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Abstract  12 

Biodiversity indices often combine data from different species when used in 13 

monitoring programs. Heuristic properties can suggest preferred indices, but we lack 14 

objective ways to discriminate between indices with similar heuristics. Biodiversity 15 

indices can be evaluated by determining how well they reflect management objectives 16 

that a monitoring program aims to support. For example, the Convention on 17 

Biological Diversity requires reporting about extinction rates, so simple indices that 18 

reflect extinction risk would be valuable. Here we develop three biodiversity indices 19 

that are based on simple models of population viability that relate extinction risk to 20 

abundance. The first index is based on the geometric mean abundance of species. A 21 

second uses a more general power mean. A third integrates both the geometric mean 22 

abundance and trend. These indices require the same data as previous indices, but 23 

they also relate directly to extinction risk. Field data for butterflies and woodland 24 

plants, and experimental studies of protozoan communities show that the indices 25 

correlate with local extinction rates. Applying the index based on the geometric mean 26 

to global data on changes in avian abundance suggests that the average extinction 27 

probability of birds has increased approximately 1% from 1970 to 2009. 28 

 29 
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INTRODUCTION 32 

The importance of biodiversity for a healthy and equitable society has been 33 

acknowledged by over 190 countries that ratified the Convention on Biological 34 

Diversity (CBD). The convention has a specific target to reduce the extinction risk of 35 

species (Secretariat of the Convention on Biological Diversity 2010), so monitoring of 36 

species extinction is important. Reporting actual extinctions, while potentially 37 

informative, is retrospective, whereas the convention and many other biodiversity 38 

programs seek to reduce future extinctions. Further, retrospective assessments are 39 

subject to error because the fate of species is known imprecisely (Collar 1998; Keith 40 

& Burgman 2004; Rout et al. 2010). Hence, biodiversity monitoring programs would 41 

be more valuable if they can be interpreted in terms of extinction risk.  42 

Changes in the assessed risk to species can contribute to biodiversity monitoring. For 43 

example, the IUCN Red List is used to calculate the Red List Index (RLI, Butchart et 44 

al. 2007), one of four global indicators of biodiversity status and trends approved by 45 

the CBD (Jones et al. 2011). The relationships of the other three indicators (extent of 46 

forest; protected-area coverage; and the Living Planet Index, LPI, Jones et al. 2011) to 47 

extinction risk are not explicit. 48 

Buckland et al. (2005) identified three aspects of species diversity that are of primary 49 

interest when monitoring changes over time: number of species, overall abundance 50 

and species evenness, from which they derived six desirable criteria for an index of 51 

biodiversity based on abundance data. On evaluating several proposed indices against 52 

these criteria, the geometric mean of relative abundances was one of only two that 53 

met all six criteria, with van Strien et al. (2012) lending further support to the 54 

geometric mean. 55 
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While we agree with the heuristic properties used to assess different indices of 56 

biodiversity, a good index should also be clearly related to particular management 57 

objectives or biodiversity outcomes. For example, where extinction risk is the 58 

management concern, understanding how the index reflects changes in this risk would 59 

be desirable. In the absence of a single measurable definition of biodiversity 60 

(Secretariat of the Convention on Biological Diversity 2010; Jones et al. 2011), we 61 

aim to examine how abundance data might be used to monitor extinction rates of 62 

species for the purposes of reporting under the CBD and other biodiversity programs.  63 

Here, we use simple models of population viability to develop three indices of 64 

extinction risk based on abundance data. These indices are designed to have the same 65 

data requirements as those considered by Buckland et al. (2005), but with the 66 

additional benefit of being directly related to extinction risk. We evaluate the indices 67 

using simulation, field data on local extinctions of butterflies and woodland plants, 68 

and experimental data on protozoan communities. Finally, we interpret changes in the 69 

LPI in terms of changes in the average probability of extinction of species. 70 

Methods 71 

The indices are derived from simple models of population viability, using clearly 72 

articulated assumptions that can be tested. First, consider the case when the long-term 73 

average population growth of each species is negative. If we assume that each species 74 

is experiencing deterministic exponential decline, then 75 

x(t) = x(0)t
, 76 

where x(t) is population abundance at time t, and  is the growth parameter ( < 1 for 77 

a declining population). It is then straightforward to calculate that extinction (such 78 
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that x(t) = 1) occurs at time T = –ln[x(0)]/ ln[]. If the long-run growth rate is 79 

negative, then for stochastic population models the mean extinction time is also 80 

approximately logarithmically dependent on initial population size (Lande 1993). 81 

With the simplifying assumption that the rate of decline is the same for each species 82 

(we address this particular assumption later), the mean expected time to extinction, 83 

averaging over n species, is proportional to the mean of the logarithm of population 84 

abundance. As we show below, the mean expected time to extinction is proportional 85 

to the logarithm of the geometric mean of population abundances (M0);  86 
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Equation 1 relates the mean time to extinction to the geometric mean abundance. 90 

However, it would be helpful to determine how this index might relate to the 91 

proportion of species going extinct. We approximate this by assuming that times to 92 

extinction have an exponential distribution. The proportion of species going extinct 93 

within time t is then 1 – exp(–t/T ). When this proportion is ≤0.2, it can be 94 

approximated by t/T , leading to:  95 
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This index should correlate linearly with the proportion of species going extinct under 97 

the assumptions stated above. The approximation of 1 – exp(–t/T ) by t/T  will tend to 98 

lead to non-linearity (but a monotonic relationship) for higher risks. 99 

We develop a second index based on a different set of assumptions. We consider a 100 

stochastic population model in which the logarithm of the population growth rate has 101 

a normal distribution with a mean of zero and variance σ
2
.  For this model, the risk of 102 

extinction within a given time period t is (Ginzburg et al. 1982; Dennis et al. 1991; 103 

McCarthy & Thompson 2001):  104 

qi(x0) = 2φ(–v) .          105 

where φ() is the standard normal cumulative distribution function, v = –ln(1/x0)/(σ√t) 106 

and x0 is the initial population size. This functional form could be used as an index, 107 

but it does not provide a simple numerical solution. Instead, we approximated this 108 

equation by a function of the form A x
–B/(σ√t)

 (by approximating log(qi(x0)) as a linear 109 

function of log(x)) with the values of A and B depending on the value of the extinction 110 

risk. For small extinction risks, qi<≈ 0.15, A = 2.2 and B = 1.87 provide a good 111 

approximation. When the extinction risk is close to one, a better approximation is A 112 

=1 and B = 0.798. Regardless, the probability of extinction scales approximately with 113 

abundance in proportion to x
–b

, with b = B/(σ√t). Thus, averaged across n species, we 114 

would expect the proportion of species going extinct to be  115 
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where k is a constant of proportionality and M–b is a power mean of abundance with 117 

power p = –b,  118 
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Consequently, our second index is based on a power mean of abundance:  120 

b

bb MI 
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The value of b depends on the time horizon over which risks are assessed. If we 122 

consider a time horizon of T=100 years and a standard deviation of σ= 0.1 (Dennis et 123 

al. 1991), the extinction risk of each species is likely to be relatively small (recall, 124 

zero mean growth rate), and b would be of the order 1.8 ≈ 2. The value of b will be 125 

larger for shorter time horizons. 126 

A third index can be derived from the deterministic model that accounts for the 127 

population growth rate, in addition to population size. Noting again that the mean 128 

time to extinction under deterministic decline is –ln[x(0)]/ln[], then the proportion of 129 

species going extinct can be approximated by –ln[]/ln(M0), allowing communities 130 

with different population growth rates of species to be compared. Using the mean of 131 

the logarithmic population growth rate of species within a community, r, as the 132 

estimate of ln[] leads to the index: 133 

)ln( 0

t
M

I r .          (5) 134 

This index requires extra data, being the population growth rates of species within the 135 

community. Such data might be uncommonly available, but are necessary to compare 136 

risks among communities where the species are declining at different rates. 137 

Simulations for evaluating indices 138 
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We simulated stochastic species dynamics within communities to evaluate the 139 

correlation between the different indices and the proportion of species going extinct. 140 

Each community consisted of 500 species, and there were 100 different communities. 141 

For each species j in community i, we simulated the population dynamics over 20 142 

time steps using the exponential growth model such that the population size in time 143 

t+1 is given by: 144 

xijt+1 = ijtxijt. 145 

Parameter values for the 100 different communities were chosen such that the 146 

proportion of species going extinct spanned a wide range (in our case between 0.02 147 

and 0.64). Within each community, the initial population size lnxij0 was drawn from a 148 

lognormal distribution with mean N and coefficient of variation cN, and the 149 

logarithmic growth rate lnijt was drawn from a normal distribution with mean r and 150 

standard deviation r. The proportion of 500 species that fell to or below one 151 

individual measured the average extinction risk of the community. 152 

To ensure that each community had different initial population sizes and different 153 

trends in abundance (and hence different average extinction risks), the mean and 154 

coefficient of variation of the population size (N and cN) and the mean and standard 155 

deviation of population growth rate (r and r) of each was varied among 156 

communities. The coefficient of variation cN was drawn from a uniform distribution 157 

on the interval [0.5, 3.0]. The mean population size was equal to 1.2
d
100, where d was 158 

drawn from a uniform distribution on the interval [0, 20], so mean population size 159 

varied among communities over the interval [100, 3834]. The mean population 160 

growth rate (r) was drawn from a uniform distribution on the interval [–0.3, –0.1], 161 
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and the standard deviation (r) was drawn from a uniform distribution on the interval 162 

[0.05, 0.4]. To test how differences in abundance, rather than population trend, 163 

influence the performance of the indices, data were also simulated with r set to –0.2 164 

for all communities.  165 

The three indices of extinction risk (Ig, Ib and It) were calculated for the simulated 166 

communities and the correlations between these and the proportion of species going 167 

extinct was examined. The performance of the arithmetic mean abundance and the 168 

modified Shannon diversity index of Buckland et al. (2005), other putative 169 

biodiversity measures, were also examined for the simulated data. For these two 170 

cases, we multiplied the indices by −1 so that the indices would be expected to be 171 

positively correlated with extinction risk. 172 

Data for evaluating indices 173 

The correlation between the indices and local extinction risk was evaluated using field 174 

data on Lepidopetera (Krauss et al. 2003) and woodland plants (Sutton & Morgan 175 

2009). Because data on population trends were unavailable for these datasets, only 176 

eqns 2 and 4 were evaluated. We evaluated all three indices with data from 177 

experimental protozoan communities (Clements et al. 2013). The original publications 178 

detail the data and its collection; some information is provided here for context (see 179 

also Supporting Information). The data sets we examined reported both extinctions of 180 

multiple species and information on initial abundances. 181 

Each dataset included information on the abundance of each of the species in replicate 182 

local communities at a particular point in time, and data on the proportion of those 183 

species that went extinction over a subsequent period of time. For the protozoan 184 
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community, estimates of abundance were available at multiple points in time prior to 185 

the period over which extinctions were assessed. For each dataset, we calculated the 186 

indices using the abundance data (and the trend data in the case of the index It for the 187 

protozoan dataset). 188 

For each dataset, we calculated the correlation (with 95% confidence interval based 189 

on a z-transformation; Sokal & Rohlf 1981) between the value of each index and the 190 

proportion of species in each community going extinct. We also determined, via 191 

simulation, the correlations that would be expected if each index were perfectly 192 

correlated with extinction of species, while accounting for the finite number of 193 

species in each community (Supporting Information). This allowed us to determine 194 

whether the observer correlations were substantially different from what would be 195 

expected given the limitations of the datasets. 196 

Relating Ig to the Living Planet Index 197 

The LPI is the geometric mean abundance of vertebrate species in a particular year 198 

divided by the geometric mean in 1970 (Loh et al. 2005; Collen et al. 2009). 199 

Therefore, the index based on the geometric mean can be related to the LPI simply as 200 

Ig = 1/ln(c LPI), where c is the geometric mean abundance in 1970. If Ig is 201 

proportional to the probability of extinction, as assumed in its derivation, LPI values 202 

can be converted to proportional changes in the probability of extinction of species, 203 

which will equal –ln(LPI) / [ln(c) + ln(LPI)]. We calculated this quantity for the 204 

world’s birds based on published avian LPI values (Baille et al. 2010).  205 

These proportional changes depend on c, which is not well known. The arithmetic 206 

mean abundance of birds is thought to be approximately 10 million individuals per 207 

species but, because species abundance distributions are heavily right-skewed, the 208 
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geometric mean will be substantially less (Gaston & Blackburn 2003). We estimated 209 

the global species abundance distribution of birds, and hence the geometric mean, by 210 

fitting a log-normal distribution to data on reported population size for the global list 211 

of 1253 threatened species on BirdLife International’s website 212 

(http://www.birdlife.org/datazone/species/search; accessed 20 December 2011) and 213 

assuming an arithmetic mean of 10 million birds per species. We assumed that 214 

abundances of the remaining 8663 non-threatened species were greater than 1000. In 215 

this case, and in cases where the data on threatened species were provided as ranges, 216 

we fitted the model assuming censored data. When an upper limit was not provided, 217 

we set the upper limit of 10 billion individuals for each species, which is greater than 218 

the reported abundance of passenger pigeons, the world’s most abundant bird prior to 219 

its extinction. The geometric mean of the resulting log-normal probability distribution 220 

was then calculated. The sensitivity of the results to the calculated value of c was 221 

examine by varying c by one order of magnitude and re-calculating the proportional 222 

changes in the probability of extinction. 223 

Results 224 

For the simulated communities with variation in mean growth rate among 225 

communities, the index based on the power mean (Ib) and the index based on the 226 

geometric mean (Ig) were positively correlated with the proportion of species going 227 

extinct (Pearson product moment correlations r = 0.39 and r = 0.50, respectively). 228 

Spearman rank correlations were similar (rS = 0.34 and 0.49 respectively). Variation 229 

in mean growth rates among communities explained much of the imperfect 230 

correlations; correlations for the index that is based on population trend were high (r = 231 

0.96; rS = 0.99 for It), and were similarly high for the geometric mean index (Ig) when 232 
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all communities had the same mean rate of decline (r = 0.97 when r = –0.2 for all 233 

communities). 234 

The index based on the geometric mean (Ig) and the index that considers population 235 

trend (It) were more strongly correlated with the proportion of species going extinct 236 

than either index based on the arithmetic mean or the Shannon diversity (r = 0.44 in 237 

both cases when r,i varied on the interval [–0.3,–0.1], and r = 0.94 and 0.91 238 

respectively when r,i was –0.2 for all communities). The index based on the power 239 

mean (Ib) was the least strongly correlated with the proportion of species going extinct 240 

(r = 0.39 when the mean population growth rate varied among communities, r = 0.66 241 

when it was consistent); this might be expected given the strong influence of the 242 

population trend on the simulated extinction risks, whereas the index Ib assumed no 243 

trend. Note, the derivation of Ig included a trend, but it dropped out of the calculation 244 

of the index as a proportionality constant by assuming the same trend for all 245 

communities. 246 

For the real communities, the index based on the geometric mean abundance (Ig) and 247 

the index based on the power mean (Ib) were positively correlated with the proportion 248 

of Lepidopetera and woodland plant species that went extinct (Fig. 1a,c; Fig. 2). The 249 

95% confidence intervals for these correlation coefficients did not encompass zero. In 250 

contrast, the correlations for these indices were negative for the protozoan dataset 251 

(Fig. 1e,f), although the correlation for the index that included population trends was 252 

positive (r=0.33; Fig. 1g, Fig. 2). In this dataset, abundances were similar for most 253 

communities, so the indices spanned a narrow range of values. The 95% confidence 254 

intervals for the correlation coefficient were wide (Fig. 2), so the strength of the 255 

relationship could not be determined reliably for the protozoan dataset.  256 
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There was only one case (the index based on the power mean for the protozoan 257 

dataset) that the observed correlation coefficient was both not significantly different 258 

from zero (Fig. 2) and substantially less than the correlation coefficient that might be 259 

expected even if the indices were perfectly correlated with the proportion of species 260 

going extinct (Fig. S1). In the other cases, either the 95% confidence intervals of the 261 

observed correlations were greater than zero (Fig. 2), or the observed correlations 262 

were consistent with the range of values that might be expected (Fig S1). 263 

The geometric mean abundance (c) of birds was estimated to be approximately 264 

100,000 individuals per species. Assuming that the index based on the geometric 265 

mean is proportional to the extinction risk of species at the global scale, the reported 266 

decline in the LPI for birds from 1970 to 2009 of 13% (Baille et al. 2010) reflects a 267 

proportional increase in the probability of extinction of approximately 1% for values 268 

of c between 10,000 and 1,000,000 (Fig. 3). Smaller values of c imply larger changes 269 

in the risk of extinction for a given change in LPI, although the results are relatively 270 

insensitive to the choice of c (Fig. 3), and are primarily driven by the LPI values (Fig. 271 

S2). 272 

Discussion 273 

We derived indices that can be interpreted in terms of changes in extinction risk. By 274 

deriving the indices from theoretical population models, the merits of possible 275 

alternative indices can be assessed to determine which indices are best supported by 276 

data. Our analysis shows that the indices are positively correlated with the proportion 277 

of species going extinct in small patches, despite highly simplified assumptions used 278 

to build the indices. 279 
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In addition to the heuristic properties that Buckland et al. (2005) and van Strien et al. 280 

(2012) used to assess different indices of biodiversity, a good index should also be 281 

clearly related to particular management objectives. For example, we have shown that 282 

the geometric mean abundance of species, which has good heuristic properties 283 

(Buckland et al. 2005; van Strien et al. 2012), can be related to the proportion of 284 

species within an area that are likely to become extinct. This lends much greater 285 

support to this index as a biodiversity metric. 286 

The geometric mean abundance of species is used increasingly, including in North 287 

American and European bird monitoring (Gregory & van Strien 2010; Butchart et al. 288 

2010) and for planning fire management (Di Stefano et al. 2013). The LPI for 289 

reporting the state of species is the geometric mean abundance in each period, divided 290 

by the geometric mean abundance in the first time period (Loh et al. 2005; Collen et 291 

al. 2009). The LPI is based on the notion that changes in species abundance are 292 

important, but was not derived directly from ecological theory. We do not intend this 293 

as a particular criticism of the LPI, which has more support than some alternative 294 

indices, but we argue that ecological indices should have sound theoretical 295 

foundations. A theoretical foundation helps make the meaning and scope of the index 296 

clearer and more easily justified. For example, the derivation of the index based on 297 

the geometric mean implies that reductions in the LPI can be interpreted in terms of 298 

an increased average probability of extinction of the species. We estimate that the 299 

reduction of the global avian LPI of approximately 13% between 1970 and 2009 300 

corresponds to approximately a 1% increase in the probability of extinction (Fig. 6). 301 

This is less than the increased risk of 7% implied by the Red List Index (RLI) of birds 302 

for the period 1988 to 2004 (Butchart et al. 2004), which is the only CBD index that is 303 
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related directly to extinction. The larger increase in extinction risk implied by the RLI 304 

compared with Ig might be expected given the RLI’s focus on threatened species.  305 

The indices based on the power mean (Ib) and geometric mean (Ig) have the same data 306 

requirements as those considered by Buckland et al. (2005). That is, they require 307 

information on the abundance of a suite of species at a particular point in time. The 308 

index that accounts for different trends among communities, (It) requires additional 309 

information (the average trend of the species in the community). Such data will tend 310 

to be available for only a subset of species, and this subset is likely to be a biased 311 

sample of relevant species in a community. Any bias will be common to all indices, 312 

with the consequence that they might not broadly represent all possible species of 313 

interest. 314 

Using a theoretical foundation to develop indices suggests ways in which the indices 315 

can be evaluated and improved, and assumptions underlying the indices are clear. The 316 

clear assumptions can be tested individually to determine whether they are violated in 317 

particular circumstances and the consequences of those errors. Further, the overall 318 

properties of an index can be assessed against data if it approximates an explicit 319 

quantity. In our case, we sought an index that would be linearly correlated with the 320 

proportion of species becoming extinct such that a change in the index would reflect a 321 

particular change in the proportion of species going extinct. The clear assumptions 322 

help highlight how the indices could be modified. 323 

As an example of modification, trends in population size are likely to influence 324 

extinction risks. The index that incorporates trend (It) shows how abundance and trend 325 

might be incorporated into a single index if the assumption of a consistent trend 326 

among communities is not supported. In the case of the experimental protozoan 327 
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community, an assumption of an equal trend is clearly not supported. Of the four 328 

protozoan species, one went extinct in all 40 experimental replicates, and one 329 

persisted in all replicates. Thus, the proportion of species in each community that 330 

went extinct was influenced substantially by the identity of the species, which had 331 

different trends not just different population sizes. 332 

Biodiversity indices, such as those developed here, will be sensitive to the choice of 333 

species that are included. For example, species included in the LPI calculations are 334 

not a random sample of all possible species, with biases likely. Unless the scheme 335 

used to select the sample of species used in the index is considered carefully, it will be 336 

unclear how the selected species will represent the broader suite of biodiversity.  337 

Factors other than those included in the indices are likely to influence extinction. The 338 

Lepidoptera species will be differentially susceptible to apparent local extinction 339 

because of different dispersal and abilities to persist outside the focal habitat patches. 340 

Other species will occur only ephemerally in the patches, reducing the influence of 341 

abundance on local extinction. However, the results were qualitatively identical when 342 

analysing only strict grassland specialists, so we reported only the results for the 343 

larger collection of species. 344 

Our indices were based on models of exponential decline of single populations, 345 

thereby ignoring spatial aspects and density-dependence. Other indices based on 346 

metapopulation dynamics, for example, could be developed to account for spatial 347 

effects. Indeed, metapopulation capacity, which is derived from colonisation and 348 

extinction dynamics of habitat patches (Day & Possingham 1995; Hanski & 349 

Ovaskainen 2000), can be viewed as an index of metapopulation persistence 350 

(Moilanen & Nieminen 2002). Density-dependence might be less important for 351 
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populations that are declining deterministically, although accounting for non-352 

exponential decline might be important because temporal patterns of decline influence 353 

risk (Di Fonzo et al. 2013). 354 

Imprecise estimation of abundance (particularly in the woodland case study), some 355 

residual uncertainty about the local extinction of species due to imperfect detection, 356 

and the false assumption of equivalent dynamics of all species would all weaken the 357 

correlation between the indices and the observed extinction rate. Despite this, the 358 

predicted and observed extinction risks were correlated (Figs 1-3). This implies that 359 

using the indices to aggregate data across species is reasonable. However, further tests 360 

of the indices to predict local extinction would be valuable, as would evaluating 361 

extinction risk over regions larger than just single patches (e.g., based on spatial 362 

population dynamics). 363 

The index based on the power mean is sensitive to the choice of the parameter b, and 364 

estimating it via estimates of the standard deviation of the population growth rate () 365 

might be difficult. Thus, the indices based on the geometric mean (Ig and It) might be 366 

more appealing because a freely-varying parameter does not require estimation. 367 

Further, extinctions might be dominated by deterministic declines rather than random 368 

fluctuation around a zero mean growth rate. If true, the indices based on the geometric 369 

mean might be preferred over that based on the power mean. 370 

The SAFE index (Clement et al 2011; see also Akçakaya et al. 2011; Beissinger et al. 371 

2011; McCarthy et al. 2011) is essentially equal to the logarithm of population size. 372 

Our analysis shows, therefore, that the SAFE index will be proportional to the 373 

expected time to quasi-extinction (time to reaching a given threshold). But it also 374 

shows that the SAFE index will be comparable among species as a measure of threat 375 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 7, 2014. ; https://doi.org/10.1101/000760doi: bioRxiv preprint 

https://doi.org/10.1101/000760


only if trends in population size of those species are similar. Where trends differ 376 

among species, an index based on –ln[x(0)]/ln[] is likely to better reflect threat. 377 

Further, prioritization of management, which apparently motivated the SAFE index, 378 

should not be based on extinction risk, but on the ability to change risks (McCarthy et 379 

al. 2011). This might be assessed, for example, by the relative cost of changing x(0) or 380 

 and their influence on –ln[]/ln[x(0)] (Baxter et al. 2006). 381 

An index developed without theory does not mean it will have poor properties. As we 382 

have seen, the geometric mean was developed without theory but appears to have 383 

useful properties (Buckland et al. 2005; van Strien et al. 2012). The demonstrated 384 

relationship to extinction risk lends further support to the geometric mean. Our 385 

analysis also indicates how the geometric mean might incorporate population trends. 386 

We suggest that biodiversity indices should be developed more frequently from 387 

theoretical foundations to provide more explicit links between the index, the data 388 

underlying the index, and the meaning of changes in the index. Such indices will 389 

inevitably exclude factors that might be important; this is a feature of any model. 390 

However, stronger theoretical foundations for biodiversity indices would clarify the 391 

features that are considered and those that are ignored, and would allow the indices to 392 

be more easily evaluated and improved. 393 
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Figure 1. Relationship between the three different indices (Ig, Ib, It) and the proportion 497 

of species going locally extinct for the three case studies: (a-b) for Lepidopetera; (c-d) 498 

for woodland plants; and (e-g) for protozoan communities. Each point represents a 499 

patch for the field studies (Lepidopetera and woodland plants) or the average of each 500 

type of community for the protozoan. The lines are linear regressions. Correlation 501 

coefficients with 95% confidence intervals are given in Fig. 2. 502 

Figure. 2. Observed correlation between the three indices (Ig based on the geometric 503 

mean; Ib based on the power mean; and It based on the geometric mean and trend) and 504 

the proportion of species going extinct from a community. Results are shown for each 505 

of the three different datasets (butterflies, plants, protozoa). The circles are the 506 

observed correlation coefficients and the bars are 95% confidence intervals. 507 

 508 

Figure 3. Proportional changes in the probability of extinction from levels in 1970 509 

based on changes in the Living Planet Index for birds (Baille et al. 2010) assuming 510 

values for the geometric mean abundance in 1970 of 10,000, 100,000 or 1,000,000 511 

individuals. 512 

 513 

 514 
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