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Abstract

Engineering multi-protein genetic systems to maximize their performance remains a
combinatorial challenge, particularly when measurement throughput is limited. We have
developed a computational design and modeling approach to build predictive models and
identify optimal expression levels, while circumventing combinatorial explosion. Maximally
informative genetic system variants are first designed by the RBS Library Calculator, an
algorithm that optimizes the smallest ribosome binding site library to efficiently search the
expression space across a >10,000-fold range with tailored search resolutions, sequence
constraints, and well-predicted translation rates. We validated the algorithm’s predictions
using a 644 sequence data-set, within single and multi-protein genetic systems, modifying
plasmids and genomes, and in Escherichia coli and Bacillus subtilis. We then combined the
search algorithm with kinetic modeling to map the mechanistic relationship between sequence,
expression, and overall activity for a 3-enzyme biosynthesis pathway, requiring only 73
measurements to forward design highly productive pathway variants. The combination of
sequence design and systems modeling accelerates the optimization of many-protein systems,
and allow previous measurements to quantitatively inform future designs.

Main Text

Engineering metabolic pathways and genetic circuits requires the systematic tuning of protein
expression levels to identify a genetic system variant that delivers a desired behavior (Ajikumar
et al, 2010; Du et al, 2012; Makino et al, 2011; Moon et al, 2012; Paddon et al, 2013; Quan et al,
2011; Santos et al, 2012; Tseng & Prather, 2012; Xu et al, 2013; Yim et al, 2011; Zelcbuch et al,
2013; Zhang et al, 2012; Zhao et al, 2013). Understanding the relationship between a genetic
system’s expression levels and its phenotype enables rational optimization of its behavior,
though this relationship is difficult to determine particularly when many proteins are
interacting together. The optimal expression levels to maximize a targeted behavior will also
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vary according to the proteins’ activities and the system’s biomolecular interactions; efficient
approaches are needed to optimize diverse genetic systems.

Expression optimization of genetic systems has been performed by introducing a library of
genetic parts with different DNA sequences to vary protein expression, followed by
characterization of the genetic system's behavior to identify the variants that functioned best
(Du et al, 2012; Lee et al, 2013; Pfleger et al, 2006; Sandoval et al, 2012; Santos et al, 2012;
Torella et al, 2013; Wang et al, 2009; Xu et al, 2013; Zelcbuch et al, 2013). Recent advances
have dramatically improved our ability to assemble multiple DNA fragments, or introduce
targeted DNA mutations, into several locations within plasmids and genomes, enabling
combinatorial expression optimization of larger genetic systems (Cong et al, 2013; Maresca et
al, 2013; Urnov et al, 2010; Wang et al, 2009). In particular, engineered ribosome binding sites
(RBSs) are commonly used to control a mRNA'’s translation rate, and its corresponding protein
expression level, due to their non-repetitive sequences, their proximity to the protein’s coding
sequence, their control over individual proteins in bacterial operons, and the option of
combining them with existing promoters to dynamically regulate expression (Bonnet et al,
2012; Lou et al, 2010; Moon et al, 2012; Mutalik et al, 2013; Salis, 2011; Wang et al, 2009;
Zelcbuch et al, 2013).

These advances in the synthesis, assembly, and mutagenesis of large genetic systems have
enabled the targeting of a much larger set of proteins, and access to a wider range of
engineered behaviors (Yadav et al, 2012). However, several limitations constrain our ability to
apply combinatorial expression optimization to large genetic systems, understand the
relationship between expression and behavior, and find variants with the best possible
behavior. The construction of genetic system libraries is limited by the yield and breadth of the
DNA modification technique as well as the maximum number of modified plasmids or genomes
that can be maintained inside the population of host organisms. The number of characterized
genetic system variants is also limited by the throughput of the assay used to quantify its
performance. Finally, as the number of proteins targeted for optimization increases, the
number of combinations of different expression levels for each protein will rapidly grow,
diminishing the fraction of combinations that can be constructed and characterized using the
same approach. As a result of this under-sampling, especially when using random mutagenesis
of genetic parts, the chance of finding the best possible genetic system variant with near-
optimal expression levels greatly decreases as the size of the expression space grows (Figure
1A). In particular, the combinatorial expansion of the expression level space can not be
addressed by developing improved methods for assembling DNA libraries or increasing assay
throughput.

Here, we present a computational design approach to overcome the limitations of
combinatorial expression optimization, identify expression-activity relationships, and find the


https://doi.org/10.1101/001008

bioRxiv preprint doi: https://doi.org/10.1101/001008; this version posted December 2, 2013. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

optimal expression levels in a multi-protein genetic system. First, we formulate the mini-max
expression optimization problem whose solution is the smallest genetic part library that
maximally searches a genetic system’s expression level space. To solve this optimization
problem for bacterial genetic systems, we developed an automated algorithm, called the RBS
Library Calculator, to design the smallest synthetic RBS library that uniformly increases a
protein’s expression level across a selected translation rate range on a >100,000-fold
proportional scale. This algorithm combines a predictive biophysical model of bacterial
translation with a genetic optimization algorithm. Through iterations of in silico mutation,
recombination, prediction, and selection, synthetic RBS library sequences using the 16-letter
degenerate alphabet are designed to maximize the search coverage of a selected translation
rate space, while minimizing the number of RBS variants in the library (Figure 1B). The
algorithm has several modes: Search to cover the widest possible expression space; Genome
Editing to constrain expression optimization towards using the fewest, consecutive genome
mutations; and Zoom to target a narrow expression range towards the optimal levels. These
modes enable one to control the search space, search resolution, and sequence design
constraints to be configured according to the number of proteins targeted for combinatorial
expression optimization, the DNA mutagenesis technique, and the assay’s throughput.

Notably, the RBS Library Calculator uses a biophysical model to design an unlimited number of
synthetic RBS libraries, on-demand, with well-predicted translation initiation rates. Biophysical
models can account for the several mechanisms controlling translation rate (Espah Borujeni et
al; Gingold & Pilpel, 2011; Na et al, 2010; Salis, 2011; Salis et al, 2009; Zouridis & Hatzimanikatis,
2007). In particular, our biophysical model calculates the ribosome's binding free energy to
MRNAs, which is responsible for controlling its translation initiation rate. The free energy model
is determined by 16S rRNA hybridization, canonical and non-canonical Shine-Dalgarno
sequences, differences in start codons and spacer regions, the unfolding of mRNA structures,
upstream standby site accessibility, and the presence of long-range RNA interactions. Our
model can also account for the differences in ribosomes between bacterial species, enabling
the prediction of translation initiation rates in valuable, but less well-studied, organisms
(Jaschke et al, 2011; Medina et al, 2011; Ravasi et al, 2012). Here, we show that these
predictions are accurate in both Escherichia coli and Bacillus subtilis as model organisms for
gram-negative and gram-positive bacteria. We also discuss the differences between using a
biophysical model to design genetic parts in contrast to utilizing a toolbox of previously
characterized genetic parts.

Second, to overcome the limits of combinatorial expansion, we use system-level mechanistic
modeling to construct and validate a quantitative relationship between a genetic system’s RBS
sequences, translation rates, and phenotype, which is then used to predict the expression levels
and RBS sequences that maximize the genetic system's performance. We demonstrate this
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approach on a 3-enzyme carotenoid biosynthesis pathway, showing that characterization of
only 73 pathway variants was necessary to develop a predictive kinetic model. Using this
quantitative relationship, we then forward design pathway variants with optimal enzyme
expression levels, achieving high carotenoid productivities of up to 441 ug/gDCW/hr.

Results

Solving the protein expression mini-max optimization problem

To validate the RBS Library Calculator’s Search mode, three optimized RBS libraries were
designed using high, medium, or low search resolutions with 36, 16, or 8-variants per library,
respectively, to control reporter protein expression on a multi-copy plasmid in E. coli DH10B
(Table 1). Degenerate RBS sequences primarily utilized 2-nucleotide degeneracies (S, K, R, B, and
M) with only one instance of a 3-nucleotide degeneracy (M). None contained a 4-nucleotide
degeneracy (N). Search mode inserted degenerate nucleotides 5 to 19 nucleotides upstream of
the start codon to modulate both the 16S rRNA binding affinity and the unfolding energetics of
inhibitory mRNA structures. We quantified the optimized RBS libraries’ search ranges,
coverages, and translation rate predictions by measuring reporter protein expression levels
from individual RBS variants within each library. Fluorescence measurements were taken during
24-hour cultures maintained in the early exponential growth phase by serial dilutions. All DNA
sequences, translation rate predictions, and fluorescence measurements are provided in the
Supplementary Table 1.

Fluorescence measurements show that the optimized RBS libraries searched the 1-dimensional
(1 protein) expression level spaces with high coverages, high dynamic ranges, and accurate
translation rate predictions. The 36-variant RBS library systematically increased mRFP1
expression from low to high levels with a 49,000-fold dynamic range and 94% search coverage
(Figure 1C), while the 16-variant RBS library uniformly increased sfGFP expression across a
169,000-fold scale, from below the detection limit to nearly the maximum allowable cytometer
signal, with only a small coverage gap at 100 au (79% search coverage) (Figure 1D). The lowest
resolution RBS library contained only 8 variants, but uniformly increased sfGFP expression
between the selected translation rate range, yielding protein expression levels from 63 to
49,000 au (299-fold dynamic range) with a high 99% search coverage (Figure 1E).
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Figure 1: Validation of the RBS Library Calculator's Search mode in E. coli. (A) A conceptual illustration that random
DNA mutagenesis produces clustering in expression level space, due to limitations in library capacity and
characterization throughput. Black squares represent covered points in sequence or expression space. Optimal
mutagenesis — the winning strategy to the game of Battleship — creates fewer sequence variants that maximally
cover the expression level space. (B) The algorithm combines a biophysical model of translation with a genetic
algorithm to identify the smallest degenerate RBS sequences with maximal search coverage. (C, D, E) Optimized
RBS libraries search a 1-dimensional expression level space with 94%, 79%, 99% search coverages at high, medium,
and low search resolutions, resp. Translation initiation rate predictions (red diamonds) are compared to
measurements (Pearson R is 0.88, 0.79, and 0.89, respectively). Data averages and standard deviations from 6
measurements.

Table 1: Characteristics of optimized and random RBS libraries.

Degenerate RBS Sequence Protein Min TIR Max TIR

(model (model
scale) scale)

Search Mode

AACGACGTCGACGATCACAACTTSAKGDBGTATTC mRFP1 2.5 53000 0.2 36
ACTGATCTAGGGAAAGCATTASGSASGTCRAAAGA sfGFP 3.8 180000 0.3 16
CGTAAAGTTAAACCGMGCGAAATTAGKASGTATTA sfGFP 30 113000 0.35 8
AACGAAGACMATGATCACAACTTAAKGASGTATTC CFP 8.0 46000 0.35

AACGCCGTCGACGKTCACAACTTCAGGASGTMTTC mRFP1 70 35000 0.35
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ACTAGGTTTATACCACAAAACAAGKGGKWTAAAAA GFPmut3b 10 46000 0.35 8
CCAATATACCAAATAAAGAGTYGMGGMSGTCAAGG CrtE 68 72000 0.3 16
AACGTACACACACAATTATACKAAGSRGRTCCGAA CrtB 3.3 20000 0.3 16
TAAACCCAACAAATTAGACTATAAKKAGKYTAATA Crtl 97 203000 0.3 16
Zoom Mode

AATTCGATTTTTAGGAACAGTTAAGGRGGHTAATA CrtE 32000 305000 0.35 6
AGAGTACAATAGAMATYAAAATMAGGAGGTCAACA CrtB 1800 233000 0.35 8
TTAGATTTTAAATAACAATACTMAKGAGGTSCAAC Crtl 26000 1347000 0.35 8
Genome Editing Mode

TGTGAGCGGATAACAATTTTWAVGASGAAACAGCT LacZ 20 55000 0.3 12
GAGACGCAAATAWGGMGKTWCTCGAATTCGAATTC mRFP1 2.3 21000 0.25 16
ATACMTAACACAAAGWGGAGGYAGAATTCGAATTC mRFP1 2500 96000 0.2 8
Random RBS Libraries

AACGAAGACAATGATCACAACTTANNNNNNTATTC CFP 0.4 34000 - 4096
TCACAACTTAACGCCGTCGACGGCNNNNNNTATAT mRFP1 6.7 148000 - 4096
ACTAGGTTTATACCACAAAACAANNNNNNTAACAA GFPmut3b 5.1 58000 - 4096

The biophysical model of bacterial translation accurately predicted the translation initiation
rates from the 60 RBS variants with an average error AAG.a of 1.74 kcal/mol, which is
equivalent to predicting the measured translation initiation rate to within 2.2-fold. The
biophysical model's predictions were particularly accurate for the high and low resolution
libraries (average AAGiota = 1.05 kcal/mol, R? = 0.88; and average AAGiot = 0.46 kcal/mol, R? =
0.89, respectively) in contrast to the medium resolution library that contains several outliers at
low expression levels (average AAGiot = 3.71 kcal/mol, R? = 0.72).

Several types of user-selected sequence constraints can be incorporated into the solution. In
the simplest example, RBS libraries may be designed to include restriction enzyme recognition
sites, homologous overlap sequences, or other desired nucleotide sequences at specified
locations that enable their facile molecular cloning into a genetic system. Next, we introduce a
set of RBS sequence constraints that optimizes directed genome mutagenesis to efficiently
control and search chromosomally-encoded protein expression levels.
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Figure 2: Validation of the RBS Library Calculator's Genome Editing mode in E. coli and B. subtilis. (A) Two RBS
libraries were optimized to control the expression of a genomic single-copy of mRFP1, incorporated into the amyE
locus of B. subtilis. Fluorescence measurements from 14 clones were compared to their predicted translation
initiation rates (Pearson R? is 0.81). The expression space was searched with 76% coverage. Data averages and
standard deviations from 3 measurements. (B) A 12-variant RBS library was optimized to control genomic lacZ
expression. Predicted translation initiation rates are compared to measured lacZ activities (circles), including the
wild-type (diamond), showing a linear relationship below the activity plateau (Pearson R is 0.93). The expression
space was searched with 84% coverage. Data averages and standard deviations from 4 measurements.

Automated search for optimal protein expression levels encoded in gram-
positive and gram-negative bacterial genomes

Genome engineering techniques enable the targeted mutagenesis of genomic DNA, either by
employing oligo-mediated allelic recombination, homologous recombination, or site-directed
non-homologous end joining (Cho et al, 2013; Cong et al, 2013; Esvelt & Wang, 2013; Mali et al,
2013; Sharan et al, 2009; Urnov et al, 2010; Wang et al, 2009). Targeted mutations can
modulate genomic protein expression levels, though the number and breadth of nucleotide
variants that can be inserted in a single pass is limited by several factors, including the
requirements for homology and specificity, the number and location of the targeted loci, the
efficiency of DNA repair mechanisms, and the activity of helper recombinases or
endonucleases. To search chromosomally-encoded protein expression levels, we introduced a
Genome Editing version of the algorithm that identifies the minimal number of genomic RBS
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mutations that uniformly increases a protein's expression level across a wide range.
Optimization is initialized using the wild-type genomic RBS and protein coding sequences, and
the solution is directly used to perform genome mutagenesis. The effectiveness of this
approach was evaluated in both gram-negative and gram-positive bacteria to illustrate how the
biophysical model's ability to predict translation rates in diverse organisms can be used for
finding optimal expression levels.

First, we employed homologous recombination to introduce an optimized library of
heterologous cassettes into the Bacillus subtilis 168 genome, using Genome Editing mode to
optimize two RBS libraries that control expression of the reporter mRFP1 with translation
initiation rates from 100 to 96000 au on the model's proportional scale (Table 1). Translation
rate predictions use ACCUCCUUU as the 3' end of the B. subtilis 16S rRNA. Fluorescence
measurements of 14 single clones from the libraries show that single-copy mRFP1 expression
varied from 10 and 17600 au with a search coverage of 76%, well-predicted translation
initiation rates that were proportional to the measured expression levels (R* = 0.81), and with a
low error in the calculated ribosomal interactions (average AAGiota = 1.77 kcal/mol) (Figure 2A).
This example demonstrates that the physical interactions that control translation initiation in
gram-negative bacteria are sufficiently similar in gram-positive bacteria to provide the ability to
accurately predict translation rates and efficiently find optimal expression levels.

Second, we employed MAGE mutagenesis on the E. coli MG1655-derived EcNR2 genome (Wang
et al, 2009), targeting its lacl-lacZYA locus and controlling lacZ protein expression levels (Figure
2B). We first conducted three rounds of MAGE mutagenesis to introduce an in-frame stop
codon into the lacl repressor coding sequence (Supplementary Tables 2 and 3). Using the
algorithm's Genome Editing mode, we then designed a 12-variant degenerate oligonucleotide
with 7 consecutive mutated positions to target the lacZ RBS sequence and uniformly increase
its translation initiation rate from 10 to 100,000 au (Table I). We conducted twenty rounds of
MAGE mutagenesis to introduce the 12 sets of RBS mutations into the genome, and selected 16
colonies for sequencing of the lacZ genomic region. 10 of these colonies harbored genomes
with unique mutated RBS sequences controlling lacZ translation.

lacZ activities from the derivative ECNR2 genomes were individually measured using Miller
assays after long-time cultures maintained in the early exponential growth phase (Figure 2C).
The measured lacZ expression levels varied across a 2400-fold range, searched the expression
space with 84% coverage, and were well predicted by the biophysical model’s predicted
translation initiation rates up to 3000 au on the model’s proportional scale (R* = 0.93). Though,
interestingly, increasing the lacZ translation initiation rate beyond 3000 au, which is 4-fold over
its wild-type rate, did not further increase lacZ activity. Specific growth rates were recorded
and did not change as translation initiation rates were increased (Supplementary Table 1). The
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plateau in protein expression suggests that there is a critical point where translation initiation
may no longer be the rate-limiting step in protein expression, which we call the maximum
translation rate capacity. Measuring the maximum translation rate capacity of a coding
sequence becomes essential when proportional control over protein expression is desired,
particularly at high levels. Next, we use the RBS Library Calculator to measure the maximum
translation rate capacity of a codon-optimized protein coding sequence.
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Figure 3: Measuring the translation rate capacity of a codon-optimized gene. The translation initiation
rates of (A) gfpmut3b and (B) adhp::gfpmut3 fusion proteins were uniformly increased across a 10,000-
fold scale using an optimized RBS library to identify the critical point where translation initiation is no
longer the rate-limiting step in protein expression and folding. The expression of both proteins reached
the same plateau (dashed line) at similar translation initiation rates. Data averages and standard

deviations from 3 measurements.
Determining the maximum translation rate capacity of codon-optimized genes

The translation rate of a protein coding sequence is determined by both its translation initiation
and elongation rates; whichever step is slowest becomes the rate-limiting step for the overall
translation process. Systematic increases in a gene’s translation initiation rate allow one to
identify the critical point when translation elongation becomes the rate-limiting step, labeled
the maximum translation rate capacity. While codon optimization is a commonly used approach
to improving a gene’s translation elongation rate, the maximum translation rate capacity of
codon-optimized genes has never been quantified.
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We employed the RBS Library Calculator to determine the maximum initiation-limited
translation rate capacity of a codon-optimized protein gfpmut3b in rich media conditions. A 32-
variant RBS library was optimized with Search mode to vary translation initiation rates between
1 and 100,000 au. Fluorescence measurements of 12 RBS variants with translation initiation
rates from 1.2 to 644 au proportionally controlled protein expression levels according to the
biophysical model’s predictions (R*> = 0.93) (Figure 3A). However, with additional increases in
translation initiation beyond this critical point, fluorescent protein expression levels reached a
sporadic plateau. We then investigated whether the observed plateau was intrinsic to the
gfpmut3b coding sequence affecting translation elongation and protein folding, or to the
regulatory sequences controlling translation initiation. We created an N-terminal fusion
between adhP and gfpmut3b, and designed a new 24-variant optimized RBS library to control
the translation initiation rate of the adhP::gfpmut3b gene. Fluorescence measurements of
individual RBS variants revealed a plateau with the same average fluorescence (Figure 3B) at a
similar predicted translation initiation rate of 400 au on the model's proportional scale.
Therefore, the plateau in protein expression is intrinsic to the gfpmut3b protein coding
sequence, which occurs at a critical translation initiation rate. This critical point is an accurate
guantitative metric of the gene’s maximum initiation-limited translation rate capacity for a
selected growth condition.

The best approach to codon optimization has remained unclear, particularly as many
mechanisms for altering translation elongation rates have been demonstrated (Li et al, 2012;
Menzella, 2011; Plotkin & Kudla, 2010). The application of the RBS Library Calculator to
measure a gene’s maximum translation rate capacity differentiates between proposed codon
optimization approaches while verifying that a gene has truly been codon-optimized.
Importantly, for valuable multi-protein systems where maximum overexpression is desired,
independently verifying each gene’s translation rate capacity with optimized RBS libraries, using
either gene fusions or employing translational coupling (Mendez-Perez et al, 2012), is both
time-efficient and prudent.

Efficient search in multi-dimensional expression level spaces

Most complex genetic systems express multiple proteins that work together to carry out their
function. Optimization of multi-protein systems is particularly difficult, as it requires searching a
larger combinatorial protein expression level space. We next evaluated Search mode's ability to
explore a 3-dimensional expression space by constructing a bacterial operon encoding cfp,
mRFP1, and gfpmut3b reporter proteins, and introducing either optimized or randomly
mutagenized RBS libraries to control their translation initiation rates. The optimized RBS
libraries were designed using a low search resolution. The resulting 8-variant RBS libraries
contained 2-nucleotide degeneracies at distributed positions from 4 to 26 nucleotides upstream
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of the start codon, including positions far from the Shine-Dalgarno sequence, that varied
predicted translation rates across a 5000-fold range (Supplementary Table 4). To create the
randomly mutagenized RBS libraries, we introduced 4-nucleotide degeneracies in a six
nucleotide region within the Shine-Dalgarno sequence, a commonly used approach to vary
translation rates, to create a 4096-variant RBS library with widely different translation rates
(Supplementary Table 5). In both cases, 3-part combinatorial assembly of DNA fragments was
employed to construct a library of bacterial operons (Gibson et al, 2009), generating 512
operon variants when using optimized RBS libraries, and up to 68.7 billion operon variants
when using random RBS libraries. The extent of DNA library assembly is limited, however, and
only a sub-sample of the randomized bacterial operon variants will ever be constructed or
selected for characterization.

We compared search coverages when using either optimized or randomly mutagenized RBS
libraries in the 3-protein bacterial operon. For each case, 500 strains with operon variants were
randomly selected, individually cultured, and their CFP, mRFP1, and GFPmut3b fluorescences
were quantified by color-corrected flow cytometry. The optimized RBS libraries searched the 3-
dimensional protein expression level space across a 20,000-fold range with a 42% search
coverage (Supplementary Figure 1). In contrast, the randomly mutagenized RBS library only
partly covered the expression level space, showing a high degree of clustering that is
responsible for decreasing its search coverage to 14% (Supplementary Figure 2), which agrees
with computationally predicted search coverage of 14.7% using Monte Carlo sampling
(Supplementary Methods). Similar search coverages of 16.7% and 19.1% are computationally
predicted for a 4096-variant library NNNGGANNN (Mutalik et al, 2013) and a 23328-variant
library DDRRRRRDDDD (Wang et al, 2009), respectively. A minority of randomly generated
operon variants expressed higher or lower levels that would be necessary for many
applications. Using the algorithm’s Search mode, higher-dimensional expression spaces may be
efficiently sampled with high coverages at targeted resolutions (Supplementary Figure 3).

As even more proteins are targeted for optimization, it becomes increasingly difficult to use a
single combinatorial library to search for optimal expression levels with a sufficiently high
resolution and coverage to extract useful knowledge. Instead, the RBS Library Calculator can be
used in an iterative fashion to narrow down the optimal protein expression levels within a large
multi-dimensional space. First, optimized RBS libraries are designed in Search mode with a low
search resolution to cover the largest translation rate space, and combinatorially cloned to
create a library of genetic systems. After sequencing and measuring the performance of a small
number of genetic variants, their RBS variants are fed to the biophysical model of translation,
which predicts the translation rates of each protein coding sequence. Second, these
performance measurements and translation rates are combined with system-level modeling to
predict the optimal translation rates that will maximize the genetic system's performance.
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Finally, the RBS Library Calculator in Zoom mode is used to optimize an RBS library to target
these optimal translation regions, creating improved genetic systems with higher
performances. Importantly, the use of system-level modeling to predict the relationship
between translation rate and performance allows one to carry out global optimization of the
genetic system, identifying the best possible variant while avoiding local maxima. In the next
section, we demonstrate this strategy by carrying out global optimization of a 3-enzyme
biosynthesis pathway.
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Figure 4: Efficient optimization of multi-enzyme pathways. (A) Characterization of two libraries of neurosporene
biosynthesis pathway variants, using optimized RBS libraries designed by Search mode (left) or Zoom mode (right).
Averages and standard deviations from at least 3 measurements of neurosporene productivities. (B) Measurement
data and translation rate predictions (circles) from Search mode are used to parameterize a kinetic model of the


https://doi.org/10.1101/001008

bioRxiv preprint doi: https://doi.org/10.1101/001008; this version posted December 2, 2013. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

pathway's reaction rates, showing the relationship between crtEBI/ translation rates and neurosporene
productivity. (C) According to model results, a translation rate region (gray box) is targeted in Zoom mode.
Translation rate predictions from selected pathway variants are shown (circles). (D) A schematic of the bacterial
operon encoding CrtEBI, and their corresponding reactions and metabolites. Cofactors are not shown. (E)
Characterization of 19 additional CrtEBI pathway variants, comparing the kinetic model's predicted neurosporene
productivities (black bars) and measurements (green bars). Data averages and standard deviations from 2

measurements.
Pathway Mapping and Optimization Using Kinetic Modeling

We next applied the RBS Library Calculator to carry out mapping and optimization of a multi-
enzyme pathway, while minimizing the number of constructed pathway variants and
measurements. Our approach combines three steps: using the algorithm's Search mode to
determine the relationship between RBS sequence, translation rate, and pathway activity;
applying modeling to predict the optimal translation rate regions with maximal pathway
activity; and designing improved pathway variants using the algorithm's Zoom mode for
sweeping a narrow targeted region of translation space that exhibits high activity.

Search mode was employed to vary the translation rates of a 3-enzyme carotenoid biosynthesis
pathway from R. sphaeroides. Three 16-variant optimized RBS libraries were designed to vary
crtk, crtB, and crtl from 445 to 72000 au, 3 to 20000 au, and 97 to 203000 au, respectively
(Supplementary Table 6). 3-part combinatorial DNA assembly onto a ColE1 vector resulted in
up to 4096 clonal pathway variants, transcribed by the arabinose-induced Pgap promoter. 73
clones containing unique pathway variants were randomly selected, sequenced, transformed
into E. coli MG1655-derived ECHW2f strain (Supplementary Table 3), and cultured for a 7 hour
post-induction period. Their neurosporene contents were determined by hot acetone
extraction and spectrophotometry. Within a single library, the pathways' neurosporene
productivities were uniformly varied between 3.3 to 196 ug/gDCW/hr (Figure 4A and
Supplementary Table 7). Using optimized RBS libraries yielded a large continuum of pathway
activities with the smallest number of measurements.

Biophysical model predictions from sequenced RBSs indicate that the translation rates broadly
explored the selected 3-dimensional space (Figure 4B), which eliminates redundant
measurements and thus maximizes the measurements' information content. As crtEBI
translation rates were increased, pathway productivities did not reach a plateau, suggesting
that translation initiation remains the rate-limiting step. The biophysical model identifies where
each pathway variant exists within the translation rate space, which can be combined with
systems-level modeling to understand the relationship between enzyme expression and
metabolic flux, and to direct the design of pathway variants with improved productivities.
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To demonstrate this approach, we developed a kinetic model of the pathway's reaction
network, listing 24 reversible elementary reactions that describe the enzymatic conversion of
isoprenoid precursors (DMAPP and IPP) to neurosporene, including enzymes' binding to
substrates, and the release of products (Figure 4D and Supplementary Figure 4). Differential
equations describing the metabolic dynamics have 48 unknown kinetic parameters. Mole
balances on each enzyme and flux constraints reduced the equations to having 33 unknown
parameters (Supplementary Methods). We use an ensemble modeling approach (Contador et
al, 2009; Tran et al, 2008) that combines model reduction and dimensional analysis to compare
the pathway variants' calculated fluxes to a reference pathway, and to relate the kinetic
model's predicted neurosporene production fluxes to measured neurosporene productivities.
Changing a pathway variant's translation rates proportionally control the kinetic model's total
enzyme concentrations, which alters the predicted neurosporene productivity.

We then employed model identification to determine the kinetic model parameters that
reproduced the measured neurosporene productivities for the 72 non-reference pathway
variants, across ten independent and randomly initialized optimization runs (Supplementary
Table 8). The resulting kinetic model relates crtEB/ translation rates to neurosporene
productivities across a 10,000-fold, 3-dimensional translation rate space (Figure 4B). To test the
kinetic model's predictive ability, we characterized 19 additional pathway variants, used the
biophysical model to predicted their crtEB/ translation rates from sequenced RBSs, and applied
the kinetic model to calculate each variant's productivity (Figure 4E). The kinetic model
correctly determined how changing the enzymes' translation rates controlled the pathway's
productivity (24% error across a 100-fold productivity range) (Supplementary Table 9). Overall,
kinetic model predictions were more accurate at higher crtEBI translation rates (Supplementary
Figure 5). In general, a high crtE translation rate was necessary for high biosynthesis rates,
while low crtB and high crtl translation rates were sufficient to balance the pathway.

To target crtEBI translation rates towards higher pathway productivities, we employed the
algorithm in Zoom mode to design low resolution, 8-variant RBS libraries with translation rate
ranges predicted by the kinetic model; 32000 to 305000 au for crtE, 1800 to 232000 au for crtB,
and 26000 to 1347000 au for crt/ (Figure 4C and Supplementary Table 10). After combinatorial
DNA assembly, 28 clones containing unique pathway variants were randomly selected,
sequenced, and cultured for a 7 hour post-induction period. The resulting neurosporene
productivities improved up to 286 ug/gDCW/hr (Figure 4A) (Supplementary Table 11). The best
pathway variant’s neurosporene productivity was further increased to 441 pg/gDCW/hr when
the strain was grown in improved media and aeration conditions (Alper et al, 2006)
(Supplementary Figure 6). Alternative, non-mechanistic models may also be employed to guide
system optimization; for example, using computational geometry to identify optimal expression
levels resulted in a 15% predicted productivity error (Supplementary Information).
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Discussion

A key challenge to successfully engineering cellular organisms has been the combinatorial
vastness of their genetic instruction space, and the complex relationship between organism
genotype and phenotype. Some DNA mutations have no effect, while others dramatically alter
an organism’s behavior. The ability to identify the best DNA sequence for a desired phenotype
is complicated by the sheer number of design choices. The number of possible sequences in 150
base pairs of DNA, sufficient to encode at most ten promoters or ribosome binding sites, is
more than the number of atoms in the Universe. While advances in DNA synthesis, library
assembly, and high-throughput mutagenesis have accelerated the engineering design-build-test
cycle for genetic systems, understanding the relationship between genotype and phenotype is
essential to engineer large genetic systems where it is simply not feasible to exhaustively
construct, characterize, or screen for a desired behavior.

To engineer genetic systems, a common synthetic biology approach has been to utilize a
toolbox of previously characterized genetic parts to control protein expression (Babiskin &
Smolke, 2011; Blount et al, 2012; Mutalik et al, 2013). Significant characterization effort is
needed to ensure that these parts are modular, orthogonal, and can vary the expression of
many individual proteins uniformly across a >100,000-fold range. Several non-repetitive genetic
parts are also needed to express multiple proteins at similar levels as repetitive sequences are
known to induce homologous recombination, particularly when the genetic system places a
significant burden on the host's growth rate (Lovett, 2004; Sleight et al, 2010). The toolbox
itself is a static list of DNA sequences and measured functions, and can not incorporate
additional design criteria or sequence constraints ex post facto without additional
characterization to ensure similar function. This limitation inhibits the use of new DNA
assembly and genome modification techniques that rely on required sequence lengths,
properties, or motifs (Gibson et al, 2009; Jiang et al, 2013; Wang et al, 2009; Wang et al, 2012).
These measured functions also depend on the host organism, and significant re-
characterization is needed to engineer genetic systems in alternative hosts.

In contrast, our computational approach designs an unlimited number of non-repetitive
ribosome binding site library sequences to uniformly control translation initiation across the
physiologically possible range, while incorporating flexible sequence lengths and constraints.
RBS library sequences are optimized using experimentally validated biophysical rules that
account for the differences in ribosomes across bacteria, and can predict translation initiation
rates in both gram-negative and gram-positive bacteria. Potentially confounding interactions
that affect protein expression are minimized by eliminating long single-stranded RNA regions or
long RNA duplexes that may reduce mRNA stability, by ensuring that translation elongation is
not rate-limiting, and by ensuring that mRNAs are always translated to protect them from
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RNAse activity. By incorporating these design rules into the engineering of bacterial operons,
one can achieve proportional control of protein expression by manipulating only RBS
sequences. As additional biophysical rules continue to be developed (Espah Borujeni et al), they
are incorporated into the forward design process, and can improve the accuracy of predictions
on previously designed sequences. Thus, computational design can evolve concomitantly with
our understanding of gene expression and the development of new DNA assembly, genome
mutagenesis, and genome synthesis techniques to accelerate the engineering of large genetic
systems.

Regardless of the source of the genetic parts, our ability to engineer many-protein genetic
systems is limited by the expansion of the combinatorial expression space, particularly when
proteins work synergistically to control system behavior. System-level models can both explain
and inform the relationship between a genetic system’s expression levels and its overall
function (Westerhoff & Palsson, 2004), but identifying and validating the model’s parameter
values has often required extensive characterization of the system using several methods (Prill
et al, 2010). Here, we created a predictive kinetic model of a biosynthesis pathway using only
73 measurements of the pathway’s final product to determine the unknown kinetic
parameters, and a further 19 measurements of new pathway variants to validate their
significance. A key outcome of this work is the use of computational design to maximize the
information content of each measurement, while minimizing the presence of confounding
variables. We introduced a small number of genetic perturbations into a rationally designed
genetic system that maximally affected protein expression, eliminating redundancy and context
effects. We also apply model reduction to eliminate non-independent model parameters and
time-scale dependence. As a result, the number of unknown model parameters grows linearly
with the genetic system’s complexity; modeling a pathway with an additional enzyme-catalyzed
reaction will add 3 independent parameters, requiring 6 maximally informative measurements
to identify them. This approach is broadly applicable to diverse types of models.

An analysis of the crtEBI pathway’s kinetic model explains why metabolic optimization efforts
have been generally laborious. First, each enzyme has the potential to be a rate-limiting step in
the pathway. Distributed control over the pathway’s flux requires that all enzyme expression
levels must be tuned achieve high productivities. In particular, large changes in enzyme
expression levels are needed to exert control; small changes in enzyme levels are buffered by
compensating changes in metabolite concentrations (Fendt et al, 2010). This principle
illustrates the need for genetic parts that maximally change protein expression levels across a
wide range.

Second, though pathway optimization efforts aim to achieve optimal expression levels, the
definition of optimality has remained elusive. Metabolic pathways are balanced when their
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intermediate metabolites do not accumulate to toxic levels; however, the overall net flux
through a balanced pathway can vary dramatically, and highly productive pathways are desired.
We use the kinetic model to demonstrate a new definition of optimality that incorporates the
use of flux control coefficients (FCCs) from the field of Metabolic Control Analysis (Fell, 1992;
Kholodenko & Westerhoff, 1993).

Shown in Supplementary Figure 8, the crtEB/ pathway’s FCCs succinctly quantify how

differential changes in enzyme expression control the pathway's overall productivity P,
dlogP dlogP dlogP
dlog[crtE]’ dlog[crtB]’ dlog[crtl]

according to the partial derivatives , Which are evaluated

across the 3-dimensional expression space. High FCCs indicate where increasing an enzyme's
expression will increase pathway's productivity, while low FCCs show regions where increasing
expression does not lead to a significant improvement in productivity. Negative FCCs show
regions where excess enzyme expression causes growth toxicity, due to overconsumption of
the IPP and DMAPP precursors or saturation of the host's protein synthesis capacity. Using
FCCs, we can determine when a pathway is considered balanced or optimally balanced. A
pathway is balanced when differential increases in enzyme expression all have the same effect
on pathway productivity, which occurs when the enzymes' FCCs are equal. A balanced pathway
may have a low pathway productivity if the FCCs are all equally high; increases in all the
pathway's enzymes will increase the pathway's productivity. In contrast, an optimally balanced
pathway will have nearly zero FCCs; increasing the enzymes' expression levels has a minimal
impact on pathway productivity. According to the summation rule for FCCs, if control over a
pathway's productivity is reduced at one step, it is correspondingly increased at another. An
optimally balanced pathway has shifted control of its flux over to the upstream metabolic
module controlling precursor biosynthesis. These criteria form the foundation for designing
optimally balanced metabolic modules that synergistically work together to maximize product
biosynthesis rates.

Altogether, the ability to rationally search expression spaces, parameterize models to predict
phenotype from genotype, and target optimal expression levels enables the efficient mapping
and optimization of a multi-protein genetic system towards quantitatively defined optimally
balanced criteria. The solution to the expression mini-max optimization problem, and the
modeling of genetic systems, provides a quantitative design and diagnostic framework to
identify the most important DNA mutations that will best improve a system's performance. Our
proposed approach will dramatically accelerate the rational engineering of genetic systems by
reducing characterization efforts and generating an understandable relationship between
sequence, expression, and system performance.
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A software implementation of the RBS Library Calculator is available at
http://www.salis.psu.edu/software, online since 2011. As of October 2013, 350 unaffiliated
researchers have designed 3015 optimized RBS libraries for diverse biotechnology applications.

Materials and Methods
Strains and Plasmid Construction

All strains and plasmids are listed in Supplementary Table 3.

To construct plasmid-based RBS libraries in Escherichia coli strain DH10B, CDS sequences
(mRFP1 or sfGFP) were PCR amplified from pFTV1 or pFTV2 using mixed primers that encode
optimized degenerate RBSs. The gel-purified PCR product was joined with digested, gel-purified
vector backbone using a 2-part chew-back anneal-repair (CBAR) reaction (Gibson et al, 2009) to
create the plFl1, plF2, and plF3 expression plasmids. Plasmids were transformed into E. coli
DH10B, selected on chloramphenicol, and verified by sequencing. Expression plasmids contain a
ColE1l origin of replication, a chloramphenicol resistance marker, the J23100 sigma’®
constitutive promoter, the optimized degenerate ribosome binding site, and the selected
reporter gene.

To construct genomic RBS libraries in Bacillus subtilis strain 168, a Bacillus integration vector
pDG1661 was modified by replacing the spoVG-/lacZ region with an mRFP expression cassette,
containing the pVeg constitutive promoter from Bacillus, an RBS sequence flanked by BamHI
and EcoRlI restriction sites, the mRFP1 coding sequence, and a T1 terminator. A mixture of
annealed oligonucleotides containing optimized RBS libraries were inserted between the BamHI
and EcoRl sites by ligation. The integration vector was integrated into the amyE genomic locus
of Bacillus subtilis 168 using the standard protocol and selected on 5 pg/mg chloramphenicol.
Integration was verified by sequencing PCR amplicons containing the RBS and mRFP1
expression cassette.

To construct genomic RBS libraries in Escherichia coli EcNR2 (Wang, 2009), 90mer
oligonucleotides were designed to have minimal secondary structure at their 5' and 3' ends,
and were synthesized with 5’ phosphorothioate modifications and 2' fluro-uracil to improve
their allelic replacement efficiencies (Integrated DNA Technologies, Coralville, lowa). Their
concentrations were adjusted to 1 uM in water. The EcNR2 strain was incubated overnight in LB
broth with antibiotic (50 pg/ml Ampicillin or chloramphenicol) at 30 °C and with 200 RPM
orbital shaking. The culture was then diluted to early exponential growth phase (ODggo=0.01) in
5 ml SOC, reaching mid-exponential growth phase within 2 to 3 hours. When reaching an ODgqo
of 0.5 to 0.7, the culture was warmed to 42 °C for 20 minutes and then placed on ice. 1 mL
culture was centrifuged for 30 seconds at >10,000 g and the supernatant was discarded. The
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cell pellet was washed twice with chilled water, dissolved in the oligo aqueous solution, and
electroporated using an Eppendorf electroporator (model 2510) at 1800 V. The culture was
recovered by incubation in pre-warmed SOC at 37 °C until reaching an ODggo of 0.5 to 0.7. The
culture was then used for an additional cycle of mutagenesis, plated on LB agar to obtain
isogenic clones, or pelleted to make glycerol stocks. Mutagenesis was verified by sequencing
PCR amplicons of the lacZ locus.

To combinatorially assemble 3-reporter operons in Escherichia coli strain DH10B, PCR amplicons
containing Cerulean, mRFP1, and GFPmut3b/vector backbone were amplified from pFTV3 using
mixed primers containing optimized degenerate RBS sequences and 40 bp overlap regions. The
PCR products were Dpn1l digested, gel purified, and joined together into the pFTV vector using
a 3-part CBAR assembly reaction (Gibson et al, 2009), using the existing J23100 constitutive
promoter. The library of plasmids was transformed into E. coli DH10B and selected on LB plates
with 50 pg/ml chloramphenicol. To combinatorially assemble crtEBI operons driven by a Pgap
promoter, the crtE coding sequence was first sub-cloned into a FTV3-derived vector that
replaced the constitutive J23100 promoter with an araC-Pgap cassette, followed by PCR
amplification of crtE, crtB, and crtl/vector using mixed primers containing optimized
degenerate RBS sequences and 40 bp overlap regions. PCR products were joined together using
a 3-part CBAR assembly reaction to create a library of plasmids, which was transformed into E.
coli DH10B, selected on LB plates with 50 pug/ml chloramphenicol. Isolated pathway variants
were verified by sequencing. crtEBI coding sequences originated from Rhodobacter sphaeroides
2.4.1 and were codon-optimized and synthesized by DNA 2.0 (Menlo Park, CA).

Growth and Measurements

To record fluorescence measurements from RBS variants controlling reporter expression,
transformed strains and a wild-type DH10B strain were individually incubated overnight at 37
°C, 200 RPM in a 96 deep well plate containing 750 uL LB broth and 50 pg/ml chloramphenicol,
or 50 ug/ml streptomycin for the DH10B strain. 5 pl of the overnight culture was diluted into
195 pL M9 minimal media supplemented with 0.4 g/L glucose, 50 mg/L leucine, and 10 pg/ml
antibiotic in a 96-well micro-titer plate. The plate was incubated in a M1000
spectrophotometer (TECAN) at 37 °C until its ODggo reached 0.20. Samples were extracted,
followed by a 1:20 serial dilution of the culture into a second 96-well micro-titer plate
containing fresh M9 minimal media. A third plate was inoculated and cultured in the same way
to maintain cultures in the early exponential phase of growth for 24 hours. The fluorescence
distribution of 100,000 cells from culture samples was recorded by a LSR-Il Fortessa flow
cytometer (BD biosciences). Protein fluorescences were determined by taking fluorescence
distributions' averages and subtracting DH10B's average auto-fluorescence.


https://doi.org/10.1101/001008

bioRxiv preprint doi: https://doi.org/10.1101/001008; this version posted December 2, 2013. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

To record fluorescence measurements from 3-reporter operon libraries, 500 colonies were
randomly selected and grown individually using LB Miller media with 50 pg/ml
chloramphenicol, for 16 hrs at 37 °C with 200 RPM orbital shaking, inside a 96 deep-well plate.
Cultures were then diluted 1:20 into fresh supplemented LB Miller media within a 96-well
micro-titer plate, incubated at at 37 °C in a M1000 spectrophotometer (TECAN) until the
maximum ODggg reached 0.20. The blue, red, and green fluorescence distributions of samples
were recorded using flow cytometry, applying a previously calibrated color correction to
remove cross-fluorescence. The average blue, red, and green fluorescence is determined by
subtracting average DH10B autofluorescence.

To record lacZ activities using Miller assays, E. coli ECNR2 genome variants containing lacl
knockouts and /acZ RBS mutations were grown overnight at 30 °C with 250 RPM orbital shaking
in a 96 deep-well plate containing LB Miller and 50 ug/ml chloramphenicol. Cultures were then
diluted into fresh supplemented LB Miller media and cultured at 30°C to an ODggo of 0.20. 20 pL
of cultures were diluted into 80 uL permeabilization solution and incubated at 30°C for 30
minutes. 25 pL samples were then transferred into a new microplate to perform Miller assays.
150 plL of ONPG solution was added and absorbances at 420, 550 were recorded by the M1000
for a three hour period. Using this data, Miller units were calculated by finding the average
value of (ODg4z0 - 1.75 ODssg) / ODgoo during the times when the product synthesis rate was
constant.

To measure neurosporene productivities, pathway variants were incubated for 16hrs at 30°C,
250 RPM orbital shaking in 5 ml culture tubes, then washed with PBS, dissolved in fresh LB
miller (50 pg/ml chloramphenicol, and 10mM arabinose), and grown for another 7 hours. Cells
were centrifuged (Allegra X15R at 4750 RPM) for 5 minutes, washed with 1 ml ddH20, and
dissolved in 1 ml acetone. The samples were incubated at 55 °C for 20 minutes with
intermittent vortexing, centrifuged for 5 minutes, and the supernatants transferred to fresh
tubes. Absorbance was measured at 470 nm using NanoDrop 2000c spectrophotometer and
converted to pug Neurosporene (x 3.43 pug/nm absorbance). The remaining pellet was heated at
60 °C for 48 hrs to determine dry cell weight. Neurosporene content was calculated by
normalizing Neurosporene production by dry cell weight. Neurosporene productivity was
determined by dividing by 7 hours.

To record neurosporene productivity under optimized growth conditions, pathway variants
were incubated overnight in 5 ml LB miller, followed by inoculating a 50 mL shake flask culture
using 2xM9 media supplemented with 0.4% glucose and 10 mM arabinose. The culture was
grown for 10 hours at 37°C with 300 RPM orbital shaking. The neurosporene productivity was
measured using 10 ml of the final culture as stated above.

Models and Computation
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The RBS Calculator

The RBS Calculator v1.1 was employed to calculate the ribosome's binding free energy to
bacterial mRNA sequences, and to predict the translation initiation rate of a protein coding
sequence on a proportional scale that ranges from 0.1 to 100,000 or more. The thermodynamic
model uses a 5-term Gibbs free energy model to quantify the strengths of the molecular
interactions between the 30S ribosomal pre-initiation complex and the mRNA region
surrounding a start codon. The free energy model is:

‘ AGtotal = AGmRNA:rRNA + AGspacing + AGstart + AGstandby - AGmRNA (1)

Using statistical thermodynamics and assuming chemical equilibrium between the pool of free
30S ribosomes and mRNAs inside the cell, the total Gibbs free energy change is related to a
protein coding sequence's translation initiation rate, r, according to:

‘ r exp(_BAGtotal) (2)

This relationship has been previously validated on 132 mRNA sequences where the AGiotal
varied from -10 to 16 kcal/mol, resulting in well-predicted translation rates that varied by over
100,000-fold(Salis et al, 2009). The apparent Boltzmann constant, 8, has been measured as 0.45
+ 0.05 mol/kcal, which was confirmed in a second study (Hao et al, 2011). In practice, we use a
proportional constant of 2500 to generate a proportional scale where physiological common
translation initiation rates vary between 1 and 100,000 au.

In the initial state, the mRNA exists in a structured conformation, where its free energy of
folding is AGmrna (AGmrna IS negative). After assembly of the 30S ribosomal subunit, the last
nine nucleotides of its 16S rRNA have hybridized to the mRNA while all non-clashing mRNA
structures are allowed to fold. The free energy of folding for this mRNA-rRNA complex is
AGrnarrna (AGmrnarrna iS negative). mRNA structures that impede 16S rRNA hybridization or
overlap with the ribosome footprint remain unfolded in the final state. These Gibbs free
energies are calculated using a semi-empirical free energy model of RNA and RNA-RNA
interactions(Mathews et al, 1999; Xia et al, 1998) and the minimization algorithms available in
the Vienna RNA suite, version 1.8.5(Gruber et al, 2008).

Three additional interactions will alter the translation initiation rate. The tRNA™ET anti-codon

loop hybridizes to the start codon (AGg.rt is most negative for AUG and GUG). The 30S
ribosomal subunit prefers a five nucleotide distance between the 16S rRNA binding site and the
start codon; non-optimal distances cause conformational distortion and lead to an energetic
binding penalty. This relationship between the ribosome's distortion penalty (AGspacing > 0) and
nucleotide distance was systematically measured. Finally, the 5' UTR binds to the ribosomal
platform with a free energy penalty AGstandby-
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There are key differences between the first version of the RBS Calculator (v1.0)(Salis et al,
2009), and version v1.1 (Salis, 2011). The algorithm's use of free energy minimization was
modified to more accurately determine the 16S rRNA binding site and its aligned spacing,
particularly on mRNAs with non-canonical Shine-Dalgarno sequences, and to accurately
determine the unfolding free energies of mMRNA structures located within a protein coding
sequence. For the purpose of this work, a ribosome binding site (RBS) sequence is defined as
the 35 nucleotides located before the start codon of a protein coding sequence within a mRNA
transcript. However, the presence of long, highly structured 5' UTRs can further alter the
translation initiation rate of a protein coding sequence by manipulating its AGstandby. The
ribosome's rules for binding to long, highly structured 5' UTRs has been characterized (Espah
Borujeni et al), and will be incorporated into a future version of the RBS Calculator (v2.0).

The RBS Library Calculator

The objective of the RBS Library Calculator is to identify the smallest RBS library that uniformly
varies a selected protein's expression level across a targeted range to efficiently identify
optimal protein expression levels and quantify expression-activity relationships. The RBS Library
Calculator designs degenerate ribosome binding site (RBS) sequences that satisfy the following
mini-max criteria: first, the RBS sequence variants in the library shall express a targeted protein
to maximize coverage, C, of the translation rate space between a user-selected minimum (rmin)
and maximum rate (rmax); second, the number of RBS variants in the library, Nyariants, Shall be
minimized. The allowable range of translation rates is between 0.10 au and over 5,000,000 au
though the feasible minimum and maximum rates will also depend on the selected protein

coding sequence. These criteria are quantified by the following objective function:
F=10C-0. OZNvariants (3)

The coverage of an RBS library is determined by first converting the translation rate space into a
logio scale and discretizing it into equal width bins. For this work, the bin width W is called the
search resolution as it ultimately defines how many RBS variants will be present in the
optimized RBS library. The total number of bins is determined by the user-selected maximum
and minimum translation rates and the search resolution W, while the RBS library coverage Cis
determined by the ratio between filled bins and total bins, according to the following
equations:

_ (rmax/rmin)] __ Byillea
Btotal - [ w C B Btotul (4)
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For example, there will be a total of 17 bins when using a search resolution W of 0.30 and a
translation rate space between 1.0 au to 100,000 au. A bin at position y in translation rate
space will be filled when at least one RBS variant in the library has a predicted translation
initiation rate that falls within the range [y / 10", y 10"]. An RBS library's coverage is one when
all translation rate bins are filled by at least one RBS variant. The objective function F has a
maximum value of 1 - 0.02 Bi.ta, Which is achieved when all bins are filled by a single RBS
variant, yielding the most compact RBS library that expresses a protein with uniformly
increasing translation rates.

The solution to the RBS Library Calculator optimization problem is a list of near-optimal
degenerate ribosome binding site sequences. A degenerate RBS is a 35 nucleotide sequence
that uses the 16 letter IUPAC code to indicate whether one or more nucleotides shall be
randomly incorporated at a particular sequence position. The alphabet defines the inclusion of
either single nucleotides (A, G, C, U/T), double nucleotides (W, S, M, K, Y, B), triple nucleotides
(D, H, V), or all four nucleotides (N) in each sequence position. Nyariants is determined by the
number of sequence combinations according to these degeneracies.

Chemical synthesis of degenerate DNA sequences creates a mixture of DNA sequence variants,
which are then incorporated into a natural or synthetic genetic system, either plasmid- or
chromosomally-encoded. Chemical synthesis of the degenerate DNA oligonucleotides may
introduce non-random bias in nucleotide frequency, due to differences in amidite substrate
binding affinities. The concentrations of manually mixed precursors can be adjusted to
eliminate this bias.

Several properties of the RBS Library Calculator's mini-max optimization problem have
influenced the selection of an appropriate optimization algorithm. First, the number of possible
degenerate RBS sequences is very large (16°), though many of these sequences will yield the
same objective function. Further, the relationship between a degenerate RBS sequence and its
library coverage is highly non-linear and discontinuous. The addition of degeneracy to some
nucleotide positions will greatly increase library coverage, whereas modifying other nucleotide
positions has no effect on coverage. The nucleotide positions that affect the library coverage
will typically include portions of the Shine-Dalgarno sequence, but also other positions that
modulate the energetics of mRNA structures. The locations of mRNA structures will depend on
the selected protein coding sequence, which will significantly influence the optimal degenerate
RBS sequence. Consequently, an evolutionary (stochastic) optimization algorithm was chosen to
rapidly sample diverse sequence solutions, and use mixing (recombination) to identify
nucleotide positions that are most important to maximizing library coverage.
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A genetic algorithm is employed to identify an optimal degenerate RBS sequence that
maximizes the objective function, F. The procedure performs iterative rounds of in silico
mutation, recombination, and selection on a population of degenerate RBS sequences to
generate a new population with improved fitness (Figure 1B). First, a mutation operator is
defined according to the following frequencies: (i) 40%, two degenerate sequences are
recombined at a randomly selected junction; 15%, the degeneracy of a randomly selected
nucleotide is increased; 15%, the degeneracy of a randomly selected degenerate nucleotide is
decreased; 15%, a non-degenerate nucleotide is mutated to another non-degenerate
nucleotide; 10%, the degenerate sequence is not modified (designated elites); or 5%, a new
degenerate sequence is randomly generated. Second, one or two degenerate sequences in the
population are randomly selected with probabilities proportional to their evaluated objective
functions, a randomly selected mutation operator is performed on these degenerate
sequences, and the results are carried forward into the new population. This process is
repeated until the objective function for the most fit sequence has reached the maximum
value, the maximum objective function has not changed for a user-selected number of
iterations, or when the total number of iterations has reached a user-selected maximum. The
top five degenerate RBS sequences in the population are then returned, including the predicted
translation initiation rates for each variant in the RBS library.

The genetic algorithm typically requires 50 to 100 iterations to identify optimal degenerate RBS
sequences, starting from a population of randomly generated, non-degenerate RBS sequences.
During the optimization procedure, the most common mutational trajectory is the broad
expansion of sequence degeneracy towards maximizing coverage of the translation rate space,
followed by targeted reduction of degeneracy to eliminate RBS variants with similar translation
rates. The number of iterations is substantially reduced when a rationally designed RBS
sequence is used as an initial condition, particularly when the selected maximum translation

rate is over 10,000 au.

Kinetic Model Formulation, Transformation, and Identification

Mass action kinetics was utilized to formulate an ordinary differential equation model to
guantify the rates of production and consumption of the 24 metabolite, free enzyme, and
bound enzyme species in the pathway's reaction network. A derivation is found in the
Supplementary Information. The reaction network includes 10 reversible reactions catalyzed
by Idi, IspA, CrtE, CrtB, and Crtl enzymes, including reversible binding of substrate to enzyme
and reversible unbinding of product from enzyme (Supplementary Figure 4). IspA, CrtE, CrtB,
and Crtl catalyze multiple reactions. These reactions convert intracellular isopentenyl
diphosphate (IPP) and Dimethylallyl diphosphate (DMAPP) to neurosporeneid. An additional
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five mole balances on intracellular enzyme were derived. There are 48 unknown kinetic
parameters.

De-dimensionalization of the model was carried out by transforming all metabolite and enzyme
concentrations into ratios, compared to the concentrations in a reference pathway variant. For
example, the forward v; and reverse v,; reaction rates for the binding of IPP to idi enzyme were
multiplied and divided by the reference pathway's concentrations for IPP and free idi enzyme,
yielding:

[IPP] [idi}fTee [cm1]

_ . g-total Lat)y " _
vp1 = (ky * [IPPlyes = [idil 7o) = PPl liai]fo%et 1= (kg s [CM1rer) s [CM1],0f
N
apparent kinetic parameter metabolite enzyme apparent kinetic parameter enzyme (5)
concentration concentration concentration
ratio ratio ratio

As a result, metabolite and enzyme concentration ratios are compared across pathway variants
using dimensionless units. Accordingly, the total enzyme concentration ratios for each pathway
variant were determined by comparing a pathway variant’s translation rates to the reference
pathway's translation rates. As an example, the crtE concentration ratio is:

[CrtE]mml __ translation initiation rate of crtE in a pathway variant (6)
[CrtE]ﬁg?al translation initiation rate of crtE in the reference pathway
enzyme translation initiation rate
concentration ratio
ratio

The choice of the reference pathway variant will alter the apparent kinetic parameter values,
but it will not alter the solution to the ODEs; increases in the apparent kinetic parameters are
compensated by decreases in the enzyme concentration ratios. The reference pathway (#53)
has predicted translation initiation rates of 72268, 20496, and 203462 au for crtE, crtB, and crtl,
respectively.

Numerical integration of the transformed kinetic model is carried out using a stiff solver
(ode23s, MATLAB) over a 7 hour simulated time period to correspond to experimental
conditions. The inputs into the kinetic model are the kinetic parameter values and the total
enzyme concentration ratios. The resulting neurosporene production fluxes r, are related to
measured neurosporene productivities by comparison to the reference pathway according to:

Tp,i __ predicted neurosporene productivity of the ith pathway variant (7)
Tpref measured neurosporene productivity of the reference pathway
. N . . .
simulated production pathway productivity
flux ratio ratio

The reference pathway has a neurosporene productivity of 196 ug/gDCW/hour when grown in
LB media (non-optimized growth conditions). Each pathway variant will have a different
neurosporene production flux and predicted neurosporene productivity as a result of the


https://doi.org/10.1101/001008

bioRxiv preprint doi: https://doi.org/10.1101/001008; this version posted December 2, 2013. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

different total enzyme concentrations, controlled by the crtEBI translation rates according to
Equation 6. The kinetic parameters remain constant for all pathway variants.

Model reduction and identification were carried out to reduce the number of model degrees of
freedom and to determine the kinetic parameter values that best reproduced the measured
neurosporene productivities for the 73 pathway variants designed using Search mode. From the
48 unknown kinetic parameters, 10 non-independent parameters were eliminated, and an
additional 5 were constrained using available biochemical data (Supplementary Information). A
genetic algorithm was employed to identify the model's kinetic parameter values that best
predicted the neurosporene productivities of the 72 non-reference pathway. On average, the
resulting model predicts the neurosporene productivities to within 32% of the measurements
(Supplementary Figure 5). We then performed inverse model reduction to determine the 48
kinetic parameter values that define the identified kinetic model (Supplementary Table 8).
Model identification can be performed on the non-reduced model, though it would result in
greater variability in best-fit kinetic parameters, longer optimization convergence times, and a
requirement for more characterized pathway variants to achieve the same predictive error.
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