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Abstract:
Predicting adaptive evolutionary trajectories is a primary goal of evolutionary biology.

One can differentiate between forward and backward predictability, where forward predictability
measures the likelihood of the same adaptive trajectory occurring in independent evolutions
and backward predictability measures the likelihood of a particular adaptive path given
the knowledge of starting and final states. Recent studies have attempted to measure
both forward and backward predictability using experimental evolution in asexual haploid
microorganisms. Similar experiments in diploid organisms have not been conducted. Here
we simulate adaptive walks using Fisher’s Geometric Model in haploids and diploids and
find that adaptive walks in diploids are less forward- and more backward-predictable than
adaptive walks in haploids. We argue that the difference is due to the ability of diploids in our
simulations to generate transiently stable polymorphisms and to allow adaptive mutations
of larger phenotypic effect. As stable polymorphisms can be generated in both haploid and
diploid natural populations through a number of mechanisms, we argue that inferences based
on experiments in which adaptive walks proceed through succession of monomorphic states
might miss many of the key features of adaptation.
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Introduction

Since Gould’s famous thought-experiment (Gould, 1990) on “replaying the tape of life”,
scientists have been interested in the predictability of evolution. Gould wondered whether
it is possible to forecast evolution, and determine the path or the final destination of the
evolutionary process from a given starting population. It is also possible, however, to ask
whether we can retrocast evolution, and reconstruct the true evolutionary trajectory given
the final state and possibly the ancestral state. Forward predictability analysis tries to predict
the future evolutionary trajectory or future adapted state of an evolving population, while
backwards predictability analysis tries to determine the likelihood of the possible alternative
adaptive trajectories that lead to the observed adapted state. This distinction between
forward and backward predictability is rarely made (however see Szendro et al. (2013)) yet
it is clear that these are distinct concepts and that high forward predictability does not
necessarily imply high backward predictability and vice versa.

Forward predictability of evolution. Past experimental evolution studies have generally
(but not always) focused on the forward predictability of evolution and suggest that evolution
is indeed predictable to a surprising degree. For example, Ferea et al. (1999), Cooper et al.
(2003) and Fong et al. (2005) evolved independent replicates of microbes and observed
phenotypic changes in gene expression and growth rate in the evolved clones. A large study
of 145 parallel long-term experimental evolutions with E.coli grown at elevated temperature
showed that the same genes and pathways were repeatedly targeted for mutations in independent
populations (Tenaillon et al., 2012) as did a study of 40 replicate S. cerevisiae batch culture
evolutions(Lang et al., 2013). Herron and Doebeli (2013) evolved E. coli under multiple
carbon sources and repeatedly observed the evolution of two distinct ecotypes with differential
ability to grow on each carbon source. By sequencing independent replicate clones of both
ecotypes they found the same genes, and sometimes the same exact mutations invading these
replicate populations and differentiating the ecotypes.

Repeated evolution has been observed at both the genetic and morphological levels in
natural systems as well. Kvitek et al. (2008) showed that highly divergent yeast strains
isolated from oak trees had similar growth rates across a panel of diverse growth conditions.
Studies of Anolis lizards in the Caribbean show repeated independent adaptive radiations
into three phenotypically similar niches across the islands (Losos, 1998). In addition, a study
of the adaptive radiation of cichlid fish in Lake Tanganyika showed convergent morphological
evolution when the skeletal morphology of the various species was compared to their phylogeny
(Muschick et al., 2012). Note, however, that practically all of these studies analyze whether
the phenotypes of extant organisms are predictable (forward predictability of the adapted
state), but they have limited power to assess the forward predictability of adaptive trajectories.

Backward predictability of evolution. Weinreich et al. (2006) conducted the first study
to systematically probe the backward predictability of evolution, using a combinatorially
complete reverse genetic study design pioneered by Malcolm et al. (1990). In their study,
Weinreich et al. reconstructed every possible combination of five mutations in β-lactamase
gene in E. coli known to lead to high levels of resistance to the drug rifampicin and assayed
their levels of drug resistance, which they used as a proxy for fitness. From these data, they
assayed the fitness changes involved in every step of each of the 120 possible paths involving
these five mutations. A mutational path was deemed viable if fitness monotonically increased
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with every step, and each viable path was assigned a probability based on the size of each
fitness change. They found that only 18 of the 120 possible paths were viable, suggesting high
backward predictability of evolution. In contrast, Khan et al. (2011) performed an analysis
of five adaptive mutations from experimentally evolved bacterial lineages using identical
methodology and found that a majority of the orders were viable. Finally, Franke et al.
(2011) studied backwards predictability in all subsets of two to six mutations in an empirical
eight-locus system and found that the number of viable paths varied widely for a given
subset size. For example, they observed both zero and nine viable paths (out of 24 possible)
in different four locus subsets. The varying degrees of backward predictability found in these
different systems does not yet allow us to draw general conclusions, and the laborious nature
of the experiments makes it challenging to study more than a few mutations at a time.

The Weinreich et al method assays a particular type of backward predictability, where
predictability is conditioned on the knowledge of the initial and final states and of all of
the steps taken along the true path. Thus it only assays the likelihood of specific orders
of steps. By definition, this metric cannot assay the likelihood of an alternative ancestral
state or paths that involve mutations that are not present in the observed final state. In
principle, one can first carry out a large number of forward evolutions starting from the
same genotype and perform the Weinreich method for all of them. Such an experimental
effort would illuminate the relationship between forward and backward predictabilities,
but is unreasonably laborious and thus infeasible. We utilize simulated adaptive walks to
circumvent these practical restrictions.

Here we employ simulations of adaptation in the context of Fisher’s geometric model
(FGM, Fisher (1930)) to study forward and backward predictability. FGM is a well-studied
(e.g. Orr, 1999, 2005) phenotypic model with a single smooth fitness peak and a multidimensional
phenotypic space (Figure 1a). We initialize our simulations with populations monomorphic
for the same phenotype, and evolve them on a constant fitness landscape with a single
smooth peak. Therefore, each independent adaptive walk tends to end up in the vicinity
of the optimal phenotype. As we largely constrain both the beginning and the end of the
walk, we focus on the predictability of evolutionary paths. We study both forward path
predictability, by asking whether different paths tend to go through the same part of the
phenotypic space, and backward path predictability, by using the method of Weinreich et
al’s.

We simulate adaptation in both haploids and diploids in a manner similar to that of Sellis
et al. (2011). Their work showed that diploid FGM simulations generate a large number of
overdominant adaptive mutations under certain parameter regimes, resulting in balanced
polymorphisms, while haploid simulations always result in the classic successive fixation
regime (also see Manna et al. (2011) for an analytical treatment of dominance in FGM). The
comparison of haploid and diploid simulations allows us to investigate the impact of stable
polymorphisms and overdominant mutations on the predictability of evolution. As reciprocal
sign epistasis is necessary to generate the fitness valleys that increase predictability (Poelwijk
et al., 2011), we also study the impact of various forms of sign epistasis on predictability.
We conclude that the generation of stable polymorphic states has substantial effects on
predictability of evolution, and discover that at least in this model, forward and backward
predictability are inversely correlated.
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Materials and Methods

Geometric Simulations

We model adaptive walks in haploid and diploid populations with Wright-Fisher simulations
using Fisher’s geometric model. The simulations use code modified from Sellis et al. (2011).
We perform 10,000 replicate simulations with population size N=10,000 for haploids and
N = 5,000 for diploids preserving the number of alleles in the population. Simulations are
conducted for 10,000 generations in the geometric model. Each allele is represented as a point
in coordinate space (PCS). The phenotype of haploids and homozygous diploids is simply the
coordinates of the constituent allele. The phenotype of heterozygotes is the midpoint of the
two points of the constituent alleles. This results in an assumption of phenotypic additivity
of alleles in determining the phenotype of a genotype. This methodology is identical to the
simulation methodology used by Sellis et al. (2011). The population initially contains a
single allele with the PCS (2,0), and evolves on a fitness landscape with single phenotypic
optimum at (0,0). Fitness is computed using a gaussian function :

w(x) = e−x2/2

where x is the distance of the phenotype to the optimum. The mutation rate is set to µ
= 10−6 which results in one mutation every 100 generations on average for both haploids and
diploids. Mutations are vectors in phenotype (coordinate) space which modify the PCS of
the mutated allele by adding the mutation vector to the original PCS of that allele (Figure
1a). This results in the implicit assumption that mutations are additive in phenotype space.
The magnitude of the mutation vector is drawn from an exponential distribution, with
λ = 1/2. The angle of the mutation vector is drawn from a uniform distribution. Results
using different values of λ ( 1/4, 1/2 or 2) and µ (10−6 to 10−4), as well as results using 2,
3, 4 or 7 dimensions are described in the Supplementary Information.

In essence, FGM is an infinite allele single locus model where each allele has a phenotype
that is a point in coordinate space. The model is additive in phenotype space, but nonadditive
in fitness space. We utilize this model as it is very similar to asexually evolving systems such
as the bacteria used in Weinreich et al. (2006), where all mutations that occur on a given
background are completely linked to each other.

For the remainder of our analysis, we identify the most frequent allele in each simulated
population at the end of 10,000 generations of evolution and study the mutations present on
that allele.

Sign Epistasis and Conditional Mutations

We are first interested in the extent of sign epistasis between independent adaptive mutations
(Figure 2a,b). We consider the extent of sign epistasis between initial adaptive mutations in
5,000 independent pairs of simulations for each parameter set in both haploids and diploids.
Limiting our analysis to only the initial adaptive mutations allows us to compare mutations
that occurred on the same ancestral allele. Sign epistasis, reciprocal sign epistasis and
ancestral deleterious epistasis are defined as in Figure 2b. The level of epistasis is computed
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as follows. We compute the equilibrium populations resulting from the invasion of each of
the initial mutations on the ancestral population, as described below. We then compute
the equilibrium probability (described below) of the double mutant allele invading each of
these resulting equilibrium population states, as well as the equilibrium probability of the
double mutant in the ancestral population. If the double mutant cannot invade the ancestor,
it has ancestral deleterious epistasis, if it cannot invade either single mutant state, it has
reciprocal sign epistasis, and if it cannot invade only one of the single mutant states, it has
sign epistasis. Note that these double mutant alleles were never observed in any simulation,
and we are artificially genereated these novel alleles to study epistasis between independent
adaptive mutations.

To study the rate of conditional mutations (Figure 2c), we employ a similar procedure,
but analyze the first two mutations of each simulated walk. If the second mutation of the
simulated walk cannot invade the ancestral population, the mutation is said to be beneficial
conditional on the presence of the initial mutation of the walk.

We note that computing the fitness advantage conferred by a mutation in diploids
is more complicated than in haploids as mutations can be heterozygous or homozygous.
Overdominant mutations, which maintain variation in diploid populations, add additional
complications to the computations. New overdominant mutations have a high marginal
fitness that depends on the fitness of all heterozygotes of the new allele with the established
alleles and weighted by their frequency. For computing the fitness of a new mutation, we first
computed the equilibrium probability of the mutation into the current population state when
rare. If it cannot invade, we claim the mutation is deleterious. Assuming the mutation can
invade, we compute the mean fitness and equilibrium allele frequencies that can be achieved
by the new allele with each of the existing alleles in pairs. As our simulations suggest that
equilibrium states with three or more alleles are very rare (0.1% of simulations), we ignore
such possibilities with minimal impact on the qualitative results of our analysis.

Probability of a new mutation reaching an equilibrium frequency

The probability of new mutations reaching equlibrium from a single copy, which we call
equilibrium probability, is empirically computed through 10,000 Wright-Fisher simulations
for both haploids and diploids. If the marginal fitness of the new mutation is less than
the mean fitness of the existing population, the mutation is deleterious and the equilibrium
probability is zero. Otherwise, for haploids, we compute the probability as the likelihood of
the allele reaching fixation from a single copy. In diploids, we first estimate the equilibrium
allele frequency of the new mutation when the new allele is present with each of the alleles
already in the ancestral population. This methodology requires the assumption that the
equilibrium state consists of at most two alleles. Since we observe stable states consisting of
3 or more alleles less than ten times in 10,000 simulations, this approxiation seems reasonable.
The equlibrium allele frequency of the new allele for each of these cases is

(h− 1)/(2h− 1)

(Gillespie, 2004), where h is the dominance coefficient of the new allele relative to the
given extant allele. Given this equilibrium frequency, we can compute the mean population
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fitness when the new allele is at equilibrium with that particular extant allele. This is
repeated for all extant alleles, and the equilibrium state with the extant allele that grants
the maximum equilibrium mean population fitness defines the new population state. The
true equilibrium frequency of the new allele is thus the frequency of the allele in this new
population state.

The equilibrium probability of the new diploid allele is computed as the probability
of the allele reaching 90% of the equilibrium frequency from a single copy in the empirical
Wright-Fisher simulations. This equilibrium frequency can be either fixation or some intermediate
frequency due to heterozygote advantage. We are forced to utilize empirical estimations
through simulations and not the classical analytic solutions for invasion and fixation probability
as many of the observed mutations have a selective advantage exceeding 100%, violating the
assumptions of the analytic solutions that the mutations are weakly beneficial.

Forward Predictability Analysis

We calculate forward predictability using two metrics. In both of these metrics, we only
consider homozygous genotypes in diploids. Our first metric, maximum pariwise distance,
considers pairs of adaptive walks with exactly five mutations. We compute the maximum of
the phenotypic distances between the observed single mutant genotypes of the two adaptive
walks, the double mutant genotypes, the triple mutant genotypes etc. Our second metric
measures the maximal deviation from the optimal trajectory. For each adaptive walk
(regardless of length), we compute the maximal phenotypic distance of any encountered
(homozygous) genotype from the line segment connecting the ancestral phenotype and the
optimum. This is thus the maximal phenotypic distance of the adaptive walk from the
optimal adaptive trajectory.

Backward Predictability Analysis

We compute backward predictability using simulated adaptive walks of exactly five mutations.
We calculate the probability of all possible mutational trajectories for the given set of
mutations in a manner similar to Weinreich et al. (2006), but generalized to allow balanced
states. The likelihood of a mutational trajectory is the product of the probabilities of
each mutation being generated on the appropriate background and successfully reaching
the equilibrium frequency in succession. The probability of a mutation being generated
is proportional to the frequency of the appropriate ancestral background. For example, if
the ancestral state is balanced with the 1-mutant state, the probability of generation of
a 2-mutant state is proportional to the frequency of the 1-mutant state. The equilibrium
probability of the mutation from a single copy is calculated empirically as described above.
In the haploid model, where each successive mutation fixes in the population, there are
5! = 120 possible orders of the five mutations observed in the simulated walk to generate the
five-mutant allele observed at the end of the simulation. In the diploid model, each mutation
can occur on any allele in the population where it has not already been introduced, leading
to at most (2 ∗ 5 − 1)! = 362880 possible mutation orders. The probabilities of all viable
mutational orders are then rescaled to add up to 1, to give the probability of a trajectory
conditional on reaching the final n-mutant state.
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We define the effective number of trajectories as

1/
∑

(probability of trajectory2)

in a similar manner to the effective number of alleles in a population (Kimura and Crow,
1964), the entropy metric of Palmer et al. (2013), and the predictability metric of Roy (2009).
Thus, when a single trajectory dominates the probability density, the effective number of
trajectories is close to 1, even if there are many other trajectories with nonzero probability.
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Results

We performed 10,000 replicate simulations of adaptation under FGM in haploids and diploids
(haploid N = 10,000, diploid N = 5,000, mutation rate = 10−6, two phenotypic dimensions
and Gaussian fitness with a single peak at the origin, see materials and methods for details).
Mutational magnitudes were drawn from an exponential distribution with parameter λ =
1/2, with the population initiated at 2 units from the optimum. For all of our analyses,
we consider only those mutations that are on the path to the most frequent genotype at
generation 10,000. Such mutations are typically the only ones available for analysis in a
natural system. We begin with a study of epistasis, which is related to the ruggedness of the
fitness landscape, and follow with a study of the predictability of evolution.

Figure 1b and 1c show the distribution of the points in coordinate space (PCS) for all
alleles that have successfully invaded the population across all simulations. Note that in
diploids we show the phenotype of the derived homozygotes. Black circles indicate the
boundaries for α-dip, α-hap and γ for the ancestral state as described in Figure 1a. α-dip
defines the phenotypic area for all mutations that are beneficial in diploids relative to the
ancestral phenotype, while α-hap defines the set of beneficial mutations in haploids. γ
defines the area where beneficial mutations would be replacing in diploids, as opposed to
generating a balanced polymorphism. It is evident that simulated diploid populations explore
more of the phenotypic space, which is consistent with the findings of Sellis et al. (2011).
Intriguingly, this is not only because α-dip is larger than α-hap but also because many of
the observed homozygous diploid phenotypes are located outside α-dip. This implies that
these alleles (whether heterozygous or homozygous) are only beneficial due to the presence
of other alleles in the population given that these alleles are deleterious by themselves. This
also suggests that the ability of diploid populations to maintain variation during adaptation
due to frequent overdominance substantially changes the process of adaptation. As we will
demonstrate below, the presence of overdominant mutations in diploids changes patterns of
sign epistasis, conditionality, and predictability compared to haploids.

Sign Epistasis

Sign epistasis between independent mutations has been empirically studied in a number of
systems, but with limited sample size for each system(Kvitek and Sherlock, 2011; Rokyta
et al., 2011; Lalić and Elena, 2013). Here, we isolated the first adaptive mutation along
independent adaptive walks in 5,000 pairs of simulations (mutations A1 and B1 in Figure
2a). We computed the equilibrium population state resulting from each of the single mutant
alleles invading the ancestral population individually. We then computed the probability of
the synthetically generated double mutant allele invading each of these equilibrium single
mutant states (purple lines in Figure 2a). If the double mutant could invade one but not the
other of the single mutant equilibrium states, the system has sign epistasis. If the double
mutant could invade neither of the single mutant states, there is reciprocal sign epistasis, and
if it could not invade the ancestral population, the system has ancestral deleterious epistasis
(Figure 2b).

The frequency of sign, reciprocal sign and ancestral deleterious epistasis in diploids and
haploids is shown in Table 1. Full data for all parameter regimes is provided in Supplementary
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Table 1. Haploids and diploids have similar levels of sign epistasis and reciprocal sign
epistasis, but it appears that much of the sign epistasis in haploids is driven by ancestral
deleterious epistasis, which is not the case in diploids.

We further recomputed the frequencies of epistasis in diploids conditioning on the number
of overdominant mutations in each mutation pair (Figure 3). We found that pairs of
mutations which include one or two overdominant mutations have a significantly higher
prevalence of sign, reciprocal sign, and ancestral deleterious epistasis relative to pairs which
include no overdominant mutations (Welch’s t test p<<10−10 in most cases, see Supplemental
Table 5 for details). This is consistent with the idea that overdominant mutations are often
mutations of large phenotypic effect, and combining two large effect mutations together
should often lead to a maladaptive result in FGM.

Conditional Mutations

Of possibly greater interest are epistatic interactions between sequential mutations along
adaptive walks. We examined the first two adaptive mutations that occurred in each of our
simulations to analyze the ability of the second adaptive mutation to invade the ancestral
population, and term those that are deleterious on the ancestral background as conditional
(Figure 2a,c). In this system of two-mutation adaptive walks, there are two possible orders
of mutations to generate the double mutant allele, only one of which was observed in the
simulation. A conditional second mutation means that the order of the two mutations
is completely backward predictable, as the order that was not observed has a deleterious
intermediate. Conditionality is much more common in diploids compared to haploids (Table
2, χ2 p <10−10, df=1). We observed that conditional mutations were significantly more
frequent when following an overdominant mutation compared to a non-overdominant mutation
(Table 2, χ2 p <<10−10, df=1). The complete data for all parameter regimes provided in
Supplementary Table 2 confirms this intuition. Our results suggest that all regimes where
a large frequency of overdominant mutations are expected (Sellis et al., 2011) should also
generate a large frequency of conditional mutations.

Predictability of Adaptive Walks

We first consider forward predictability of the phenotypic path, which we define as the
tendency of independent adaptive walks to explore similar portions of the phenotypic space.
We quantified this by measuring the distribution of maximal phenotypic distances between
pairs of independent adaptive trajectories with exactly five mutations (see materials and
methods). According to this measure, haploid walks are significantly more phenotypically
forward path predictable than diploid walks (Figure 4, Welch’s t test p<<10−10). We
also measure forward predictability as the maximal phenotypic deviation of each observed
trajectory from the optimal trajectory- the line connecting the ancestral phenotype and the
optimal phenotype. We again observe that haploid walks are significantly more forward
predictable than diploid walks (Figure 5, Welch’s t test p<<10−10). These results are
concordant with Figure 1, where haploids explored a much smaller phenotypic space than
diploids over the course of evolution. The ability of diploids to explore a larger phenotypic
space using overdominant mutations when evolving to the same phenotypic optimum as
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haploids naturally leads to lower predictability of the phenotypic intermediates along the
adaptive walk.

We then studied backward predictability sensu Weinreich et al. (2006). We limit our
analysis to adaptive walks of exactly five mutations, which is comparable to many of the
experimental studies of evolutionary predictability (Weinreich et al., 2006; Khan et al.,
2011; Franke et al., 2011). We computed the probability of observing a particular path
to the five-mutant state by successively introducing each of the five mutations on the
ancestral background and assessing the probability of reaching equilibrium (see materials
and methods). In diploids, this computation involves the probability of the next mutation
occurring on either background in a potentially balanced system multiplied by the probability
of the new state invading the existing population. Every available mutation was introduced
onto every allele present in the population, with each allele having a particular mutation
at most once. Mutational orders were deemed viable if the five-mutant state could be
successfully reached by sequential introduction of mutations. The haploid computation
does not consider balanced states, and is functionally identical to the method of Weinreich
et al. (2006). We computed the effective number of adaptive trajectories for each observed
trajectory, which weights the number of viable mutational orders by their probabilities.

The results of this analysis are shown in Figure 6. We found that haploid adaptive
walks are substantially less backwards predictable than diploids as measured by the effective
number of viable paths (Welch’s t test p<10−10). In other words, conditional on reaching a
particular five-mutant state, it is more probable that independent diploid realizations will
use the same mutational order. We also utilized the mean path divergence of Lobkovsky
et al. (2011) and found that diploids were more backward predictable by this metric as well
(Welch’s t test p = 10−10).

If our method is truly computing the likelihood of a particular adaptive trajectory, it
should be the case that high probability trajectories are more likely to have been observed
in the FGM simulations than low probability ones. We bin all trajectories with non-zero
probability from the simulations with five mutations into 40 equal-sized bins, and compute
the number of trajectories within each bin that was actually observed in the simulations. We
find that the median bin probability is significantly positively correlated with the number of
observed trajectories in both diploids (p < 10−10) and haploids (p < 10−7).

We found that 62% of diploid and 58% of haploid simulations had less than 25 viable
paths. A larger proportion- 90% of simulations in diploids and 78% in haploids- have fewer
than 25 effective paths. As there should be 120 possible paths for simulations containing
five mutations, these statistics suggest that most mutational orders were inviable in most
simulations, but even of those that were viable, there were a subset of mutational orders that
were far more likely than the rest. As 29% of diploid simulations, but only 19% of haploid
simulations had more than 25 viable orders but less than 25 effective paths, diploid sets of
mutations were more likely to have a few high probability mutational orders compared to
haploids. In contrast, only 1% of simulations had over 90 effective paths in both haploids and
diploids, suggesting that these walks took relatively direct paths towards the optimum. The
backward path predictability in our simulations appears to be highly variable and strongly
depends on the particular set of mutations used to assess it.

We also observed that the same series of mutations, when introduced in different orders,
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can give rise to different population states containing the final adapted allele. As different
mutation orders generate intermediate alleles containing different sets of mutations, it is
possible that the final five-mutant allele can balance against different intermediate alleles
in different orders. We find that > 65% of diploid simulations have at least two different
possible end population states containing the final adapted allele, with a median of 2 different
population states and a maximum of 20 different population states for a single set of five
mutations.

We note that backwards predictability analysis is conducted over genotypic landscapes
with a limited number of possible states such as in Khan et al. (2011)’s Figure 1, while
forward predictability is conducted over phenotypic landscapes (Figure 1a) which contains
an infinite number of possible states in FGM. Therefore, it is possible to have no viable
sequence of mutations to evolve one genotype to another in the restricted genotypic space.

Inaccessible Trajectories

In the process of computing backward predictability of diploid walks, it became clear that
many of the adaptive states that are generated and are stably maintained during a diploid
walk do not survive until the end of the evolution. We call these hidden mutations, as they
are hidden from both our analysis and almost all modern experimental studies of adaptation
in nature. Similar to our observations for transient mutations, lack of knowledge of hidden
mutations may decrease the computed probability of the true adaptive path observed in the
FGM simulations, and in extreme cases, even make the true path impossible to reconstruct.
To study this phenomenon to a first approximation, we computed the excess number of
mutations in the population that reached 5% frequency relative to the number of mutations
present in the final adapted state. Such mutations are likely to have been beneficial to
reach such high frequency, but died out before they fixed. Again, we limit our results
to simulations with five mutations along the adaptive trajectory. We found that diploid
simulations have many more extra mutations than haploids (58% vs 7.5%, Table 3, complete
data in Supplementary Table 3) as predicted by the presence of balanced states in diploids
but the lack of such states in haploids.

We quantify the frequency of simulations in which the observed mutational order is not
viable using the backward predictability analysis sensu Weinreich et al. We found these
apparently impossible evolutionary outcomes at a rare but appreciable frequency in diploids
( 7% of simulations), but never in haploids. This result strongly argues for the existence of
hidden states in the diploid simulations that are necessary for the reconstruction of the true
adaptive walk by our backwards predictability method.

Relationship Between Overdominance and Repeatability

We have so far analyzed epistasis and the predictability of evolution separately, and now
explore the impact of epistasis on the predictability of evolution. As noted earlier, overdominant
mutations are correlated with high levels of conditional mutations (Figure 4). As conditional
mutations, by definition, are only beneficial on the background of the initial mutation and
not the ancestor, such mutations limit the number of viable mutation orders and increase
backward predictability. Therefore, overdominant mutations should increase backward predictability
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by increasing the frequency of conditional mutations. Indeed, we found that the number of
overdominant mutations in a simulated diploid adaptive walk is strongly negatively correlated
with the effective number of paths computed for the same walk (Pearson correlation coefficient
= -0.35, N=645, p<<10−10). Therefore, a larger number of overdominant mutations (that
frequently cause subsequent conditional mutations) in a walk decreases the effective number
of paths, and thus increases backward predictability.
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Discussion

In this study, we explored the predictability of evolution during adaptive walks using Fisher’s
geometric model. We distinguished between forward and backward predictability, where
forward predictability measures the likelihood of the same or similar adaptive trajectory
occurring in independent evolutions, while backward predictability measures the likelihood
of a particular adaptive path given the ultimate adapted state. We knew from prior work
that haploids and diploids behave very differently under the geometric model (Sellis et al.,
2011), so we studied predictability in both haploids and diploids. We found haploids are
more forward predictable than diploids, while diploids are more backwards predictable than
haploids.

High backward predictability in diploids is consistent with high forward predictability
in haploids. Indeed, an adaptive walk that goes directly to the optimum should have the
lowest possible backward predictability as every order of mutations is adaptive. Given that
adaptive walks in haploids tended to go more directly towards the optimum than diploids,
it is not surprising that adaptive walks in haploids were less backward predictable than in
diploids. An alternative metric of backward predictability called the mean path divergence
(Lobkovsky et al., 2011) also supported our results (Supplementary Figure 6).

The primary difference between diploid and haploid adaptive walks in our model is
the presence of overdominant mutations creating stable polymorphic states. In natural
populations, stable polymorphisms can arise not only through overdominant mutations,
but also through any mechanism of frequency dependent selection such as ecological niche
construction (Rainey and Travisano, 1998), and spatially or temporally variable environments
(Kasumovic et al., 2008), and can occur in haploids as well as diploids through these
mechanisms. While the complications we describe are only possible in diploids in our
simulations due to the simplistic nature of the geometric model, most of our results are
pertinent to both haploid and diploid natural populations, as both can experience stable
polymorphisms.

In our implementation of Fisher’s Model, balanced states arise when mutations are
overdominant. If most mutations are of small effect relative to the distance to the optimum,
or if there are additional dimensions in the phenotype space, it becomes less likely that
the mutation will be overdominant relative to the initial parameter set. The presence of
additional dimensions essentially reduces the effect size of new mutations, and is therefore
very similar in practice to reducing the mutational step size. In this case, diploids are at a
disadvantage relative to haploids, as most mutations are now codominant, and the benefit
of novel mutations is diluted in heterozygotes when rare. This can be seen when we vary the
parameter values of our simulations (Supplementary Figures 1-6 and Supplementary Tables
1-4). When mutations have very small magnitudes in our simulations (λ = 2), haploids
have higher frequencies of sign epistasis and fewer effective paths compared to diploids. In
simulations with higher dimensions (3, 4 and 7), we again observe more sign epistasis in
haploids compared to diploids. Therefore, the epistasis and backward predictability are
increased in diploids compared to haploids when there is a high chance that mutations can
be overdominant, otherwise the fitness benefit of new mutations is diluted to the point that
haploids have more epistasis and backwards predictability than diploids.

The presence of balanced states can result in branching mutational lineages, resulting in
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hidden mutations and transient population states that nevertheless significantly impact the
future course of evolution. Depending on the equilibrium frequency of a balanced state, it can
be more or less likely that a particular genotype will arise through a particular mutational
order. Ignoring hidden mutations can significantly impact the likelihood of a particular
adaptive path, to the point of making it inviable and different orders of mutations can
generate different sets of heterozygous genotypes and different end population states, further
complicating analysis of diploid adaptation.

Branching mutational paths drastically increase the number of possible adaptive paths.
In haploids, as adaptation proceeds through sequential fixation, one only needs to consider
the fitness of the 2n possible genotypes relative to the ancestral background for an n-mutation
system. This is the methodology used in the experimental studies of Weinreich et al. (2006);
Khan et al. (2011); Franke et al. (2011). However, for diploids, each adaptive trajectory
needs to be considered individually as different balanced states are possible in each one.
Within each trajectory, every mutation along the trajectory needs to be introduced into the
prior population at low frequency on every available allele, and tracked until the frequency
of the new mutation has been stabilized. To our knowledge, such a study has never been
conducted in any system.

Experimental Implications

In an experimental setting, high forward predictability means it is likely that the same set
of mutations will be generated in independent adaptive walks, which make the probabilities
generated through backward predictability analysis meaningful for predicting future events.
This can occur by either a small mutational target size such as mutations that cause
resistance to drugs, or a large mutational input into the population which makes rare but
extremely beneficial mutations that dominate the adaptive process common (e.g. Kvitek
and Sherlock, 2011; Pennings, 2012; Gerstein et al., 2012; Desai and Fisher, 2007). A study
in FGM also suggests that a multi-locus FGM where each locus only influences a subset
of the independent phenotypic dimensions (restricted pleiotropy) also promotes forward
predictability, which the authors call parallel evolution (Chevin et al., 2010). In our studies,
a large number of replicate simulations are required to get an accurate assessment of forward
predictability, as there is a large variance between individual simulations. Experimentally
determining forward predictability by studying many replicate evolutions either through
fitness assays or high throughput methods such as DNA-seq and RNA-Seq seems laborious
but feasible.

On the other hand, the possibility of hidden mutations makes accurate estimates of
backwards predictability impossible. Since we do not have access to hidden mutations from
the past, it is impossible to accurately compute the backwards predictability of the adaptive
walk leading to natural modern day populations. Studying backwards predictability using
forwards evolutions and constant sampling is equally infeasible. For example, in humans,
there are dozens of mutations occuring in every genome in every generation. Even if we
could sample every mutation in every human on the planet, almost all of these mutations
will be lost, and there are far too many to determine the subset which are non-neutral.
There is also the problem of combinatorially many adaptive walks possible for even a few
mutations as described above. As acknowledged by Weinreich et al. (2006), sampling a
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few high-fitness mutations and conducting backwards predictabiliy experiments may not
generate a correct representation of the probability of any particular adaptive walk. Such
studies ignore adaptation and potential epistatic interactions at sites throughout the rest of
the genome. Additional phenomena such as fluctuating abiotic and biotic environments can
further complicate accurate assessments of backwards predictability.

Finally, the impact of hidden states on evolutionary trajectories depends on the frequency
at which stable polymorphic states are generated. Stable polymorphisms have been observed
via niche construction, fluctuating selection pressures and frequency dependent selection
(Levin et al., 1988; Takahata and Nei, 1990; Rainey and Travisano, 1998; Kasumovic et al.,
2008). In addition, mutations of large phenotypic effect are relatively common in nature
(Steiner et al., 2007; Kenny et al., 2012), suggesting that overdominant mutations should
be relatively frequent as well. This is in addition to phenomena such as multiple mutation
and clonal interference regimes, where large mutational inputs generate a constant source of
polymorphisms in the population (Desai and Fisher, 2007; Lang et al., 2013). Therefore, it is
likely impossible to estimate backward predictability of adaptation in any natural population.
Additional factors in natural populations that can complicate predictability estimation are
multipeaked and fluctuating fitness landscapes and stochastic tunneling through local fitness
maxima.
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Conclusion

In this study, we examined the interactions between epistasis, evolutionary predictability
and ploidy using simulations conducted using Fisher’s Geometric Model. We found that
simulations of diploid populations, which frequently generate overdominant mutations leading
to balanced polymorphisms, had similar levels of sign epistasis between independent mutations
but far more conditional mutations than simulations of haploid population. We defined
forward predictability as the phenotypic similarity of independent walks, and backward
predictability as the probability that a population will evolve along a particular trajectory
given the initial and final states defined by an observed set of adaptive mutations. We
found that diploid simulations are less forward predictable, but more backward predictable
than haploid simulations, demonstrating that different metrics of predictability are not
interchangable.

The presence of balanced polymorphisms gives rise to complex evolutionary phenomena
that are never observed in our haploid simulations. We observed instances of different
mutation orders giving rise to different final adaptive population states, and transient alleles
being necessary for the viability of the observed adaptive walk. In a natural system, these
phenomena should be possible any time a balanced state is generated, such as in frequency
dependent selection, niche construction or spatial or temporally variable selection. We
suggest that predicting evolution is extraordinarily complex even for simple systems, and
that acurrately computing backward predictability is extremely challenging for experimental
studies.
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Figures

Figure 1. (A) Identical to Figure 2A Sellis et al 2011. Two orthogonal axes represent
independent character traits. Fitness is determined by a symmetrical Gaussian function
centered at the origin. Consider a population initially monomorphic for the wild-type allele
~raa. A mutation m gives rise to a mutant phenotype vector ~rbb = ~raa + m. The phenotype

of the mutant heterozygote assuming phenotypic codominance (h = 1/2) is ~rab = ~raa +m/2.
The different circles specify the areas in which mutations are adaptive in haploids (α-hap),
adaptive in diploids (α-dip), and replacing in diploids (γ). (B). Phenotypes of all mutations
along the adaptive walk of 10,000 haploid FGM simulations. (C) Homozygous phenotypes
for diploid simulations. Red circles denote α-dip, α-hap and γ as described in (A).
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Figure 2. (A) Adaptive walks A, with mutations A1 and A2 and B, with mutations
B1 and B2, occurred in independent diploid FGM simulations. Dotted circles denote α-dip,
α-hap and γ as described in Figure 1A. Sign epistasis (B) between independent mutations
occurs when the A1 + B1 double mutant is less fit than at least one of the two single mutants
(A1 or B1 alone), with four possible fitnesses for the double mutant shown. Ancestral fitness
is represented by the horizontal black line. Reciprocal sign epistasis occurs when the double
mutant is less fit than both the A1 and B1 single mutants. Ancestral deleterious mutations
occur when the double mutant is less fit than the ancestor. Conditional mutations (C) occur
when latter mutations in the adaptive walk are deleterious on the ancestral background
(A2A2 allele has the second mutation alone on the ancestral background) but beneficial
conditional on the presence of the first mutation (A1A2 allele).

22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2013. ; https://doi.org/10.1101/001016doi: bioRxiv preprint 

https://doi.org/10.1101/001016
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Epistasis is computed between pairs of initial mutations in independent
adaptive walks. Frequency of sign epistasis, reciprocal sign epistasis and ancestral deleterious
mutations in diploid and haploid adaptive walks as a function of the number of overdominant
mutations present in each mutation pair.

23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2013. ; https://doi.org/10.1101/001016doi: bioRxiv preprint 

https://doi.org/10.1101/001016
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Cumulative distribution of the maximum phenotypic distance between independent
adaptive walks, excluding the ancestral state. This is a measure of the phenotypic repeatability
of independent walks on the same evolutionary landscape.The maximum phenotypic distance
in haploids is significantly less than in diploids (Welch’s t test p<<10−10).
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Figure 5. Cumulative distribution of the maximum distance from the optimal trajectory
of adaptive walks regardless of number of mutations. This is a measure of the phenotypic
optimality of walks. The maximum distance from the optimal trajectory in haploids is
significantly less than in diploids (Welch’s t test p<<10−10).
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Figure 6. Cumulative distribution of the effective number of paths for adaptive walks
with five mutations. This is a metric of mutational repeatability of evolution. Each mutation
is introduced into the ancestral background in every possible order, and the number of viable
mutational orders, weighted by their probabilities, determines the effective number of paths.
The effective number of paths in haploids is significantly greater than in diploids (Welch’s t
test p<<10−10).
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Table 1. Pairwise Epistasis (n=5,000)

Sign Reciprocal Sign Ancestral Deleterious
Haploids 52.3% 39.4% 25.1%
Diploids 53.0% 31.3% 5.7%

Table 2. Conditional Mutations

All Initial Mutation Not Overdominant Initial Mutation Overdominant
Haploids (n=9478) 21.4% NA NA
Diploids (n=8855) 26.2% 18.2% 62.4%

Table 3. Summary of Backwards Predictability Analysis

Diploid (n=645) Haploid (n=1220)
Extra mutations 58.0% 7.5%
Observed Path Most Probable 16.7% 14.1%
Observed Path Top 50% Most Probable 80.8% 69.8%
Observed Path is Inviable 7.1% 0.0%
Final Homozygote Deleterious 0.13% 0.0%
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