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Abstract  

The increasing quantity and quality of functional genomic information motivate the 

assessment and integration of these data with association data, including data originating 

from genome-wide association studies (GWAS). We used previously described GWAS 

signals (“hits”) to train a regularized logistic model in order to predict SNP causality on 

the basis of a large multivariate functional dataset. We show how this model can be used 

to derive Bayes factors for integrating functional and association data into a combined 

Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of 

DNA Elements (ENCODE), from published expression quantitative trait loci (eQTL), 

and from other sources of genome-wide characteristics. We trained the model using all 

GWAS signals combined, and also using phenotype specific signals for autoimmune, 

brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the 

autoimmune GWAS signals gave the most reliable results. We found SNPs with higher 

probabilities of causality from functional characteristics showed an enrichment of more 

significant p-values compared to all GWAS SNPs in three large GWAS studies of 

complex traits. We investigated the ability of our Bayesian method to improve the 

identification of true causal signals in a psoriasis GWAS dataset and found that 

combining functional data with association data improves the ability to prioritise novel 

hits. We used the predictions from the penalized logistic regression model to calculate 

Bayes factors relating to functional characteristics and supply these online alongside 

resources to integrate these data with association data.  
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Author Summary 

Large-scale genetic studies have had success identifying genes that play a role in 

complex traits. Advanced statistical procedures suggest that there are still genetic variants 

to be discovered, but these variants are difficult to detect. Incorporating biological 

information that affect the amount of protein or other product produced can be used to 

prioritise the genetic variants in order to identify which are likely to be causal. The 

method proposed here uses such biological characteristics to predict which genetic 

variants are most likely to be causal for complex traits.  

 

Introduction 

Genome-wide association studies (GWAS), which investigate the association 

between genetic variation and phenotypic traits, have identified many genes associated 

with human diseases [1]. However, despite considerable advances, much of the estimated 

heritability remains unaccounted for. Purcell et al. [2] showed that single nucleotide 

polymorphisms (SNPs) from GWAS with sub-threshold p-values account for a 

considerable proportion of the variance in independent samples suggesting that they are 

enriched for causal SNPs or their proxies. The issues of small sample size, low minor 

allele frequency, and lack of linkage disequilibrium (LD) between genotyped SNPs and 

the un-genotyped causal SNPs present challenges to detecting truly causal variants 

among near-significant genetic associations.   

Emerging experimental data from various sources have suggested that the functional 

characteristics of specific genomic regions, such as histone modifications, DNase I 

hypersensitive sites, transcription factor binding sites, and expression quantitative trait 

loci (eQTL) among others, could offer biological explanations for many variants found to 

be associated with disease [3, 4, 5, etc.]. In September 2012, a series of publications from 

the ENcyclopedia of DNA Elements (ENCODE) Project Consortium, had the key 

message that approximately 80% of the human genome, including non-coding and 

intergenic regions, overlaps with at least one functional element that may be active in 

certain cell types, under defined physiological conditions [6]. Furthermore, putative 

disease-causing variants show significant enrichment for multiple functional 

characteristics from the ENCODE Project [7]. For example, GWAS variants or variants 
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with which they are in perfect LD are more frequently localized to DNase I 

hypersensitive sites than would be expected by chance [8].   

Various tools are available that allow one to summarise the functional characteristics 

of variants in a given region. For instance, Boyle et al. developed RegulomeDB, a web-

based interface that provides an easily interpretable score from an amalgamation of many 

functional characteristics derived from a variety of sources to annotate non-coding 

variants [9]. Other programs such as HaploReg [10] and SNPnexus [11] perform similar 

functions and account for LD. Although these programs provide facile access to summary 

information about the location of variants, they are only able to provide a relatively 

arbitrary and crude ranking of functional significance. The ranking scale used in 

RegulomeDB is based on the number of categories into which a variant falls with the 

highest scores given to those variants that fall into both an eQTL and a transcription 

factor binding site, regardless of cell type or specific transcription factor.  

The central challenge in the interpretation of genetic associations lies in the 

processing and meaningful integration of a hugely diverse range of information. Having 

derived a score for a region containing a candidate variant, it has to be integrated with 

association evidence. We proposed the use of empirically derived weightings within a 

Bayesian framework [3]. More recently Schork et al. suggested the use of stratified False 

Discovery Rate (sFDR) and Darnell et al. proposed multi-thresholding in a manner that 

they say is equivalent to varying the significance threshold at each marker depending on 

the prior information [12,13]. In order to implement these approaches one needs to define 

appropriate weights. For instance, Schork et al. [12] used an LD-weighted scoring 

algorithm, and Kindt et al. [14] recently published a multivariate logistic regression 

approach. However, neither of these approaches is easily scalable to the very large 

number of functional characteristics that are becoming available.  

The primary objectives of this study are to describe an empirically justified method to 

identify which functional characteristics are best correlated with GWAS hit SNPs, to 

provide clues to the etiology of such traits, and to develop and implement a method to 

incorporate functional characteristics with statistical information in association studies. 

To achieve these objectives we use a machine learning approach, elastic net (a 

regularized logistic regression), to predict causality of a SNP based on information from 
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543 functional characteristics. We explore models based on all GWAS significant SNPs 

and also subsets of significant SNPs selected on the basis of phenotype and p-value. 

Functional characteristics are considered individually or in groups. We report a) the 

accuracy of the predictions to demonstrate the utility of the method and to investigate the 

behaviour of the different models, b) the frequency, correlation between and coefficients 

of the functional characteristics providing insight about their functional relevance to 

disease, c) a prediction score for each SNP, and d) details of how to combine this score 

with association statistics in a formal Bayesian framework.  

We provide online scripts that can be employed so the method can be used by other 

researchers using additional functional characteristics 

(http://www.camh.ca/en/research/research_areas/genetics_and_epigenetics/Pages/Statistic

al-Genetics.aspx). For the best models we provide the probability of causality (the 

prediction score) for each SNP, the corresponding Bayes factor (BFannot) and scripts to 

combine BFannot with GWAS association signals. 

 

Results 

Functional enrichment in GWAS hits 

Frequencies of functional characteristics in GWAS hits compared to non-hits 

were compared using Fisher’s exact test. Our analyses indicate that GWAS hits are 

enriched for most functional characteristics compared to GWAS non-hits, except for 

splice sites and micro RNA (miRNA) targets, perhaps due to the very low frequency of 

these two classes of functional characteristics compared to the others (Table 1 and Table 

2). 

The histone modification data from the Broad Institute had the highest 

frequencies in GWAS hits, and the lowest p-values for enrichment. Many functional 

characteristics, most notably miRNA, were very infrequent, but the general picture was 

that their frequency in GWAS hits was greater than in GWAS non-hits.  

We examined the correlations among the various functional characteristics 

(Figure 1 and Figure 2). The separated-variable analysis included measures of functional 

characteristics from different cell lines as individual factors, whereas the clumped-

variable analysis grouped data from different cell lines for the same functional 
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characteristic. The clumped analysis showed a strong correlation between the two 

conservation measures (PhyloP and PhastCons), as well as strong correlations among the 

three histone marks (H3k4Me1, H3k4Me3 and H3k27Ac), and to a lesser degree among 

the histone marks and transcription factor binding sites. The separated analysis revealed 

additional correlations among cell types investigated for the DNase I hypersensitive 

characteristics from Duke University, and to a lesser degree among the DNase I 

hypersensitive characteristics from the University of Washington, and between these two 

groups. These results highlight the issue of correlations among functional characteristics, 

many of which simply represent the same genomic feature, for example a promoter 

element measured by different technologies. One advantage of elastic net as a regularized 

logistic regression method is its ability to accommodate highly correlated variables. 

 

Predictive accuracy of functional characteristics 

We fitted predictive models for GWAS hit status via elastic net, using clumped 

and separated functional variable sets, using high-confidence (p<5x10-8) and low-

confidence (p<10-5) GWAS hits, and using all GWAS hits (“non-phenotype specific”) as 

well as hits classified according broad phenotype areas. We primarily investigated 

predictive accuracy in a separate test set that was not involved in the fitting of the 

models. 

For all of our fitted models, the area under the curve (AUC) of a receiver-

operating characteristic (ROC) curve was similar in the test and training sets, suggesting 

that the models had not been over-fit (data not shown). 

We found that the ROC curves for both the separated and clumped analyses had 

similar AUCs: for instance 0.58 in the test set for the non-phenotype specific clumped 

analysis and 0.59 in the test set for the separated analysis.  

Two analyses emerged as most predictive based on integrating results from ROC 

curves, positive predictive values, and histograms of the probabilities of causality (the 

prediction scores). These were the analyses based on non-phenotype specific and the 

autoimmune GWAS analyses. Best results were obtained from analyses using high-

confidence GWAS hits. Results for clumped and separated functional variables were very 

similar (Table 3 and Figure 3).  
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We also investigated positive predictive values (PPVs) and histograms of the 

probability of causality (prediction score). Overall, the non-phenotype specific analysis 

using high-confidence GWAS hits produced the highest PPVs as the threshold for 

declaring a positive hit increased (Figure 4). Histograms of the probability of causality in 

the test data allowed visualization of the separation (or non-separation) of true hits versus 

non-hits. We found that for the non-phenotype specific analysis and for the autoimmune 

analysis, the use of high-confidence GWAS hits in the training data improved the 

separation of true hits from non-hits in the test data (Figure 5).  

 The results from the histograms of the predicted values from the model were in 

accord with the PPV results: the non-phenotype specific clumped analysis on high-

confidence GWAS hits separated true hits from non-hits most, with the modes of the two 

distributions clearly distinct. These results suggest that the weighted elastic net procedure 

was successful in producing models that performed well in identifying true hits as well as 

in identifying true non-hits. While we could not obtain reliable PPV estimates for the 

autoimmune analysis due to insufficient data, considering that the PPV results in the non-

phenotype specific analysis mirrored the results from the histogram of predicted scores, 

the separation of non-hits from hits in the histogram was taken as sufficient evidence that 

the high area under the ROC curve for the autoimmune clumped analysis was also due to 

positive predictive power.  

For the non-phenotype specific clumped analysis, the highest Bayes factor for 

annotation (22.84) was obtained for rs11177, which is a known GWAS hit associated 

with osteoarthritis on chromosome 3. It had a predicted value of 0.96. This SNP held all 

functional characteristics except three low-frequency characteristics: splice sites, miRNA 

targets, and Gencode transcription start sites. Thirty-five percent of the variants with the 

top 500 Bayes factors were known GWAS hits. The frequency of hits in the full data was 

0.44%. The mean and median of the predicted values for the true hits in the test set were 

higher than those for the true non-hits (for hits: mean= 0.55 and median= 0.54; for non-

hits: mean= 0.46 and median= 0.45). 

For the autoimmune clumped analysis, the SNP with the highest Bayes factor was 

the same as for the non-phenotype specific clumped analysis, rs11177.  
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Investigation of the relative importance of different functional characteristics 

The importance of a particular functional characteristic in predicting whether or 

not a SNP is more probable to be a GWAS hit is assessed by means of the magnitude of 

the coefficient assigned to the characteristic. In both the non-phenotype specific and 

autoimmune analyses we note that the nonsynonymous SNP functional characteristic had 

one of the highest coefficients (Figure 6). (The coefficients for both models are provided 

in Supplementary Information Part A.) GTEx eQTLs had the highest coefficient in the 

autoimmune analysis. 

 

Investigating functional predictions in the context of known GWAS  

 We investigated: schizophrenia from a meta-analysis GWAS involving the first 

sample from the Psychiatric Genomics Consortium (PGC1) combined with a Swedish 

sample [15], systolic blood pressure from the International Consortium for Blood 

Pressure (ICBP) [16], and height from Genetic Investigation of Anthropomorphic Traits 

(GIANT) Consortium [17]. The studies analyzed over 35,000 cases and 47,000 controls, 

200,000 individuals and, and over 180,000 individuals, respectively. 

For each study, we stratified the quantile-quantile plots according to predicted 

value bins (Figure 7). We found that SNPs with higher predicted values from the non-

phenotype specific clumped analysis tended to deviate more from the line corresponding 

to the overall GWAS, in favour of more association signals. Similar results were obtained 

for all three GWAS analyzed: schizophrenia, systolic blood pressure and height. 

We obtained summary data obtained from a psoriasis GWAS study from Strange 

et al. [18]. We then selected 15 SNPs that were subsequently discovered in a meta-

analysis [19]. Using summary association statistics from the Strange et al. study we 

derived Bayes factors for association (BFassoc) and Bayes factors based on association 

data combined with the annotation of functional characteristics (BFassoc*BFannot) for each 

SNP. We ranked the SNPs according to BFassoc, and ranked them again according to 

BFassoc*BFannot to determine whether annotating SNPs with their functional characteristics 

improved their rank (larger Bayes factors were assigned smaller ranks). BFannot values 

were derived from the non-phenotype specific clumped analysis using high-confidence 

GWAS hits. As negative controls, we took 8 independent sets of a random 15 SNPs 
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(which were not in high LD with any of the 15 hits and had similar p-values to the hits) 

and compared the difference in the sum of ranks based on BFassoc versus BFassoc*BFannot. 

The procedure was repeated using BFannot derived from the autoimmune clumped 

analysis. 

 Of the 15 true psoriasis hit SNPs, 7 had better ranks based on BFassoc*BFannot 

compared to association information on its own (BFassoc). The difference of the sum of 

ranks assigned to the 15 hits was nearly 48,000 based on BFassoc*BFannot compared to 

BFassoc, with the former having the lower sum (better ranks). Many of the hit SNPs had 

very large ranks based merely on the association data (>3000), which was also the case 

for ranks based on BFassoc*BFannot, but the trend was in the right direction with better 

ranks obtained when combing the association information with the annotation of 

functional characteristics. Of the 12 random sets of 15 independent SNPs, the trend was 

in the opposite direction for 10 of the sets (with SNPs having better ranks based on 

BFassoc alone). Of the remaining 2 sets, one of them had the same number of the SNPs 

with improved ranks based on BFassoc*BFannot compared to BFassoc as did the analysis with 

the actual hits (7 out of 15), and the other random set had 8 SNPs that showed 

improvement. However, for those random SNP lists the difference in the sum of ranks 

from BFassoc compared to BFassoc*BFannot was less than half of the improvement of ranks 

seen for the 15 hits. Comparable results were seen when using BFassoc based on the 

autoimmune clumped analysis. The difference between the sum of the ranks for BFannot 

compared to BFassoc*BFannot was over 49,000, with improved ranks of the hits based on 

the BFassoc*BFannot ranks. Of the random lists the largest difference in the sum of ranks 

from BFassoc compared to BFassoc*BFannot was less than a third of the improvement of 

ranks seen for the 15 hits. 

 

Discussion  

The release of major genome wide datasets such as ENCODE and NIH Roadmap 

projects, offers a unique opportunity to re-assess the existing GWAS corpus and draw 

conclusions about which functional characteristics in the human genome are most likely 

to indicate causality in association studies. We previously considered Bayes factors based 

on a limited set of functional characteristics, considering each functional characteristic 
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separately [3]. Here we have extended our Bayesian framework by developing Bayes 

factors for multiple functional characteristics, considering all functional characteristics 

jointly. We used a regularized logistic regression to fit predictive models allowing for 

large numbers of both qualitative and quantitative functional characteristic data. We 

performed our analysis under a wide variety of conditions, including phenotype specific 

analysis for autoimmune, brain-related, cancer, and cardiovascular disorders. 

Our results confirm previous findings of differences in functional enrichment in 

GWAS hits compared to non-hits, which provided a rationale for utilizing functional 

characteristics as predictors of SNP causality. We found that using high-confidence 

GWAS hits (p<5x10-8) as a classifier resulted in more predictive power. However, if the 

number of GWAS hits that are available for training are too low, then the predictions 

become imprecise. This was a reoccurring theme for many of the phenotype specific 

analyses. The separation between true GWAS hits and non-hits in the test set, in addition 

to the AUC, should be used to assess the predictive power of a model. Using those 

methods we found that the non-phenotype specific and the autoimmune analyses on 

clumped variables using high-confidence GWAS hits were most reliable. For instance, 

although the AUCs were slightly higher for the separated analyses, the classification of 

true GWAS hits and non-hits was better in the clumped analysis, suggesting that the 

clumped analysis may provide more accurate predictions. The benefit of the separated 

analysis is that it allows researchers to identify characteristics specific to certain 

conditions, for example specific cell types, which can be useful for planning further 

investigations, but the increased number of variables and sparsity of the data reduces the 

power of this type of analysis.  

A limitation to the study is the restricted amount of tissue- or cell-specific data, 

especially in light of the findings that enrichment of disease-specific GWAS hits can 

differ in certain cell types, for example for DNase I hypersensitive sites [8]. Incorporating 

additional functional characteristics, for example those from relevant tissue types, will 

likely improve the understanding of which characteristics are associated with GWAS hit 

SNPs, especially for the phenotype specific analyses.  

The current number of GWAS hits in the GWAS Catalogue makes it challenging 

to sub-divide hits into phenotype specific traits. However, preliminary results showing 
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differences in the coefficients for the functional characteristics suggest that as the number 

of GWAS hits grows, a phenotype specific approach from which to derive Bayes factors 

for prioritization could be more biologically relevant than simply an approach that 

combines all GWAS hits together. Interestingly, although it was one of the largest lists, 

the brain-related list did not have a greater predictive power than expected by chance. 

This finding only serves to reinforce the widely appreciated complexity of brain-related 

disorders. Nevertheless, schizophrenia GWAS significant SNPs showed enrichment of 

SNPs with high predicted values from the model, as did SNPs associated with systolic 

blood pressure or height. 

Using manually curated phenotype lists as done here may not be the best option. 

Using lists that are more reproducible, such as those based on the Experimental Factor 

Ontology (EFO) definitions, may be more appealing. However, most of the lists created 

using the EFO definitions were relatively small, covering less than 10% of the total 

GWAS hits on the common genotyping arrays, and thus this method of classifying 

GWAS hits was deemed to be not feasible, but may be possible in the future as the size of 

GWAS Catalogue grows still larger.  

The coefficient for non-synonymous SNPs was the highest in the non-phenotype 

specific analysis and a close second in the autoimmune analysis. This result suggests that 

being a variant in a gene that causes a protein alteration is an important indicator of 

whether or not a genetic variant will be truly associated with a phenotype. The result 

agrees with the findings that the top associated SNPs and also those that are nominally 

associated with a phenotype are more likely to overlap genes than non-GWAS SNPs [20]. 

GTEx eQTLs came up as the most important factor in the autoimmune analysis. Two of 

the experiments analyzed eQTLs from lymphoblastoid cells, which may explain the 

importance of this functional characteristic in the autoimmune traits.  

We have shown that our method can be used to calculate Bayes factors for 

annotation (BFannot). These can be applied to GWAS data to prioritise near-significant 

variants for follow-up based on the likelihood of being causal in light of their functional 

characteristics. The method takes LD into account, and uses information from the March 

2012 release of the 1000 Genomes Project to map relevant annotation information from 

all variants in high LD, including both SNPs and indels. In addition to being used for 
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variant prioritization of GWAS data, the methodology could be applied in the future to 

the prioritization of variants from fine mapping and sequencing studies. Here, the 

question arises as to whether the models described here, which were created based on 

common variation, could be applied to rare variation. In time, larger databases of true 

causal variation, including rare variation, will allow our method to be applied with 

increasing accuracy. 

 

Methods 

Representative GWAS SNPs 

To represent the characteristics of a typical GWAS panel, markers from the 

Affymetrix Genome-Wide Human SNP Array 6.0, the Illumina Human1M-Duo 

Genotyping BeadChip, and the Illumina HumanOmni1-Quad BeadChip were 

downloaded from the UCSC genome browser, using the table browser tool [21]. The 

union of these three arrays consisted of 1,936,864 unique SNPs from the 22 autosomes. 

Because of its unique LD and genic properties, the MHC region (chr6:29624809 -

33160245 on build 37) was excluded from downstream analyses. 

LD proxies or “tagging” SNPs (r2>=0.8) for the GWAS panel SNPs were 

identified using VCFtools [22] based on data from the (N=379) Europeans (Phase I, 

version 3, March 14, 2012) in the 1000 Genomes Project [23].  

GWAS “non-hits” were defined as all those SNPs in our union GWAS set which 

were neither a GWAS “hit” (see below), nor in high LD (r2>=0.8) with a GWAS hit.  

 

GWAS hits 

To obtain a set of SNPs (and their LD proxies) with good prior evidence of 

causality, we downloaded the Catalogue of Published Genome-wide Association Studies 

from the National Human Genome Research Institute (NHGRI) 

(http://www.genome.gov/gwastudies) [1] on August 6, 2013. This catalogue contains a 

list of SNPs that have been shown to be associated with a particular trait in a GWAS at a 

suggestive p-value <10-5. We removed SNPs in the Catalogue that were not present in the 

representative GWAS set defined above, and similarly removed SNPs on the sex 

chromosomes or in the MHC region.  
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Functional characteristics 

We acquired functional data from a variety of sources (Table 4). A full list is 

provided in Supplementary Table A. Much of the data was downloaded from the UCSC 

genome browser using the table browser tool [21]. Additionally, a substantial proportion 

of the data was derived from the ENcyclopedia of DNA Elements (ENCODE) Project 

Consortium, which developed and implemented a range of experimental techniques with 

the aim of identifying the functional regions of the human genome, particularly including 

non-coding regions [24]. Data from this project that were used included transcription 

factor binding sites (TFBSs), three histone modifications (H3K4Me1, H3K4Me3, 

H3K27Ac), and DNase I hypersensitive sites. H3K4Me1 is associated with enhancers 

and DNA regions downstream of transcription starts, and often found near regulatory 

elements; H3K4Me3 is associated with promoters active or poised to be active, and often 

found near promoters; H3K27Ac thought to enhance transcription possibly by blocking 

repressive histone mark H3K27Me3, and often found near active regulatory elements. 

DNase I hypersensitive sites are regions in the genome with high affinity of being 

cleaved by the DNase I enzyme. The technologies for identifying the functional 

characteristics mentioned above used chromatin immunoprecipitation followed by 

sequencing (ChIP-seq), with the exception of the University of Washington (UW) group 

that identified DNase I hypersensitive sites using Digital DNase I. This method involves 

DNase I digestion of intact nuclei, isolation of DNaseI “double-hit” fragments, and direct 

sequencing of fragment ends. Peaks are regions that are enriched in the captured fraction 

of the DNA suggesting they are occupied by the protein of interest (any score > 0). We 

used a binary variable to indicate whether a SNP was within a peak.  

Two types of conservation scores from 46 placental mammals (PhyloP and 

PhastCons) were incorporated. Both PhyloP and PhastCons scores are derived using 

phylogenetic hidden Markov models. These two measures have their own advantages. 

PhyloP scores do not take into account conservation at neighbouring sites, whereas 

PhastCons estimates the probability that each nucleotide belongs to a conserved element. 

Expression quantitative trait loci (eQTLs), which are variants that are correlated 

with gene expression, were included. In particular those that fall within 2Mb (+/-1Mb 
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upstream and downstream) (cis-eQTLs) of the gene of interest were used. These data 

were derived from the NCBI-hosted GTEx Browser 

(http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) and the UK Brain Expression 

Consortium [25].  

Summary information concerning the location or function within a gene (coding-

non-synonymous, coding-synonymous, splice site, untranslated regions, etc) was derived 

from dbSNP. Non-synonymous SNPs, were classified as those SNPs with one of the 

following characteristics: stop-gain (nonsense), missense, stop-lost, frameshift or inframe 

indel. Splice site regions were defined as being within five base pairs upstream and five 

base pairs downstream of the exon start site or the exon end site. The UCSC gene table 

was used to determine the exon start and end sites. The UCSC gene table is comprised of 

a set of gene predictions based on data from RefSeq, GenBank, the Consensus Coding 

Sequence (CCDS) variable, Rfam, and the Transfer RNA Genes variable. Additional 

characteristics used were 3' targets for microRNA (miRNA), and also transcription start 

sites as described by Gencode [26]. As miRNA targets are known to be substantially 

over-predicted, we used a conservative miRNA target dataset based on conserved 

mammalian microRNA regulatory target sites in the 3' UTR regions of Refseq Genes, as 

predicted by the TargetScan algorithm (Human 5.1) [27]. 

 All SNPs in our GWAS hit and GWAS non-hit sets, along with all their LD 

proxies, were annotated with all the functional characteristics defined above. Each 

GWAS hit and non-hit SNP was then given the maximum value for each functional 

characteristic found across all its LD proxies. 

 

Tests for functional enrichment 

Counts of GWAS hits and non-hits were categorized by annotation value and 

compared using Fisher’s exact test. To verify that results were not unduly influenced by 

correlations (LD) among observations, we also conducted analyses in which genetic 

variants were “pruned” so that all SNPs have r2<0.8 with all other SNPs. The results of 

these analyses were very similar (data not shown). 

Heat maps were constructed using R [28] to compare correlations among the 

various functional characteristics.  
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Regularized logistic regression via elastic net 

We used a regularized form of logistic regression known as elastic net to predict 

GWAS hit versus non-hit status on the basis of the functional characteristics we had 

collected. We first employed this method for a symposium on “Functional annotation of 

GWAS hits” that we organized for the American Society of Human Genetics in 2010. 

Elastic net is a form of machine learning first described by Zou and Hastie [29], and is 

implemented in the glmnet package [20] in R [28]. Briefly, regularization is achieved via 

the subtraction of a penalty term from the log-likelihood prior to maximization. The 

penalty term includes both a “lasso-like” L1 component (the sum of the absolute values 

of all fitted coefficients) and a “ridge-like” L2 component (the sum of squares of all fitted 

coefficients). Two parameters, alpha and lambda, determine the relative importance of 

the L1 versus the L2 term (alpha), and the overall importance of the penalty term in the 

maximization (lambda). Appropriate values for these parameters were found by 10-fold 

cross-validation of the training set (see below). 

Due to the unbalanced nature of the data (many more GWAS non-hits than hits) 

we employed a weighting procedure in the logistic regression to balance the accuracy of 

prediction in both types of markers. We weighted all hits by (Nhits+Nnon-hits)/2Nhits and all 

non-hits by (Nhits+Nnon-hits)/2Nnon-hits, where Nhits and Nnon-hits denote the number of hits 

and non-hits, respectively, in the training set. This procedure has the effect of equalizing 

the importance of hits and non-hits in the logistic regression.  

We randomly selected 60% of our GWAS hits and non-hits to form our training 

set. The remaining 40% of the data (the test set) was used to assess the performance of 

the model using ROC curves and other measures. We repeated the machine learning 

modifying the percentage of the data used in the training and test sets, and all splits 

produced similar results (Supplementary Information Part B). The 60%/40% 

training/test set split was pursued for the remaining analyses. 

The data was split into the training and test sets ten times using a random number 

generator. We found that the beta coefficients were consistent for all of the functional 

characteristics with the exception of those with the lowest frequencies (Supplementary 

Information Part C).  
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For the calculation of Bayes factors, we performed elastic net, using the same 

determined values of alpha and lambda, on the full GWAS hit and non-hit datasets. 

 

Predictive accuracy  

We employed three methods to determine which models had the best predictive 

accuracy: ROC curves, positive predictive values, and histograms of the predicted values 

from the models.  

ROC curves show the sensitivity and specificity of a fitted model. Sensitivity is 

the probability of the model providing a true positive result (identifying a true GWAS hit 

in the test set). Specificity is the probability of the model providing a true negative result 

(identifying a true GWAS non-hit in the test set). An AUC of 0.5 indicates a model of no 

predictive value, while an AUC of 1 indicates perfect predictive power. The ROC curves 

were created using the ROCR package [31] in R. 

ROC curves do not reflect how well a model performs within each class given 

unbalanced data (a very large number of non-hit SNPs compared to hits). To capture this 

aspect we also investigated positive predictive values (PPVs), the proportion of SNPs 

with predicted probabilities of causality above a certain threshold (we investigated 

thresholds of 0.5, 0.6, 0.7, 0.8 or 0.9) that are true GWAS hits in the test set. Finally, we 

visualized class separation with histograms of the predicted probabilities of causality by 

class. 

 

Definition of functional variables and GWAS hits  

A variety of functional characteristics were investigated as input variables. One, 

defined as the “clumped” analysis, featured groups of functional characteristics, which 

were collapsed into a single summary variable. The “separated” analysis worked on all 

functional characteristics individually.  

We performed phenotype specific analyses in which the analyses outlined above 

were carried out using phenotype specific GWAS hits as classifiers. An autoimmune list, 

a brain-related list and a cardiovascular list were created using the GWAS Catalogue 

searching for terms relating to those phenotypes. Each list was then verified by an expert 

in the field.  
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Additionally, the GWAS Catalogue was divided up into categories specified by 

the Experimental Factor Ontology (EFO) definitions; however, due to small numbers of 

SNPs in each category this mode of classification is not currently feasible for most of the 

subsets (Supplementary Information Part D). Only the cancer list, which was the 

largest disease-relevant list, was used.  

We defined two sets of GWAS hits for downstream analysis, one based on a weak 

significance threshold of p<10-5 and one based on a strong significance threshold of 

p<5x10-8, as reported in the NHGRI GWAS Catalogue. 

 

Derivation of Bayes Factors 

Bayesian analysis provides the most suitable framework for combining functional 

characteristics (here referred to as “annotation data”), with evidence from an association 

study (“association data”) [32]. We expand on our previous empirically-based approach 

to the calculation of Bayes factors for annotation [3] to allow multiple functional 

characteristics to be considered simultaneously. The posterior odds (Opost) of causality for 

a trait of interest at a given SNP are given by the ratio of the conditional probability of 

causality, given the annotation and the association data, to the conditional probability of 

non-causality: 

  O!"#$ =   
P(Causal|AnnotData,AssocData)

P(NotCausal|AnnotData,AssoscData) 

If we assume the annotation data and association data are independent once conditioned 

on causality, then the posterior odds become: 

 

 

 

 

These three products are, respectively, the prior odds before seeing any 

association and annotation data (O prior), the Bayes factor for annotation data (BFannot) and 

the Bayes factor for association data (BFassoc). We note that this factorization implies that, 

while functional annotations are allowed to be enriched (or impoverished) for causal 

SNPs relative to non-causal SNPs, the enrichment pattern is assumed to be the same for 

 Causal)Not |  DataP(Assoc
 Causal)|  DataP(Assoc

 Causal)Not | taP(Annot Da
 Causal)| taP(Annot Da

 Causal)P(Not 
 P(Causal) ××

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2013. ; https://doi.org/10.1101/000984doi: bioRxiv preprint 

https://doi.org/10.1101/000984


	
   17	
  

rare versus common causal SNPs, and for low-effect size versus high effect size causal 

SNPs. We accept that this is an imperfect approximation, and it assumes among other 

things that SNPs are either causal or non-causal when in reality their effect size can be 

arbitrarily close to zero, but we note that the main limitation of our approach lies with the 

small number of GWAS hits available to us, and subdividing these still further according 

to allele frequency and effect size would be problematic. We also note that by “causal” 

what we actually mean is “causal or in high LD with a causal variant”, as both the 

association data and the annotation data (as defined in our study) are affected by LD 

proxies. 

 In our previous study [3], we noted that if one assumed that (1) all hits in the 

NHGRI GWAS Catalogue were truly causal; and (2) functional annotation enrichment 

patterns were the same for these known hits as for future undiscovered truly causal SNPs; 

then an empirically based estimate for BFannot for a single binary functional characteristic 

would simply be the ratio of its frequency in GWAS hit versus non-hit data. Here we note 

that if we start with the same two assumptions, and further assume that a true (but 

unknown) logistic model exists that relates a set of functional characteristics (which can 

be either binary or quantitative) to the probability that a SNP is truly causal, then one 

reasonable approach to estimating that logistic model would be via regularized logistic 

regression as described above. Once fitted, the estimated odds of causality to non-

causality, obtained from the GWAS hit and non-hit datasets, need only be multiplied by 

the prior odds of non-causality in these dataset (i.e. the ratio of the weighted sample sizes 

of GWAS non-hits to GWAS hits in these data) in order to obtain the Bayes factor for 

annotation. Here, we chose to weight hits and non-hits to appear of equal size, and thus 

our estimate for BFannot is obtained directly as the estimated odds of causality to non-

causality from the regularized logistic regression. 

 Methods for estimating BFassoc from association data are reviewed by Stephens & 

Balding [32]. Here, we use the convenient approximation described by Wakefield [33]. 

 

Investigating the model in the context of known GWAS 

To investigate the relevance of the predictions in a variety of disorders we looked 

at the p-value distribution of SNPs according to their functional class in large GWAS 
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datasets with a substantial fraction of GWAS significant findings. Quantile-quantile plots 

were constructed for each study with multiple lines corresponding to SNPs binned 

according to their predicted value. Predicted values were those derived from the non-

phenotype specific clumped model in which GWAS hits were defined as those SNPs in 

the GWAS Catalogue with p-values of less than 5x10-8. We expected those SNPs with 

higher predicted values to be enriched with GWAS SNPs with more significant p-values, 

whereas those SNPs with lower predicted values would be enriched with less significant 

p-values compared to all SNPs in the GWAS. 

We also selected some SNPs shown to be associated in a large psoriasis meta-

analysis which had not been identified in a previous GWAS study [18, 19]. We then 

determined the effect on the rank of their Bayes Factors in the previous study derived 

either using association data or both association data and functional characteristics.  
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Tables 
 
Table 1. Summary statistics for the functional characteristics in the clumped non-
phenotype specific analysis. 

 
Description Frequency 

of 
annotation 
in GWAS 
hits 

Frequency 
of 
annotation 
in GWAS 
non-hits 

p value 
(Fisher’s exact 
test) 

Odds 
Ratio 

95% 
Confidence 
interval 

splice 0.002 0.002 0.142 1.26 0.78 – 2.02 
non- 0.022 0.007 2.38E-38 3.10 2.67 – 3.59 
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synonymous 
DNase Clusters 0.193 0.141 1.87E-39 1.46 1.38 – 1.54 
GTEx eQTLs 
(all 7 
experiments 
together) 

0.020 0.007 1.69E-31 

2.92 2.50 – 3.41 

UK brain 
eQTLs 0.108 0.081 2.19E-18 1.37 1.28 – 1.47 

UCSC Genes 0.422 0.357 7.36E-35 1.31 1.26 – 1.27 
PhyloP 0.217 0.172 6.56E-27 1.34 1.27 – 1.41 
PhastCons 0.243 0.202 3.63E-20 1.27 1.20 – 1.33 
BroadHistone- 
H3k4Me1 0.637 0.566 2.20E-40 1.35 1.29 – 1.41 

BroadHistone- 
H3k4Me3 0.509 0.434 1.63E-43 1.35 1.30 – 1.41 

BroadHistone- 
H3k27ac 0.587 0.503 1.28E-53 1.48 1.34 – 1.46 

Txn Factor 
ChIP (if 
annotation for 
any TF) 

0.511 0.456 5.26E-24 

1.25 1.10 – 1.14 

miRNA 1.12E-4 7.00E-5 0.116 1.70 0.24 –12.15 
Gencode-Txn 
start sites 0.003 0.002 0.012 1.64 1.08 – 2.49 

 

Table 2. The mean score per SNP across all functional characteristics, classified by 

SNP type and functional variable type.  

 Clumped Separated 

All SNPs 2.7 18.7 

Hits 3.2 25.6 

Non-hits 2.6 17.9 

 

Table 3. Areas under fitted ROC curves, for clumped-variable analyses. Main values 

are for analyses of high-confidence GWAS hits. Values in parentheses are for all SNPs in 

the GWAS Catalogue.  

  

Non-

phenotype 

specific 

Brain-

related Cancer Cardiovascular Autoimmune 

N 4480 (8219) 530 (1741)  300 (607) 369 (716) 570 (863) 
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AUC 

clumped 0.68 (0.58) 0.62 (0.52) 0.67 (0.60) 0.69 (0.61) 0.71 (0.67) 

AUC 

separated 0.70 (0.59) 0.61 (0.51)  0.68 (0.60)  0.66 (0.61) 0.75 (0.71) 

 

Table 4. Summary of functional characteristics.  
Functional 
characteristic  
analysed 

Description  Number and detail of measures 
used in the analysis* 
Clumped Separated  

ENCODE data 
UW DNase I 
hypersensitive sites  

Data from digital DNaseI methodology; 
(“peaks”) 

N/A  226  

Duke DNase I 
hypersensitive sites 

Positions of open chromatin by Formaldehyde-
Assisted Isolation of Regulatory Elements 
(FAIRE) and ChIP-seq experiments; (“peaks”) 

N/A  100  

DNase Clusters 
(v2)** 

Stringent (FDR 1% threshold) for “peaks” of 
DNase I hypersensitivity from uniform 
processing by the ENCODE Analysis Working 
Group of data from UW and Duke  

1  N/A 

Txn Factor ChIP  Transcription factor binding sites (TFBS) from 
ChIP Seq experiments; (“peaks”) 

1 (presence or 
absence in any 
TFBS) 

148 (separated 
by TF, but not 
by cell type 
due to sparse 
data) 

Broad Histone –  
H3K4Me1, 
H3K4Me3, 
H3K27Ac 
 

All are assayed using ChIP-Seq; (“peaks”) 3 (each histone 
mark grouped 
by the 18 cell 
types and/or 
conditions)  

54 (each 
histone mark 
separated by 
cell type and/or 
conditions) 

Conservation 
PhyloP Average scores can be calculated as the sum of 

scores divided by the number of valid data 
values in the block (scores range from 0.1 to 
2.2910) 

1  1  

PhastCons Average scores can be calculated as for PhyloP 
(scores range from 0.1 to 1.0 in this dataset) 

1  1  

Expression quantitative trait loci 
eQTL- GTEx  cis-eQTLs, p<1x10-5 cut-off for variants within 

2Mb of the expressed gene. 
1 (any eQTL) 7 (separated by 

dataset) 
eQTLs - UK Brain  cis-eQTLs, FDR<1% cut-off for variants within 

2Mb of the expressed gene. 
1  1  

Other characteristics 
UCSC Genes UCSC known Gene 1  1  
Splice sites Splice site region defined as -5 to +5 range 

around exon starts & exon ends of UCSC Genes 
1  1  

Nonsynonymous 
SNPs 

Coding Nonsynonymous SNPs defined as stop-
gain (nonsense), missense, stop-lost, frameshift 
or inframe indel 

1  1  

TS miRNA sites Conserved mammalian microRNA regulatory 
target sites for conserved microRNA families  

1  1  

Gencode Based on the GENCODE Genes variable  1  1  
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transcription start 
sites 

(version 17, June 2013) 

* All SNPs are annotated in a binary fashion indicating the presence or absence of a functional 
characteristic, except for the conservation scores, for which the SNPs are assigned a quantitative score. 
** The DNase Clusters v2 file was created by combining the UW and Duke DNase I data that have been 
uniformly processed and replicates merged. Stringent (FDR 1% thresholded) peaks of DNase I 
hypersensitivity from uniform processing by the ENCODE Analysis Working Group were applied. 
Grouping the UW and the Duke DNase I hypersensitive variables are not equivalent to the DNase Clusters 
v2 file, and thus we used the latter to represent DNase I hypersensitive sites in the clumped analysis due to 
the substantial efforts made to combine the data meaningfully.  
 
Figures 

 
Figure 1. Heat map of correlations among the clumped functional characteristics. 

High correlations are seen between the two conservation measures PhyloP and PhastCons 

(represented as Phylo and Phast, respectively). Correlations are also seen among the 

histone modifications, H3k4Me1, H3k4Me3 and H3k27Ac (Me1, Me3 and Ac, 

respectively.) Transcription factor binding sites also show a correlation with the histone 
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modifications. [spli= splice sites, Nons= nonsynonymous SNPs, DHs= DNase I 

hypersensitive sites, GTEx= cis-eQTL data from the GTEx Consortium, UK= cis-eQTL 

data from the UK Brain Consortium, Phylo= PhyloP conservation, Phast= PhastCons 

conservation, Me1= H3K4Me1 histone modification, Me3= H3K4Me3 histone 

modification, Ac=H3K27Ac histone modification, TF= transcription factor binding sites, 

RNA= micro RNA targets, Genc= transcription start sites from Gencode] 

 

 
Figure 2. Heat map of correlations among the separated functional characteristics. 

A full list of the numbered characteristics is provided in Supplementary Table A. The 

white box in the bottom left corner corresponds to high correlation among the histone 

modifications. The less defined white area spanning from 72 to 219 on the x axis 

corresponds to correlation among the transcription factor binding sites, which also show 
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some correlation with the histone modifications. The white box from 220 to 319 on the x 

axis corresponds to a high correlation among the different cell types for the DNase I 

hypersensitivity characteristic from Duke University. The less refined white box from 

around 320 and onwards on the x axis corresponds to the DNase I characteristics from the 

University of Washington. The plot also shows some correlation among the DNase I 

characteristics from both groups. 

 

 
Figure 3. Receiver-operating characteristic (ROC) curves for analyses of clumped 
functional variables and high-confidence GWAS hits. ROC curves were obtained from 
a separate test set. 
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Figure 4. Proportion of correctly identified hits in the test data (positive predictive 

values). In the non-phenotype specific analyses at various cut-offs for defining hits: 

SNPs with predictive values of greater than 0.5, 0.6, 0.7, 0.8, or 0.9. Note that results are 

only plotted for those predictive value thresholds in which there are at least 12 hits 

correctly identified. 
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Figure 5. Predicted values for true GWAS hits and non-hits in the test data. Panels 

show results of clumped-variable analyses on high-confidence GWAS hits for brain-

related [a], cardiovascular [b], cancer [c], autoimmune [d], and non-phenotype specific 

hit sets [e], and for all hits in the GWAS Catalogue for the non-phenotype specific hit set 

[f]. 
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Figure 6. Coefficients of the functional characteristics for the two best analyses. The 

figure shows the coefficients from the clumped analysis on high-confidence GWAS hits 

for the non-phenotype specific versus the autoimmune model. 
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Figure 7. Quantile-quantile plots stratified by predicted values for SNPs in real 

GWAS. All GWAS SNPs (in grey) for a schizophrenia GWAS from PGC1 with a 

Swedish sample [a], a systolic blood pressure GWAS from ICBP [b], and a height 

GWAS from GIANT [c]. The non-grey lines show plots for SNPs binned according to 

their predicted value from the non-phenotype specific model.  
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