sense, using a combinatorially complete reverse genetic study design pioneered by88

Malcolm et al. (1990). Weinreich et al. (2006) reconstructed every possible89

combination of five mutations in the beta-lactamase gene in E. coli which are known to90

lead to high levels of resistance to the drug rifampicin. They then assayed each genotype’s91

resistance to the drug, which they used as a proxy for fitness. Using this data, they92

determined the fitness changes involved in every step of each of the 5! = 120 possible93

mutational paths that converts the wild-type genotype to the resistant five-mutant94

genotype. A mutational path was deemed viable if fitness monotonically increased with95

every step, that is, there were no mutations along the path that decreased resistance to the96

drug.97

Weinreich et al. (2006) found that only 18 of the 120 possible paths were viable,98

suggesting high backward predictability of evolution. In contrast, Khan et al. (2011)99

performed an analysis of five adaptive mutations from experimentally evolved bacterial100

lineages using identical methodology and found that a majority of the orders were viable.101

Finally, Franke et al. (2011) studied backward predictability in all subsets of two to six102

mutations in an empirical eight-locus system and found that the number of viable paths103

varied widely for a given subset size. For example, they observed both zero and nine viable104

paths (out of 24 possible) in different four-locus subsets. The varying degrees of backward105

predictability found in these different systems does not yet allow us to draw general106

conclusions, and the laborious nature of the experiments makes it challenging to study107

more than a few mutations at a time. In addition, without knowing the true order in which108
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the mutations arose in the population, it is unclear how accurate backward predictability109

analysis actually is.110

Predictability in Fisher’s Geometric Model: Overall, there seems to be no consensus111

on whether evolution is backward predictable using the method of Weinreich et al.112

(2006). It is also unclear how forward and backward predictability are correlated with each113

other. In principle, one would want to conduct forward evolution and then conduct114

backward predictability analysis on the same system to understand their relationship.115

However such studies would be extremely laborious, and given the disparate answers116

coming out of different experimental systems, a large number of independent experiments117

in many systems would need to be conducted to give a convincing answer.118

Another difficulty in experimental evolution studies of predictability are practical119

limitations in sampling adaptive mutations. As most studies can only afford to sample a120

few adapted individuals from a given experiment, mutations must be at high frequency to121

be observed and a common assumption is that each of these mutations fixed in the122

population in succession (Gillespie, 1983, 1984; Orr, 2002; Weinreich et al., 2006;123

Khan et al., 2011; Franke et al., 2011). However, we know that mutations can be124

maintained in a polymorphic state by a number of mechanisms. These include negative125

frequency-dependent selection (Levin et al., 1988; Iserbyt et al., 2013), spatial and126

temporal fluctuations in selection (Rainey and Travisano, 1998; Kasumovic et al.,127

2008; Saltz and Nuzhdin, 2014) and heterozygote advantage (also called overdominance,128

Takahata and Nei (1990)). Polymorphisms can also be present in an unstable form129

through clonal interference (Desai and Fisher, 2007; Herron and Doebeli, 2013;130

Kvitek and Sherlock, 2013; Lang et al., 2013). The presence of functionally131

consequential polymorphisms in a population can in principle significantly alter132

predictability analysis as the selective effect of a new mutation may be dependent on other133
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alleles segregating in the population (fitness epistasis). Many of these polymorphisms are134

either lost by the end of the experiment or are not observed in the sampled adapted135

individuals, leading to incorrect inferences of predictability. Additional complications can136

arise when estimating predictability as mutations can occur in multiple backgrounds in a137

given population, so the likelihood of each mutation occurring in a particular background138

also has to be taken into account, as well as any epistatic interactions the mutation has139

with the rest of that background.140

Due to the challenges of isolating sufficient numbers of independent adaptive mutations141

from experimental populations to study predictability, we utilize a simulation-based142

approach to study the impact of polymorphisms on forward and backward predictability.143

We employ Fisher’s geometric model (FGM, Fisher (1930)), which is a well-studied (Orr,144

1999, 2005) phenotypic model that treats individuals and alleles as a phenotype that is a145

vector in coordinate space with a fitness that is determined by the distance of the146

individual’s phenotype from a predefined optimal phenotype using a gaussian function147

(Figure 1a). Sellis et al. (2011) showed that adaptive mutations in diploid FGM148

simulations are frequently overdominant if the mutations are sufficiently large in phenotypic149

space, resulting in balanced polymorphisms. Such overdominant mutations are stable but150

can be driven out of the population by subsequent adaptive mutations. As we are151

interested in the interaction between balanced polymorphic states and the predictability of152

evolution, we select the distribution of mutational effects such that some evolutionary153

trajectories contain overdominant mutations, generating stable polymorphisms, and others154

do not. We then compare both types of trajectories to understand how polymorphisms155

influence predictability. We conclude that the presence of polymorphic states has a156

substantial qualitative effect on the predictability of evolution, such that at least in this157

model, forward and backward predictability are inversely correlated.158
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METHODS159

Simulations: We model adaptive walks in diploid populations with Wright-Fisher160

simulations using Fisher’s geometric model (FGM) as in Sellis et al. (2011). In FGM,161

alleles are represented as a vector in n-dimensional phenotype space (Figure 1a). The162

simulations use code modified from Sellis et al. to allow for more than 2 dimensions. We163

perform 10,000 replicate simulations with population size N = 5, 000 for 10,000164

generations. We explore two models, one with two dimensions and one with 25 dimensions.165

We partition our adaptive walks into those that do and those that do not contain166

overdominant mutations to study the impact of balanced states on predictability. For the167

remainder of our analysis, we identify the most frequent allele in each simulated population168

at the end of 10,000 generations of evolution and study the mutations present on that169

allele. We limit our analysis to studying the first five mutations of each adaptive walk and170

ignore simulations with fewer than 5 mutations in order to control for the length of the171

adaptive walk when studying predictability.172

Forward Predictability Analysis: We calculate the forward predictability of the173

adaptive trajectory using two metrics. In both of these metrics, we only consider174

homozygous phenotypes. Our first metric, maximum pairwise distance, considers pairs of175

adaptive walks. We compute the maximum of the phenotypic distances between the176

observed single mutant phenotypes of the two adaptive walks, the double mutant177

phenotypes, the triple mutant phenotypes etc. Our second metric measures the maximal178

deviation from the optimal trajectory. For each adaptive walk, we compute the maximal179

phenotypic distance of any encountered (homozygous) phenotype from the line segment180

connecting the ancestral phenotype and the optimum.181

Backward Predictability Analysis: We compute backward predictability on adaptive182

walks of exactly five mutations. We calculate the probability of all possible mutational183
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orders for the given set of mutations in a manner similar to Weinreich et al. (2006), but184

generalized to allow balanced states as the experimental protocol of Weinreich et al.185

(2006) assumes that every mutation along each mutational order fixes in succession. We186

summarize the set of possible mutational orders for a given set of mutations through the187

effective number of trajectories statistic, which we define as188

1∑
p2189

where p is the probability of each mutational order possible for a given set of mutations. If190

no mutational order is viable (has nonzero probability), the effective number of trajectories191

is defined to be 0. Please see the Supplementary Methods for full methodological details.192
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RESULTS193

We explore the predictability of evolution in the framework of Fisher’s geometric model194

(FGM) of adaptation. In FGM, alleles are represented as vectors in coordinate space, with195

individuals having a phenotype that is the average of the phenotypes of their constituent196

alleles. Mutations are vectors that modify the phenotype of an allele, and fitness is a197

guassian function of the distance of the individual’s phenotype from the optimal phenotype198

(which we define as the origin).199

In order to focus on the effect of polymorphic states on the predictability of evolution, we200

choose a parameter regime that generates simulations both with and without overdominant201

mutations after a number of trial simulations with various parameter values. We perform202

10,000 replicate simulations of adaptation under FGM in diploids with N = 5000203

individuals. Mutational magnitudes are drawn from an exponential distribution with mean204

= 1
2

and the population is initiated at two units from the optimum. The mutation rate is205

5 ∗ 10−6, which results in a mutation-limited regime (significantly less than one mutation206

per generation as 2 ∗N ∗ µ = 0.05), in order to minimize the generation of polymorphic207

states by clonal interference so that we can focus on only those polymorphic states208

generated by overdominant mutations.209

We conduct our simulations using an FGM of two dimensions, and show that our210

qualitative results also hold at 25 dimensions. In the 25 dimension regime, we need to211

rescale our mutational magnitude mean to 5 in order to obtain a sufficient number of walks212

with five mutations over our 10,000 generation simulations for statistical analysis. For all213

of our statistical analyses, we consider only those mutations that are present on the most214

frequent allele at generation 10,000. Such mutations are typically the only ones available215

for analysis in a natural system. We additionally limit our analysis to studying the first216

five mutations of each adaptive walk, and ignore simulations with fewer than five mutations217
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in order to compare adaptive walks of equal lengths. We partition the resulting218

five-mutation adaptive walks into those that do (n=4975, 1548 in simulations with two and219

25 dimensions, respectively) and do not (n=1251, 10) contain overdominant mutations to220

study the impact of balanced polymorphisms on the predictability of evolution. The221

presence of overdominant mutations in an observed five-mutation adaptive trajectory is222

detected by the observation of a set of alleles during the FGM simulation that are capable223

of being maintained as a balanced polymorphism (Kimura, 1956). For details, please see224

the Supplementary Methods.225

Predictability of Adaptive Walks: We first consider the forward predictability of226

phenotypic paths, which we define as the tendency of independent adaptive walks to227

explore similar portions of phenotypic space. The ability of adaptive walks with228

overdominant mutations to explore a larger phenotypic space compared to walks without229

overdominance (α-dip vs γ, Figure 1a) should lead to lower predictability of the phenotypic230

intermediates along the adaptive walk, which is confirmed by visual inspection of our231

simulations (Figure 1b,c) and is consistent with the findings of Sellis et al. (2011).232

We quantify forward predictability by measuring the distribution of maximal phenotypic233

distances between pairs of independent adaptive trajectories. Pairs of walks with234

overdominant states are, on average, 40% further apart than walks without overdominant235

mutations and are therefore less forward predictable (Figure 2, Kolmogorov-Smirnov test236

p� 10−10). We also measure forward predictability as the maximal phenotypic distance of237

each observed trajectory from the optimal trajectory - the vector from the ancestral238

phenotype to the optimal phenotype. We observe that the presence of overdominant239

mutations in a walk increases the average distance from the optimal trajectory by 5%240

(Figure 3, Kolmogorov-Smirnov test p� 10−10), again suggesting that overdominant241

mutations decrease forward predictability.242
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We then study backward predictability in a manner similar to Weinreich et al. (2006).243

As before, we limit our analysis to adaptive walks of exactly five mutations, which is244

comparable to many recent experimental studies of backward predictability (Weinreich245

et al., 2006; Khan et al., 2011; Franke et al., 2011). Backward predictability analysis246

requires knowledge of the five mutations that occurred during the FGM simulations and247

computes the likelihood of every possible order of those five mutations in generating the248

observed adapted five-mutation allele (e.g. see Weinreich et al. (2006) Figure 2). In249

order to conduct this analysis, we compute the probability of every possible path to the250

five-mutant state by successively introducing each of the five mutations into the population251

and assessing the probability of each of these mutations to successfully invade the252

population (see Supplementary Methods). Although we artificially constrain the available253

phenotypes to only those generated by combinations of the five mutations under254

consideration, this analysis is a model for studying predictability in situations where there255

are only a few possible adaptive mutations, such as the drug resistance mutations used by256

Weinreich et al. We compute the effective number of adaptive trajectories for each257

adaptive walk, with a higher number suggestive of a lower backward predictability.258

The results of our backward predictability analysis are shown in Figure 4. We find that in259

contrast to forward predictability, overdominant states decrease the effective number of260

paths (and thus increase backward predictability) in a walk by 30%, on average261

(Kolmogorov-Smirnov test p� 10−10). In other words, conditional on reaching a particular262

five-mutant state, it is more probable that independent trials of a walk that experienced at263

least one overdominant state will use the same mutational order in repeated trials relative264

to a walk without overdominant states. We also utilize the mean path divergence of265

Lobkovsky et al. (2011) to study backward predictability and find that overdominant266

states resulted in walks that were 10% less divergent (and thus more backward267

predictable), on average (Kolmogorov-Smirnov test p� 10−10).268
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Multiple End States: In addition to studying the probability of a given mutational order269

in our backward predictability analysis, we also study the adapted population state that270

results from each viable mutation order. In particular, we observe that when mutations are271

introduced in different orders, the population encounters different intermediate alleles,272

resulting in instances where the final adapted five-mutant allele can balance against273

different intermediate alleles depending on the order in which the mutations were274

introduced into the population. We also observe instances where walks that did not275

experience balanced states in the FGM simulations generate balanced states when276

introduced in a different order.277

We find that 53% of all walks have at least two different end population states containing278

the final adapted allele, with a maximum of 19 different population states for a single set of279

five mutations. We also find that the presence of overdominant mutations in the FGM280

simulation has a significant effect on whether there are multiple end states observed. The281

presence of an overdominant mutation in the observed walk increases the frequency of282

multiple end states from 30% to 60%. Our results suggest that adaptation occurring in the283

same genetic background, in response to the same selection pressure and using the same284

mutations, can result in significantly different final population states depending on the285

historical order in which the adaptive mutations occurred.286

Qualitative categorization with regard to backward predictability: We analyze287

our backward predictability results to discern qualitative categorizations of our simulations.288

We find four broad categorizations of simulations: 1) simulations whose backward289

predictability reconstructions of the five-mutant allele by introducing the mutations in the290

order observed in the FGM simulation generate no balanced states, 2) those291

reconstructions that do generate balanced states, 3) reconstructions where the order of292

mutations that was observed in the simulation was impossible to reconstruct due to293
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deleterious intermediate states during the reconstructions and 4) reconstructions where294

every possible order of mutations was impossible due to deleterious intermediate states295

(which is a subset of category 3).296

We observe 2326, 3898, 89 and 5 simulations in each of these four categories, respectively.297

We can further separate these categories by conditioning on our original definitions of298

whether or not a simulation contained an overdominant intermediate state (i.e. whether299

there was a set of alleles that could be maintained in a stable balanced state at any point300

during the FGM simulation before the 5-mutant state reached 5% frequency). We find301

1187, 62, 2 and 0 simulations in each of these four categories, respectively, among the302

simulations that we had previously identified as not containing overdominant intermediate303

states while we observe 1139, 3836, 87 and 5 simulations in each of these four categories,304

respectively, among simulations that we had previously identified as containing305

overdominant intermediate states.306

The presence of backward predictability reconstructions where the observed order (and in a307

few cases, every order) of mutations is impossible is surprising. We hypothesize that this is308

due to the presence of adaptive alleles that are generated and stably maintained during a309

walk that are transient and do not survive until the end of the simulation. We call these310

“hidden alleles”, as they are hidden from almost all modern experimental studies of311

adaptation. Lack of knowledge of hidden alleles appear to decrease the computed312

probability of the true adaptive path observed in the FGM simulations, and in extreme313

cases, can make the true path impossible to reconstruct. Visual inspection of adaptive314

trajectories that are unable to be successfully reconstructed confirms this intuition (Figure315

5). Backward predictability reconstructions that incorporate all mutations present at ≥ 1%316

frequency at any point in the simulation, regardless of whether the mutation was present317

on the allele sampled at the end of the simulation, can successfully reconstruct the318
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observed adaptive trajectory of this previously impossible evolutionary outcome,319

confirming the necessity of hidden alleles for the viability of the observed adaptive320

trajectory in these instances.321

We then compare the forward and backward predictability metrics described above on the322

different categories of simulations. In particular, we compare the simulations that were323

initially defined as not containing overdominant states at any point to those that did not324

have balanced states in the backward predictability analysis but did have balanced states325

during the FGM simulation. We find no significant difference between these sets of326

simulations by any of our predictability metrics (maximum pairwise distance, maximum327

distance from optimal trajectory and effective number of paths Kolmogorov-Smirnov test328

p > 0.05). This result suggests that the signal in our predictability metrics is being driven329

by the presence of balanced states between intermediate alleles along the adaptive330

trajectory to the five-mutant allele rather than a general feature of observing balanced331

states in our simulations as a whole.332

High Dimensionality: In our implementation of Fisher’s Model, balanced states arise333

when mutations are overdominant. The presence of additional phenotypic dimensions,334

which seems realistically plausible from observed rates of pleiotropy (Dudley et al., 2005;335

Albert et al., 2008), increases the frequency of overdominant mutations (Sellis et al.,336

2011). However, this concordantly decreases the fitness advantage of the average new337

beneficial mutation, decreasing the number of adaptive mutations that successfully invade338

the population over our 10,000 generation FGM simulations. To study the impact of high339

dimensional landscapes on predictability, we conducted simulations using 25 dimensions340

with a mean mutation size of 5. The increase in mean mutation size relative to our original341

two dimensional simulations is necessary to generate a sufficient number of walks containing342

at least 5 mutations within 10,000 generations. We again partitioned the simulations into343
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those with (n = 1548) and without (n = 10) overdominant mutations at any point of the344

FGM simulation before the time when the five-mutant allele reached 5% frequency.345

We observe the same qualitative results in 25 dimensions as in 2 dimensions (see346

Supplementary Figures 1-4). In general, it appears that our conclusions about347

predictability of adaptive walks do not depend on the dimensionality of the system, and348

only on the presence of overdominant mutations in the adaptive walk.349
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DISCUSSION350

In this study, we explored the predictability of evolution using Fisher’s geometric model.351

We distinguished between forward and backward predictability, where forward352

predictability measures the likelihood of the same or a similar adaptive trajectory353

occurring in independent evolutions, while backward predictability measures the likelihood354

of a particular order of adaptive mutations given the ultimate adapted state. We knew355

from prior work that diploids frequently generate overdominant mutations under Fisher’s356

geometric model (Sellis et al., 2011), so we studied predictability using walks with and357

without overdominant mutations to understand the impact of balanced polymorphisms on358

predictability.359

We found that simulations without overdominant mutations are more forward predictable360

than simulations with overdominance, while the reverse is true for backward predictability.361

The anti-correlation between forward and backward predictability can be intuitively362

understood by considering the the nature of adaptation in Fisher’s geometric model. In363

walks without overdominant mutations, mutations are confined to within γ (Figure 1a),364

leading to high forward predictability. There is minimal opportunity for deviation from the365

optimal trajectory, and most of the adaptive mutations that occur during these walks have366

similar direction vectors to the optimal trajectory. Therefore, regardless of the order of367

mutations, each step will move the population closer to the optimum, making most of the368

trajectories viable, and resulting in low backward predictability. The reverse is true in369

walks with overdominant mutations, which explore a much larger portion of phenotypic370

space (αdip). Overdominant mutations tend to overshoot the optimum and are frequently371

followed by compensatory mutations. The larger amount of phenotypic space explored372

generates lower forward predictability, while the high frequency of compensatory mutations,373

and thus the importance of the order in which the mutations are introduced, results in high374

backward predictability. While Fisher’s geometric model is a useful tool to consider375
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adaptation under phenotypic stabilizing selection, further work is required to determine the376

extent to which this anti-correlation is generalizable to biological systems. Nevertheless,377

the anti-correlation we observe between forward and backward predictability highlights the378

importance of distinguishing between types of predictability in future studies.379

In natural populations, stable polymorphisms can be due to overdominance or other types380

of balancing selection, such as negative frequency dependent selection (Levin et al., 1988;381

Iserbyt et al., 2013), and spatially or temporally variable selection (Rainey and382

Travisano, 1998; Kasumovic et al., 2008; Saltz and Nuzhdin, 2014). Transient383

functional polymorphisms at intermediate frequencies can also be generated via clonal384

interference (Desai and Fisher, 2007; Herron and Doebeli, 2013; Kvitek and385

Sherlock, 2013; Lang et al., 2013). Both frequency dependent selection and clonal386

interference can occur in both haploid and diploid populations. Our work shows that the387

presence of polymorphisms in the population, regardless of source, significantly complicates388

analysis of adaptive trajectories, and these complications must be considered in all natural389

systems.390

One such complication is the existence of simultaneous mutational lineages, which can391

result in hidden alleles (i.e. alleles that are not present at the end of the evolution) and392

transient population states that nevertheless significantly impact the future course of393

evolution. Ignoring hidden alleles can significantly modify the inferred backward394

predictability, and in extreme cases, can incorrectly suggest that the true order of395

mutations is impossible. Different orders of mutations can also generate different sets of396

heterozygous genotypes and different end population states, requiring the consideration of397

the state of the entire adapted population rather than the presence of a particular adapted398

allele.399
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Polymorphic states also drastically increase the number of possible adaptive paths. In400

systems where adaptation proceeds through sequential fixation, one only needs to consider401

the fitness of the 2n possible genotypes relative to the ancestral background for an402

n-mutation system. This is the methodology used in the experimental backward403

predictability studies of Weinreich et al. (2006), Khan et al. (2011) and Franke et al.404

(2011). However, in regimes where polymorphic states are frequently generated, the fitness405

of an invading mutation can vary depending on the alleles already present in the406

population. Within each adaptive trajectory, every mutation along the trajectory needs to407

be introduced into the prior population at low frequency on every available allele and408

tracked until the frequency of the new mutation has been stabilized in order to establish409

that the mutation is truly beneficial. Such a study would be extremely laborious, and to410

our knowledge, has never been conducted in any system.411

Experimental Implications: In an experimental setting, high forward predictability412

means it is likely that the same set of mutations will be generated in independent adaptive413

walks, which make the probabilities generated through backward predictability analysis414

meaningful for predicting future events. This can occur by either a small mutational target415

size such as mutations that cause resistance to drugs, or a large mutational input into the416

population which makes rare but extremely beneficial mutations dominate the adaptive417

process (e.g. Desai and Fisher (2007); Kvitek and Sherlock (2011); Gerstein et al.418

(2012); Pennings (2012)). A study in FGM also suggests that a multi-locus FGM where419

each locus only influences a subset of the independent phenotypic dimensions (restricted420

pleiotropy) also promotes forward predictability, which the authors call parallel evolution421

(Chevin et al., 2010). Despite the large number of replicates required to achieve statistical422

significance, experimentally determining forward predictability has been shown to be423

feasible.424
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On the other hand, the possibility of hidden alleles makes accurate estimates of backward425

predictability impossible in both natural and artificial experimental systems. Since we do426

not have access to hidden alleles from natural populations, it is impossible to accurately427

compute the backward predictability of the adaptive walk leading to the current428

population state. Studying backward predictability using forward evolutions and constant429

sampling is equally infeasible. Even if we could sample every mutation that rises to430

reasonable frequency in a population, almost all of these mutations will be lost, and there431

may be far too many to determine the subset which are non-neutral. As mentioned above,432

there is also the problem of combinatorially many adaptive walks possible for even a few433

mutations, making complete experimental analysis of even a five mutation system434

extremely challenging. As others have mentioned, sampling a few high-fitness mutations435

and conducting backward predictability experiments may not generate a correct436

representation of the probability of any particular adaptive walk, as there may be437

alternative adaptive peaks (Weinreich et al., 2006). Additionally, there is the possibility438

of adaptation and potential epistatic interactions at sites not under consideration, and439

spatial or temporal fluctuations in selection pressures can further complicate accurate440

assessments of backward predictability in natural systems, and calls into question the441

accuracy of reconstructed ancestral states.442

Finally, the impact of hidden alleles on evolutionary trajectories depends on the rate at443

which stable polymorphic states are generated. Rainey and Travisano (1998), for444

example, observed adaptive radiation by niche construction in every replicate evolution445

experiment they conducted. Under these conditions, we may expect hidden alleles to be446

frequent in a large evolving population. The adapted state of natural populations may thus447

experience a strong historical dependence on transient mutations that are eventually lost448

and impossible to sample, decreasing the forward predictability of evolution and making449

the inference of backward predictability impossible. The rate at which polymorphic states450
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are generated in natural systems and potential differences between types of polymorphic451

states and their impact on forward and backward predictability should be further explored452

to improve our understanding of the predictability of evolution.453
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FIGURES574

575

Figure 1. Fisher’s geometric model description and confirmation of accurate576

separation of simulations into those with and without overdominant mutations.577

(A) Modified from Figure 2A Sellis et al 2011. Two orthogonal axes represent independent578

character traits. Fitness is determined by a symmetrical Gaussian function centered at the579

origin. Consider a population initially monomorphic for the wild-type allele ~raa. A580

mutation m gives rise to a mutant phenotype vector ~rbb = ~raa + ~m. The phenotype of the581

mutant heterozygote assuming phenotypic codominance (h = 1/2) is ~rab = ~raa + ~m/2. The582

different circles specify the areas in which mutations are adaptive (i.e. successfully invade583

the population, αdip) and replacing (i.e. fix in the population, γ)in diploids. (B) Density584

plot of all phenotypes of homozygous individuals observed in the adaptive walks of FGM585

simulations that do not contain overdominant mutations. Note that all observed586

phenotypes lie within γ, as all mutations must be replacing and not balancing in this group587

of simulations. Circles denote αdip and γ as described in (A). (C) Homozygous phenotypes588

for simulations that do contain overdominant mutations. Note that a large number of589

phenotypes lie outside of γ, as expected for overdominant mutations, confirming that we590

are correctly separating walks with and without overdominant mutations. When comparing591

B and C, we observe that simulations with overdominant mutations are less forward592

predictable than those without such mutations.593
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594

Figure 2. Overdominant mutations decrease forward predictability by 40%595

using the maximum pairwise distance metric. Shown are the cumulative596

distributions of the maximum phenotypic distance between independent pairs of adaptive597

walks, excluding the ancestral state. This is a measure of the phenotypic forward598

repeatability of independent walks on the same evolutionary landscape. The maximum599

phenotypic distance in simulations without overdominant states is significantly less than in600

simulations with such states (Kolmogorov-Smirnov test p� 10−10).601
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602

Figure 3. Overdominant mutations decrease forward predictability by 5% using603

the maximum distance from the optimal trajectory metric. Shown are the604

cumulative distributions of the maximum distance from the optimal trajectory of adaptive605

walks. This is a measure of the phenotypic forward predictability of walks. The maximum606

distance from the optimal trajectory in simulations without overdominant mutations is607

significantly less than those with such mutations (Kolmogorov-Smirnov test p� 10−10).608
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609

Figure 4. Overdominant mutations increase backward predictability by 30%610

using the effective number of paths metric. Shown are the cumulative distributions611

of the effective number of paths for adaptive walks with five mutations. This is a metric of612

backward predictability of evolution. Each mutation is introduced into the ancestral613

background in every possible order, and the number of viable mutational orders, weighted614

by their probabilities, determines the effective number of paths. The effective number of615

paths in simulations without overdominant mutations is significantly greater than in616

simulations with such mutations (Kolmogorov-Smirnov test p� 10−10).617
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618

Figure 5. Example simulation with a hidden allele where the observed most619

frequent allele was impossible to reconstruct by our method to compute620

backward predictability. The frequency of the two mutational lineages that reached at621

least 1% frequency in the population are shown throughout the 10,000 generations of the622

simulation. The main lineage, ending with allele ABCDGH, is at high frequency at the end623

of the simulation, while the minor lineage, ending with allele ABCDEF (a “hidden allele”)624

is at low frequency at the end of the simulation.625

In the simulation, four mutations initially fix in quick succession, resulting in allele ABCD626
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fixed in the population. At this point, mutations causing balanced polymorphisms result in627

branched mutational lineages. Mutation E is the first mutation to occur on allele ABCD,628

generating a balanced polymorphism between alleles ABCD and ABCDE and allowing629

both alleles to be stably maintained in the population at intermediate frequency. Mutation630

F then quickly occurs on the background of allele ABCDE, generating allele ABCDEF631

which also balances with allele ABCD. Mutation G then occurs on the background of allele632

ABCD generating allele ABCDG soon afterwards, which balances with allele ABCDEF.633

Finally, mutation H occurs on allele ABCDG generating allele ABCDGH, which634

outcompetes all other alleles and is nearly fixed by the end of the simulation.635

In our backward predictability reconstructions, we consider only the first five mutations of636

the most frequent allele at the end of the simulation, that is, we consider only mutations A,637

B, C, D and G as these were the first five mutations on allele ABCDGH. In attempting to638

reconstruct this observed order of mutations, we find that we can successfully introduce639

mutations A, B, C and D in order, but mutation G, which results in allele ABCDG, is not640

beneficial if allele ABCD is the only other allele in the population (data not shown).641

Therefore, the true order of mutations is impossible to reconstruct in this case when only642

sampling allele ABCDGH at the end of the simulation. However, if we also consider643

mutations E and F, we are able to successfully reconstruct the intermediate steps of the644

observed adaptive trajectory, suggesting that the presence of allele ABCDEF is necessary645

for allele ABCDG to be beneficial (data not shown).646
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