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Abstract

Annotations of gene structures and regulatory elements can inform genome-wide association studies

(GWAS). However, choosing the relevant annotations for interpreting an association study of a

given trait remains challenging. We describe a statistical model that uses association statistics

computed across the genome to identify classes of genomic element that are enriched or depleted

for loci that influence a trait. The model naturally incorporates multiple types of annotations.

We applied the model to GWAS of 18 human traits, including red blood cell traits, platelet traits,

glucose levels, lipid levels, height, BMI, and Crohn’s disease. For each trait, we evaluated the

relevance of 450 different genomic annotations, including protein-coding genes, enhancers, and

DNase-I hypersensitive sites in over a hundred tissues and cell lines. We show that the fraction

of phenotype-associated SNPs that influence protein sequence ranges from around 2% (for platelet

volume) up to around 20% (for LDL cholesterol); that repressed chromatin is significantly depleted

for SNPs associated with several traits; and that cell type-specific DNase-I hypersensitive sites

are enriched for SNPs associated with several traits (for example, fibroblasts in Crohn’s disease

and muscle tissue in bone density). Finally, by re-weighting each GWAS using information from

functional genomics, we increase the number of loci with high-confidence associations by around

5%.



1 Introduction

A fundamental goal of human genetics is to create a catalogue of the genetic polymorphisms that

cause phenotypic variation in our species and to characterize the precise molecular mechanisms by

which these polymorphisms exert their effects. An important tool in the modern human genetics

toolkit is the genome-wide association study, in which hundreds of thousands or millions of single

nucleotide polymorphisms (SNPs) are genotyped in large cohorts of individuals and each polymor-

phism tested for a statistical association with some trait of interest. In recent years, GWAS have

identified thousands of genomic regions that show reproducible statistical associations with a wide

array of phenotypes and diseases [Visscher et al., 2012].

In general, the loci identified in GWAS of multifactorial traits have small effect sizes and are

located outside of protein-coding exons [Hindorff et al., 2009]. This latter fact has generated

considerable interest in annotating other types of genomic elements apart from exons. For example,

the ENCODE project has generated detailed maps of histone modifications and transcription factor

binding in six human cell lines, partially motivated by the goal of interpreting GWAS signals that

may act via a mechanism of gene regulation [ENCODE Project Consortium et al., 2012]. Methods

for combining potentially rich sources of functional genomic data with GWAS could in principle

lead to important biological insights. The development of such a method is the aim of this paper.

There are two lines of research that motivate our work on this problem. The first is what are

often called “enrichment” analyses. In this type of analysis, the most strongly associated SNPs

in a GWAS are examined to see if they fall disproportionately in specific types of genomic region.

These studies have found, for example, that SNPs identified in GWAS are enriched in protein-

coding exons, promoters, and untranslated regions (UTRs) [Hindorff et al., 2009; Schork et al.,

2013] and among those that influence gene expression [Lappalainen et al., 2013; Nicolae et al.,

2010]. Further, in some cases, SNPs associated with a trait are enriched in gene regulatory regions

in specific cell types [Cowper-Sal lari et al., 2012; Ernst et al., 2011; Gerasimova et al., 2013; Global

Lipids Genetics Consortium et al., 2013; Hnisz et al., 2013; Karczewski et al., 2013; Maurano et al.,

2012; Parker et al., 2013; Paul et al., 2013, 2011; Trynka et al., 2013; van der Harst et al., 2012] or

near genes expressed in specific cell types [Hu et al., 2011; Lui et al., 2012]. However, the methods

in these studies are generally not able to consider more than a single annotation at a time. Further,

they are not set up to answer a question that we find important: consider two independent SNPs

with equivalent P-values of 1 × 10−7 in a GWAS for some trait (note that this P-value does not

reach the standard threshold of 5× 10−8 for “significance”), the first of which is a nonsynonymous

SNP and the second of which falls far from any known gene. What is the probability that the

first SNP is truly associated with the trait, and how does this compare to the probability for the

second?

A potential answer to this question comes from the second line of research that motivates

this work. In association studies where the phenotype being studied is gene expression (“eQTL”

studies, for “expression quantitative trait locus”), statistical models have been developed to identify

shared characteristics of SNPs that influence gene expression [Gaffney et al., 2012; Lee et al., 2009;
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Veyrieras et al., 2008]. In a hierarchical modeling framework, the probability that a given SNP

influences gene expression can then depend on these characteristics. The key fact that makes these

models useful in the context of eQTL mapping is that there is a large number of unambiguous

eQTLs in the genome on which a model can be trained. In the GWAS context, the number of

loci unambiguously associated with a given trait has historically been very small; learning the

shared properties of two or three loci is not a job well-suited to statistical modeling. However,

large meta-analyses of GWAS now regularly identify tens to hundreds of independent loci that

influence a trait (e.g. Lango-Allen et al. [2010]; Teslovich et al. [2010]). The merits of hierarchical

modeling in this context [Chen and Witte, 2007; Heron et al., 2011; Lewinger et al., 2007] are thus

worth revisiting. Indeed, Carbonetto and Stephens [2013] have reported success in identifying loci

involved in autoimmune diseases using a hierarchical model that incorporates information about

groups of genes known to interact in a pathway.

In this paper we present a hierarchical model for jointly analyzing GWAS and genomic anno-

tations. We applied this model to GWAS of 18 diseases and traits; for each trait, we learned the

relevant types of genomic information from a set of 450 genome annotations.

2 Results

We assembled a set of 18 GWAS with publicly available summary statistics and a large number (at

least around 20) of loci associated with the trait of interest. These included studies of red blood

cell traits [van der Harst et al., 2012], platelet traits [Gieger et al., 2011], Crohn’s disease [Jostins

et al., 2012], BMI [Speliotes et al., 2010], lipid levels [Teslovich et al., 2010], height [Lango-Allen

et al., 2010], bone mineral density [Estrada et al., 2012] and fasting glucose levels [Manning et al.,

2012]. We used ImpG [Pasaniuc et al., 2013] to impute the summary statistics from each study

for all common SNPs identified in European populations by the 1000 Genomes Project [Abecasis

et al., 2010]. Overall we successfully imputed association statistics for around 80% of common

SNPs (Supplementary Figure 1). We then assembled a set of genome annotations, paying specific

attention to annotations available for many cell types since important regulatory elements may

be active only in specific cell types. The main sources of genome annotations were 402 maps of

DNase-I hypersensitivity in a wide range of primary cell types and cell lines [Maurano et al., 2012;

Thurman et al., 2012]. We also included as annotations the output from “genome segmentation”

of the six main ENCODE cell lines [Hoffman et al., 2013]; for each section of the genome in each

cell line, Hoffman et al. [2013] report whether the histone modifications in the region are consistent

with enhancer activity, transcription start sites, promoter-flanking regions, CTCF binding sites, or

repressed chromatin. Finally, we included elements of gene structures (protein-coding exons and 3’

and 5’ UTRs). In total, we used data from 18 traits and 450 genomic annotations.

For each trait, we set out to identify which of the 450 annotations (if any) were enriched in

genetic variants influencing the trait. To do this, we developed a hierarchical model that learns

the shared properties of loci influencing a trait. The full details of the model are presented in

the Methods, but can be summarized briefly. Conceptually, we break the genome into large, non-
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overlapping blocks (with an average size of 2.5 Mb). Let the prior probability that any block k

contains an association be Πk. If there is an association in block k, then let the prior probability

that any SNP i is the causal SNP be πik. We then allow both Πk and πik to depend on annotations of

the region and SNP, respectively, and estimate these quantities based on the patterns of enrichment

across the whole genome. We tested this approach using simulations based on real data from a

GWAS of height (Supplementary Material).

The methodology is best illustrated with an example. We started with an analysis of a GWAS of

high-density lipoprotein (HDL) levels [Teslovich et al., 2010]. We first took each genomic annotation

individually, and estimated its level of enrichment (or depletion) for loci that influence HDL (in the

model, we additionally included a regional effect of gene density and and a SNP effect of distance

to the nearest transcription start site, see the Methods for details). In Figure 1A, we show the

top 40 annotations, ordered by how well each improves the fit of the model. Loci that influence

HDL are most strongly enriched in enhancers identified in the HepG2 cell line, and most strongly

depleted from genomic regions repressed in that same cell line. HepG2 cells are derived from a liver

cancer; the relevance of this cell line to a lipid phenotype makes intuitive sense. However, there

are many other additional (correlated) genome annotations that are enriched for loci that influence

HDL (Figure 1A). We thus built a model including multiple annotations; to mitigate over-fitting

in this situation we used a cross-validation approach (Methods). The best-fitting model is shown

in Figure 1B. It include both enhancers and repressed chromatin identified in HepG2 cells, as well

as coding exons and chromatin repressed in K562 cells.

A convenient side effect of fitting an explicit statistical model relating properties of SNPs to

the probability of association is that we can use the functional information to re-weight the GWAS

(Methods). We used the combined model for HDL to re-weight the association statistics across the

genome (Figure 1C). There are several regions of the genome with strong evidence for association

with HDL (posterior probability of association [PPA] over 0.9) only when using the model incor-

porating functional information. In Figure 2, we show one such region, near the gene NR0B2. The

model identifies the SNP rs6659176 as the most likely candidate to be the causal polymorphism in

this region. This SNP has a P-value of 1.5× 10−6. However, this SNP falls falls in a coding exon

(in fact it is nonsynonymous), leading the model to conclude that this P-value is in fact strong

evidence for association. Indeed, larger studies of HDL have confirmed the evidence for association

in this region (P-value of 9.7 × 10−16 at rs12748152, which has r2 = 0.85 with rs6659176 [Global

Lipids Genetics Consortium et al., 2013]). This region, though not this particular SNP, was also

identified in a scan for SNPs influencing multiple lipid phenotypes [Stephens, 2013].

We applied this method to all 18 traits. We were first interested in estimating the fraction of

associations for each trait that can be explained by nonsynonymous polymorphisms versus polymor-

phisms that do not influence protein sequences. For each trait, we fit a model including promoters

(SNPs within 5kb of a transcription start site) as well as nonsynonymous polymorphisms. For all

traits, nonsynonymous polymorphsims are enriched among those that influence the trait, though

this enrichment is not statistically significant for all traits (Figure 3A). We then used these en-

richments to estimate the fraction of associations for each trait that are driven by nonsynonymous
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Figure 1. Application of the model to HDL cholesterol. A. Single-annotation models.
We fit the model to each annotation individually, including a SNP-level effect for SNPs 0-5kb from
a TSS, a SNP-level effect for SNPs 5-10kb from a TSS, and region-level effects for regions in the
top third and bottom third of gene density. Plotted are the maximum likelihood estimates and
95% confidence intervals of the enrichment parameter for each annotation. Annotations are ordered
according to how much they improve the likelihood of the model (at the top are those that improve
the likelihood the most), and in red are those included in the joint model. B. Joint model. Using
the algorithm described in the Methods we built a model combining multiple annotations. Shown
are the maximum likelihood estimates and 95% confidence intervals of the enrichment effects of
each annotation. Note that though these are the maximum likelihood estimates, model choice was
performed using a penalized likelihood. C. Re-weighted GWAS. We re-weighted the GWAS
using the model with all the annotations in B (under the penalized enrichment parameters from
Supplementary Table 7). Each point represents a region of the genome, and shown are the posterior
probabilities of association (PPA) of the region in the models with and without the annotations.
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Figure 2. Regional plot surrounding NR0B2. In the top panel we plot the P-values for
association with HDL levels at each SNP in this region. In the middle panel is the fitted empirical
prior probability that each SNP is the causal one using the model with all the annotations in Figure
1B. In the lower panel are the positions of the annotations included in the model. * The reported
P-value is for rs12748152, which has r2 = 0.85 with rs6659176.

5



polymorphisms (Supplementary Material). This fraction varies from around 2% to around 20%,

with an average of 10% (Figure 3B). We conclude that the relative importance of changes in protein

sequence versus gene expression likely varies across traits.

We then used all 450 genome annotations to build models of enrichment for each trait. As

for HDL, we first estimated enrichment levels individually for each annotation (Supplementary

Figures 3-11), then generated a combined model for each trait. The parameters of the combined

models are shown in Figure 4 and Supplementary Figure 12, and details of the exact annotations

are in Supplementary Tables 1-18. In general, the models generated with this method are sparse

and biologically interpretable. A few general patterns emerge from this analysis. Apart from the

repeated occurrence of annotations related to protein-coding genes, marks of repressed chromatin

are often significantly depleted for SNPs influencing traits. For example, SNPs influencing Crohn’s

disease are depleted from repressed chromatin identified in a lymphoblastoid cell line (Figure 4D;

log enrichment of -1.27, 95% CI [-2.12, -0.54]), SNPs influencing height are significantly depleted

from repressed chromatin in HeLa cells (Figure 4I; log enrichment of -1.04, 95% CI [-1.66, -0.49]),

and SNPs influencing red blood cell volume are significantly depleted from repressed chromatin in

an erythroblast-derived cell line (Figure 4F; log enrichment of -2.71, 95% CI [-4.33, -1.65]).

We additionally observed cell type-specific enrichments in enhancer elements and DNase hy-

persensitive sites for SNPs that influence traits. Most of the observed enrichments are readily

interpreted in light of the known biology of the trait. For example, SNPs that influence platelet

volume and platelet count are enriched in open chromatin identified in CD34+ cells, known to be on

the cell lineage that leads to platelets [Deutsch and Tomer, 2006] (Figure 4A,B; log enrichment of

1.26, 95% CI [0.41, 1.98] for platelet count; log enrichment of 2.09, 95% CI [1.17, 2.95] for platelet

volume); and SNPs that influence corpuscular hemoglobin concentration are enriched in open chro-

matin identified in K562 cells, a cell line derived from a cancer of erythroblasts (Supplementary

Figure 12E; log enrichment of 1.85, 95% CI [0.42, 3.08]). For some traits, however, the connection

between the trait and the tissues identified is not immediately obvious. For example, SNPs asso-

ciated with bone density in the lumbar spine are enriched in open chromatin in myoblasts (Figure

4C; log enrichment of 2.93, 95% CI [1.55, 4.14]) and SNPs associated with red blood cell count

are enriched in open chromatin in the fetal stomach (Supplementary Figure 12G; log enrichment

of 3.68, 95% CI [2.69, 4.79]).

For two traits–Crohn’s disease (Figure 4D) and red blood cell count (Supplementary Figure

12G)–we noticed that annotations initially identified as enriched for SNPs influencing the trait

ended up in the combined model as being depleted for SNPs influencing the trait. On further

examination (Supplementary Material), we found that these effects are due to statistical inter-

actions. For example, when treated alone, SNPs that influence Crohn’s disease are enriched in

DNase-I hypersensitive sites identified in fetal fibroblasts from the abdomen (log enrichment of

2.20, 95% CI [1.15, 3.02]). However, DNase-I hypersensitive sites identified in fetal fibroblasts from

the back show an even stronger enrichment (log enrichment of 2.92, 95% CI [2.07, 3.67]), and sites

in common between the two annotation are intermediate (log enrichment of 2.59, 95% CI [1.59,

3.39]). This leads to an interaction where in the joint model the contribution of the DNase-I hy-
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Figure 3. Estimated role of protein-coding changes in each trait. A. Estimated en-
richment of non-synonymous SNPs. For each trait, we fit a model including an effect of
non-synonymous SNPs and an effect of SNPs within 5kb of a TSS. Shown are the estimated en-
richments parameters and 95% confidence intervals for the non-synonymous SNPs. B. Estimated
proportion of GWAS hits driven by non-synonymous SNPs. For each trait, using the
model fit in A., we estimated the proportion of GWAS signals driven by non-synonymous SNPs.
Shown is this estimate and its standard error (Supplementary Material).
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Figure 4. Combined models for nine traits. For each trait, we built a combined model of
annotations using the algorithm presented in the Methods. Shown are the maximum likelihood
estimates and 95% confidence intervals for all annotations included in each model. Note that
though these are the maximum likelihood estimates, model choice was done using a penalized
likelihood (Methods). For the other nine traits, see Supplementary Figure 12. *This annotation
of DNase-I hypersensitive sites in fetal fibroblasts from the abdomen has a positive effect when
treated alone; see the text for discussion.
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persensitive sites identified in fetal abdominal fibroblasts is negative. Though this is a statistical

explanation for this observation, the biological explanation is not immediately clear. It seems likely

that DNase-I hypersensitive sites are a heterogeneous set of different classes of elements, and that

different experiments are more sensitive, for either technical or biological reasons, to subsets of

these elements.

Finally, we explored the potential of this model to identify new loci (as in Figure 2). In order to

do this, one needs a threshold for “significance” in this model, ideally with similar properties as the

standard P-value threshold of 5× 10−8. To calibrate the method, we used the fact that we initially

applied our method to a study of four lipid traits that identified about 100 loci in sample sizes of

around 90,000 individuals [Teslovich et al., 2010]. Since then, larger studies have raised the number

of loci associated with lipid traits to 157 [Global Lipids Genetics Consortium et al., 2013]. If we

treat a locus with a P-value of 5×10−8 in the larger study as a “true positive” and a locus that does

not reach this threshold in the larger study as a “true negative”, we can calibrate a threshold for

posterior probability of association using the replication data (Supplementary Material). We found

that a threshold of a regional PPA of 0.9 performed similarly to a stringent P-value threshold

(Supplementary Figure 13). Combining the loci from both the standard P-value approach and

our approach resulted in an approximately 5% increase in the number of identified loci while still

maintaining a false positive rate close to zero (Supplementary Figure 13, Supplementary Table 19).

This is only a modest gain in power; that said, by applying this method to all 18 traits we identified

49 loci that did not reach a standard statistical significance threshold of 5× 10−8 but have a PPA

over 0.9 (Supplementary Table 20). Based on the above results for lipids, the level of evidence

that these loci are true positives is approximately the same as those that have P = 5 × 10−8 in

a standard GWAS. Indeed, the majority of these loci have since been identified in larger cohorts

than those used in this paper (Supplementary Table 20).

3 Discussion

In this paper, we have developed a statistical model for identifying genomic annotations that are

most relevant to the biology of a given phenotype. We have shown that this model is able to

scan through hundreds of genomic annotations to identify a sparse set of biologically-interpretable

annotations without prior knowledge of the biology of the phenotype.

Linking GWAS to biology

Perhaps the most striking observation is that chromatin annotated as repressed in a given cell type

is often depleted for SNPs that influence traits. Since approximately 60-70% of the genome falls in

this annotation in any given cell type (Supplementary Material), this information could dramatically

limit the number of SNPs considered when fine-mapping loci identified in GWAS. Additionally, we

identified several non-obvious connections between tissue and phenotypes. For example, SNPs that

influence bone density in the spine and the femur are both enriched in DNAse-I hypersensitive sites
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identified in muscle-related tissues (myoblasts and the fetal heart; Figure 4D and Supplementary

Figure 12B). Though it is well-known that muscle function correlates with bone mineral density,

twin studies have suggested that this correlation is not due to genetic factors [Arden and Spector,

1997]. However, a modest shared genetic component between muscle function and bone mineral

density cannot be excluded by these studies, and our results suggest that this possibility is worth re-

examining. Additionally, we have shown that SNPs that influence Crohn’s disease risk are enriched

in DNase-I hypersensitive sites identified in fibroblasts (Figure 4D). Though Crohn’s disease is an

autoimmune disease, a major complication of the disease is intestinal stricture mediated through

abnormal fibroblast activity [Burke et al., 2007]. Our results suggest that the intestinal response

to inflammation, and not just the autoimmune activity causing inflammation, may be modulated

by genetic variation.

Modeling assumptions

We have made several modeling assumptions that merit discussion. First, by splitting the genome

into blocks based on numbers of SNPs, we are making the implicit assumption that the probability

that a genomic region contains a SNP associated with a given phenotype depends on the SNP

density rather than the physical size–that is, a short genomic region with a large number of SNPs

is a priori as likely to have an association as a long genomic region with few SNPs. We have also

made a more restrictive assumption that there can be only a single causal SNP in a given genomic

region. This assumption is a natural starting point, but as GWAS sample sizes increase even more

it will begin to be untenable. Advances in methods for joint analysis of multiple SNPs (e.g. Yang

et al. [2012]) may provide a way forward in this situation. Finally, we note that the model is

limited by the types of genomic annotations that are available, and the best annotations identified

in the model may be “proxies” for the truly-relevant annotations. For example, SNPs associated

with height are enriched in DNase-I hypersensitive sites identified in the fetal lung (Figure 4I);

taken literally, this would suggest that some SNPs influence height though lung development. An

alternative possibility, however, is that patterns of open chromatin in the lung (which is of course

a heterogeneous tissue) are useful proxies for patterns of open chromatin in a cell type that has not

been profiled; this hypothetical cell type could in principle be present in any tissue.

Prospects for fine-mapping GWAS loci using functional genomic data

We have primarily focused on using our model to identify annotations relevant to a trait of interest,

though we have also explored using this information to identify novel loci. A third natural appli-

cation, which we have not explored, is the possibility for fine-mapping GWAS loci using functional

genomic information [Maller et al., 2012]. Indeed, the posterior probability that each SNP in a

given genomic region is the causal one is explicitly included in our model. However, in current

applications around 20% of common SNPs are neither genotyped nor successfully imputed; this is a

major limitation to fine-mapping that cannot be overcome with statistical means. As GWAS move

to even denser genotyping or sequencing, we expect that re-visiting this issue will be fruitful.
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Methods

In this section we detail the specifics of the hierarchical model; a description of the data used is

in the Supplementary Material. The model we propose is most closely related to that developed

by Veyrieras et al. [2008] in the context of eQTL mapping. Conceptually, we split the genome

into independent blocks, such that the blocks are larger than the extent of LD in the population.

We then allow each block to contain either a single polymorphism that causally influences the

trait or none. We model the prior probability that any given block contains an association and

the conditional prior probability that any given SNP in the block is the causal one. The key is

that we allow these probabilities to vary according to functional annotations–for example, gene-

rich regions might be more likely to contain associations, and if there is an association, the causal

polymorphisms may be more likely to fall in a transcription factor binding site. We then estimate

these priors using an empirical Bayes approach. Software implementing this model is available at

http://gwas.googlecode.com.

Computing the Bayes factor

The basic building block of the model is a linear regression model. Consider a single SNP geno-

typed in N phenotyped individuals. Assume each individual has an associated measurement of a

quantitative trait (we describe a slight modification for case-control studies later), and let ~y be the

vector of phenotypes. Let ~g be the vector of genotypes (coded 0, 1, or 2 according to counts of an

arbitrarily-defined allele). We use a standard additive linear model:

E[yi] = α+ βgi. (1)

We would like to compare two models: one where β = 0 and one where β 6= 0. A natural way to

compare these two models is the Bayes factor:

BF =

∫
P (~y|~g,H1)∫
P (~y|~g,H0)

, (2)

where H1 and H0 represent the parameters of the the alternative and null models, respectively, and

which are integrated out.

To compute Equation 2, we use the approximate Bayes factor from Wakefield [2008]. This

Bayes factor has the practically important property that is can be calculated from a summary of

the linear regression, without access to the underlying genotype vector ~g. For completeness, we

re-iterate here the underlying model. If β̂ is the maximum likelihood estimator of β and
√
V is the

standard error of β̂, Wakefield [2008] suggests a model in which:

β̂ ∼ N(β, V ). (3)

Wakefield [2008] places a normal prior on β, such that β ∼ N(0,W ). Under this model Equation

2 becomes:
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BF =

√
1− r

exp[−Z2

2 r]
, (4)

where r = W
V+W and Z = β̂√

V
(a standard Z-score). Thus, from a Z-score, an estimate of V , and

the prior variance W , we can obtain a Bayes factor measuring the statistical support for a model

in which a SNP is associated with a trait as compared to a model in which a SNP is not associated

with a trait. Note, however, that because of linkage disequilibrium in the genome, any true causal

association will lead to multiple true statistical associations. In all applications we, use set W = 0.1

as the prior, such that the majority of the weight of the prior is on small effect sizes (results are

robust to some variation in this prior, see Supplementary Material and Supplementary Figure 14).

Hierarchical model

Now consider a set of M SNPs, each of which has been genotyped in N individuals in a GWAS.

Our goal is to build a model to identify the shared characteristics of SNPs that causally influence a

trait. Because of LD, there will be many associations in the genome that are not causal; however,

these will all be restricted to a block around the truly causal site. We thus split the genome into

contiguous blocks of size K SNPs (in all of our applications, we set K = 5, 000, though doubling

this block size had little effect on the results; see Supplementary Materials and Supplementary

Figure 14), such that there are M/K blocks. We choose the block size to be much larger than the

extent of linkage disequilibrium in the population. Let Πk be the prior probability that block k

contains a causal SNP associated with the trait. The probability of the data (the set of observed

phenotypes) is then:

P (~y) =

M/K∑
k=1

(1−Πk)P
0
k + ΠkP

1
k , (5)

where P 0
k is the probability of the data in block k under the model where there are no SNPs

associated with the trait in the block, and P 1
k is the probability of the data in block k under the

model where there is one SNP associated with the trait in the block. Further,

P 1
k =

∑
i∈Sk

πikP
1
ik, (6)

where Sk is the set of SNPs in block k, πik is the prior probability that SNP i is the causal SNP

in the region conditional on there being an association in block k, and P 1
ik is the probability of the

data under the model where this SNP is associated with the trait. Note that this is not a multiple

regression model where we jointly model the effects of multiple SNPs on a trait (as in, for example,

Carbonetto and Stephens [2013]).

We can now allow the prior probabilities–both Πk (the prior on the block of SNPs containing an

association) and πik (the prior probability that SNP i is the causal SNP assuming there is a single

association in block k)–to depend on external information. We would also like to avoid subjective
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variation in Πk and πi, but instead learn from the data itself to which genomic annotations are

most important. Specifically, we model the regional prior probability as:

ln

(
Πk

1−Πk

)
= κ+

L1∑
l=1

γlIkl, (7)

where L1 is the number of region-level annotations in the model, γl is the effect associated with

annotation l and Ikl takes the value 1 if region k is annotated with annotation l and 0 otherwise.

For example, in practice we will estimate a γ parameter for regions of high or low gene density. We

then model the SNP prior probability as:

πik =
exi∑

j∈Sk

exj
, (8)

where

xi =

L2∑
l=1

λlIil, (9)

where L2 is the number of SNP-level annotations in the model, λl is the effect of SNP annotation

l and Iil takes the value 1 if SNP i falls in annotation l and 0 otherwise. For example, in practice

we will estimate a λ parameter for nonsynonymous SNPs.

Fitting the model

Combining terms above, we see that the likelihood of the data can be written down as:

L(~y|θ) =

M/K∏
k=0

(1−Πk)P
0
k + Πk

K∑
i=0

πijP
1
ik (10)

=

M/K∏
k=0

P 0
k [(1−Πk) + Πk

K∑
i=0

πikBFi], (11)

where θ is contains all the parameters of the model, most notably the set of annotation parameters.

We maximize this function using the Nelder-Mead algorithm implemented in the GNU Scientific

Library.

Shrinkage estimators of the annotation parameters

While maximizing Equation 10 gives the maximum likelihood estimates of all parameters, one

concern is that there may be some level of overfitting. When comparing models, we instead shrink

these parameters towards zero. Specifically, we define a penalized likelihood function:
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L∗(~y|θ) = L(~y|θ)− p
( L1∑
l=1

γ2l +

L2∑
l=1

λ2l

)
. (12)

The penalty p on the sum of the squared annotation parameters is the one used in ridge regression

[Hastie et al., 2001]. In ridge regression, parameter estimates under this penalty are equivalent

to estimating the posterior mean of the parameter if the prior distribution of the parameter is

Gaussian [Hastie et al., 2001]; changing the tuning parameter p is equivalent to changing the prior.

We suspect that the interpretation in this model is similar. Since this penalized likelihood can not

be used for formal statistical tests, we tune the p parameter by cross-validation. An alternative

approach here would be to explicitly put a prior on the enrichment parameters, but in the absence of

a conjugate prior this would likely add substantially to the computational burden for little practical

benefit.

Cross-validation

To compare models and tune the penalty p in the penalized likelihood above, we used a 10-fold

cross-validation approach. We split the chromosomal segments into 10 folds. Let θp−f be the

parameters of the model estimated while holding out the data from fold f and under penalty p,

and L∗f (θp−f ) be the penalized likelihood of the data in fold f under the model optimized without

using fold f . Then:

L
′
(θp) =

1

10

10∑
i=1

L∗i (θ
p
−i). (13)

Note that the size of the folds used in this cross-validation means that each fold excludes more

than an entire chromosome. This means that no individual chromosome can have undue influence

on the parameters included in the model.

Model choice

Consider a single phenotype and a set of L functional annotations of SNPs (in our case L is in

the hundreds). Including all L SNP annotations in the model is neither biologically interesting nor

computationally feasible. We thus set out to choose a relatively sparse model that fits the data.

We start with forward selection: for each of the L annotations, we fit a model including region-level

parameters for regions in the top and bottom third of gene density, a SNP-level parameter for SNPs

from 0-5 kb from a TSS, a SNP-level parameter for SNPs from 5-10kb from a TSS, and a SNP-level

parameter for the annotation in question. We then identify the set of annotations that significantly

improve the model fit (as judged by a likelihood ratio test using the likelihood from Equation 10).

We then:

1. Add the annotation that most significantly improves the likelihood to the model.
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2. For each annotation identified as having a significant marginal effect, test a model including

the annotation and those that have already been added.

3. If any annotation remains significant, go back to step 1.

At this point, there are generally a small number of annotations in the model, but the model

may be over-fit. We then switch to using the 10-fold cross-validation likelihood in Equation 13.

We first tune the penalty parameter p by finding the value of p that maximizes the cross-validation

likelihood. We then:

1. Drop each annotation from the model in turn, and evaluate the cross-validation likelihood.

When dropping annotations, we additionally try dropping the region-level annotations on

gene density and the SNP-level annotations on distance to the nearest TSS.

2. If a simpler model has a higher cross-validation likelihood than the full model, drop the

annotation from the model and return to step 1.

3. Report the model that has the highest cross-validation likelihood.

Approximating Vi

In order to compute the Bayes factor in Equation 4, we need an estimate of Vi, the standard error

of the estimated effect size of SNP i. In principle, this is trivial output from standard regression

software; however, it is rarely reported. Instead, let fi be the minor allele frequency of SNP i

computed from an external sample of the same ancestry as the population in which the association

study was done (we use data from the 1000 Genomes Project [Abecasis et al., 2010]). Let Ni be the

number of individuals in the association study at SNP i (this can vary across SNPs due to missing

data). Then:

Vi ≈
1

Nifi(1− fi)
. (14)

Note that this variance is independent of the actual scale of the measurements; this is appropriate

because the Z-scores are independent of the scale of the measurements as well.

Case-control studies

For all of the above, we have considered studies of quantitative traits. For a case-control study, we

assume that we have summary statistics from logistic regression instead of linear regression. All

aspects of the model are identical, with the exception of the approximation of Vi. Define Ncase and

Ncontrol as the numbers of cases and controls, respectively. Now, [Wakefield, 2008]:

Vi ≈
Ncase +Ncontrol

NcaseNcontrol[2fi(1− fi) + 4f2i − (2fi(1− fi) + 2fi)2]
. (15)

The variance here is on a log-odds scale.
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Posterior probabilities of association

Once the model has been fit, we have empirical estimates of the prior probability that region k

contains an association, Π̂k and the prior probability that SNP i is the causal one, π̂ik (conditional

on there being an association). We define a Bayes factor summarizing the evidence for association

in the region (see, for example Maller et al. [2012]):

BFRk =
∑
i∈Sk

π̂ikBFi, (16)

where Sk is the set of SNPs in region k and BFi is the Bayes factor for SNP i (Equation 4). The

posterior probability that region k contains an association is then:

PPARk =
Π̂kBF

R
k /(1− Π̂k)

1 + Π̂kBF
R
k /(1− Π̂k)

(17)

We can also define the posterior probability that any given SNP i in region k is the causal one

under our model:

PPAik =
π̂ikBFi∑

j∈Sk

π̂jkBFj
. (18)

This is similar to the calculation in Maller et al. [2012], except that we allow the prior probability

πik to vary across SNPs.
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