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Abstract

As a field, synthetic biology strives to engineer increasingly complex artificial systems in liv-
ing cells. Active feedback in closed loop systems offers a dynamic and adaptive way to ensure
constant relative activity independent of intrinsic and extrinsic noise. In this work, we de-
sign, model, and implement a biomolecular concentration tracker, in which an output protein
tracks the concentration of an input protein. Synthetic modular protein scaffold domains are
used to colocalize a two-component system, and a single negative feedback loop modulates the
production of the output protein. Using a combination of model and experimental work, we
show that the circuit achieves real-time protein concentration tracking in Escherichia coli and
that steady state outputs can be tuned.
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Figure 1: A visual schematic of the circuit design. A) The circuit regulates the production of the amount of target
protein (Anti-scaffold-YFP) with respect to the amount of reference protein (Scaffold-RFP). Expression of the target
is dependent on the amount of free scaffold. The target contains domains which sequester free scaffold creating a
negative feedback loop. Scaffold, response regulator, and phosphatase concentrations are induced via pTet, pBAD,
and pSal, respectively. B) An illustrated mechanism of circuit function shows modular scaffold domain binding.

Implementation of reliable feedback and control in engineered circuits is a continuing challenge in syn-
thetic biology. Though positive and negative feedback systems are an essential feature of natural biological
networks, synthetic circuits more commonly rely on library-based screening to find optimal expression levels.
Not only are the resulting systems sensitive to relative concentrations between components, but each time
the circuit is expanded, the network of regulatory sequences must be re-optimized to account for increased
load on cell machinery. More importantly, this type of open loop approach only optimizes for a single set of
environmental parameters, and inherently does not accommodate for stochastic cell-to-cell variation, changes
due to cell growth cycles, or changes in cell loading from other circuit modules.

Closed loop systems provide robust regulation of individual components relatively independent of envi-
ronmental disturbances. Negative feedback is a common feature of natural pathways, and have been shown
to decrease transcriptional response time (Rosenfeld et al, 2002), to provide stability and reduce fluctuations
(Becskei and Serrano, 2000), and to be necessary for oscillatory behavior (Ferrell, 2013). Given the stochastic
and variable nature of protein production in the cell, regulation via relative concentrations ensures consistent
protein ratios without having to rely on controlling absolute molecular counts.

Active feedback in biological systems has been previously considered at various levels. Recent studies have
designed and studied an RNA-based rate regulating circuit with two opposing negative feedback loops (Franco
et al, 2008), a system utilizing an RNA binding protein to repress translation of its own mRNA (Stapleton
et al, 2012), and analysis of noise in transcriptional negative feedback (Dublanche et al, 2006). There have
also been demonstrations of an in silico closed loop system, in which a computer measured fluorescence
output and automatically modulated the activity of a photosensitive transcription factor (Milias-Argeitis
et al, 2011). In that example, the negative feedback occurred in the software control system outside of the
cell. We hypothesized that with appropriate protein degradation rates, negative feedback could provide a
framework for real-time tracking of molecules entirely within the cell environment.

In this work, we present an in vivo protein concentration tracker circuit. This circuit contains a single
negative feedback loop implemented with synthetic scaffold proteins. We show that this feedback results in
fast modulation of one protein concentration (the anti-scaffold) to track that of the reference protein (the
scaffold) over a range of reference induction levels.
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Results

Scaffold-based circuit design and implementation

Previously, Whitaker et al (2012) designed a scaffold-dependent two-component system in which the phos-
photransfer was mediated by a synthetic scaffold protein consisting of small protein-protein binding domains.
They demonstrated that weak natural cross-talk between a noncognate histidine kinase and response regu-
lator pair could be artificially amplified. The colocalization was mediated by fusing the kinase to the Crk
SH3 domain and the response regulator to half of a leucine zipper. In the presence of a scaffold protein
consisting of the SH3 ligand and the other half of the leucine zipper, the two components were recruited and
phosphotransfer occurred. The kinase-regulator pair of Taz and CusR was chosen because of known existing
low levels of cross-talk.

We designed a negative feedback circuit building upon this scaffold-dependent two-component system.
The scaffold molecule consists of a leucine zipper domain (LZX) linked to the SH3 ligand via flexible glycine-
serine repeats (Figure 1). The two component system is comprised of the chimeric kinase Taz linked to four
SH3 domains and the response regulator CusR linked to a single leucine zipper (LZx) domain (Figure
1A). The presence of the scaffold brings together the SH3 domain-ligand and LZX-LZx protein binding
domains, recruiting Taz and CusR into close proximity and resulting in phosphorylation of CusR. The
phosphorylated CusR becomes an active transcription factor, binding to its natural promoter (pCus) and
activating expression of the anti-scaffold protein (Figure 1B). The anti-scaffold consists of the complementary
LZx and SH3 ligand domains, which allow it to competitively bind to and then sequester away the scaffold
protein. This prevents further phosphorylation of the response regulator, and halts further production of
the anti-scaffold. In absence of any scaffold protein, no activated response regulator activity is observed
(Supplementary Fig. S2).

We implemented the circuit in a ACusS ACusR E. coli knockout strain (Whitaker et al, 2012). In the
absence of CusS, the native bifunctional partner for CusR, activated CusR proteins remain phosphorylated
indefinitely. Accordingly, we re-introduced a CusS(G448A) mutant behind an inducible promoter to control
response regulator deactivation. The G448A mutation disrupts the ATP binding site, eliminating kinase
autophosphorylation without affecting phosphatase activity (Whitaker, 2012; Zhu and Inouye, 2002). This
created a tunable phosphate sink in our circuit and ensures tight coupling between present scaffold and
activated response regulator concentrations. The negative feedback circuit with the anti-scaffold is referred
to as the closed loop circuit. As a control, we also built an open loop circuit without the anti-scaffold gene
sequence and has only a pCusR-YFP.

We constructed the circuit as a three plasmid system, in which the kinase is constitutively expressed and
the scaffold, response regulator, and phosphatase were cloned behind the inducible promoters pTet, pBAD,
and pSal, respectively. We created scaffold-RFP and anti-scaffold-YFP fusion proteins to track temporal
changes in concentrations in vivo. The fluorescent reporters mCherry RFP and Venus YFP were chosen on
account of their similar maturation times (approximately 15 min) (Nagai et al, 2002; Shaner et al, 2004). To
visualize dynamic behavior, the scaffold-RFP and anti-scaffold-YFP fusions were tagged with a C-terminus
ssrA degradation marker of medium strength (RPAANDENYAAAV) (Andersen and Molin, 1998).

Modeling dynamics and steady state circuit behavior

Building upon a previously published model of the scaffold-modulated circuit, we created additional phos-
phatase species and reactions (de los Santos et al, 2013). The model is differential equation based and all
chemical reactions between species are explicitly stated, omitting transcriptional activity and accounting
only for protein level behavior. With the exception of the anti-scaffold production term, all other terms
are derived from mass action kinetics. The 25 species arise from combinations of scaffold (Sc), response
regulator (RR), histidine kinase (HK), anti-scaffold (AS), and phosphatase (Ph) binding complexes. In to-
tal, the model consists of 80 reactions, 25 differential equations, and 26 parameters (See Supplementary for
complete list of chemical reactions). Parameters (Table 1) were selected from experimental values found in
the literature (Pazy et al, 2009; Groban et al, 2009; Solomaha et al, 2005).
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Parameter name Value Units Description
HK o 3 nM low copy plasmid + constitutive promoter
RR,o; 0-1000 nM med copy plasmid + pBad promoter
Scyy 0 - 5000 nM high copy plasmid + pTet promoter
Phyg, 0-500 nM low copy plasmid + pSal promoter
Bas 1 M/s Transcription + translation
Bo Bas x 10~ 12 M/s Leaky promoter activity
Y 3.85x 104 s 1 Deg/dilution [Groban et al, 2009]
n 1 Hill coefficient for AS activation
Kp 100 nM K, for AS activation
kdephDs 0.003 s 'M~'  Phosphatase mediated dephosphorylation of RR;, [Groban et al, 2009]
Forward and reverse reaction rates
Kico ki 0.003 s "M ~'  HK autophosphorylation [Groban et al, 2009]
k., 0.0001 s 'M-1  [Pazyetal, 2009]
Keogp ke 102.1 s "M -1  Cognate HK-RR phosphorylation [Groban et al, 2009]
k. 0.00294 s~ 'M~-1 [Groban et al, 2009]
Knoncog ki 0.0031 s"'M~'  Non-cognate HK-RR phosphorylation [Groban et al, 2009]
k. 0.0015 s ™M -1  [Groban et al, 2009]
Ksia ko 1e5 s ™M -1 SH3 domain/ligand binding [Solomaha et a/, 2005]
ke kuga(0.1x 1076) 571 kp =0.1uM [Whitaker and Dueber, 2011]
K 7% ki 1e5 s~ 'M~'  Leucine zipper binding
ke Koy (0.01x 10°6) 571 kp =0.01uM [Whitaker and Dueber, 2011]
Kseik K 4Kegg s 'M~"  Scaffold binding to HK with 4 SH3 domains
ke 0.25k g5 s1
Kse:rm ki Kizx s 'M~1  Scaffold binding to RR with 1 LZX domain
ke Keizx s
KphmR ko 1e5 s '™M -1 Phosphatase binding to RR,
k  1e-3 s !
Closed Loop Anti-scaffold interactions
Kse:ns ki Kzx + Kisns s"'M -1 Scaffold binding to anti-scaffold
ke 0.001 kpy 5y s1
Kns-sHa ki Kugg s M~ Anti-scaffold binding to Sc:RR complex
ke 0.001 kg5 s
Kas.L 2% ki Keox s ™M -1 Anti-scaffold binding to Sc:HK complex

k. 0.001 K, oy

*Since the open loop circuit has no anti-scaffold, the rates kg.og: Kas spa-Kag. zx for the open loop model are all set to 0

Table 1: Table of model parameters estimated from literature.

Model reactions can be classified into five categories: production and degradation, phosphorylation,
scaffold complex formation, activation, and irreversible sequestration. Phosphorylated species are denoted
with a subscript p (e.g. RR,,), and complexes are denoted with a colon separating the participating species
(e.g. Sc:AS). Though the possibility of modeling the scaffold as an enzyme-like species was considered, we
could not assume that either the kinase or response regulator would always be in excess, a requirement of the
substrate in a Michaelis-Menten reaction. Therefore, Michaelis-Menten kinetics were deliberately avoided.

The production rate, 3, of the scaffold, histidine kinase, response regulator, and phosphatase are deter-
mined by user input of the total steady state value (in nM), multiplied by the degradation/dilution rate
~. This ensures constant concentration of these species in solution. The degradation rate 7y is applied uni-
versally for all species and is estimated based on a cell division time of 30 minutes (Groban et al, 2009).
Experimentally, the scaffold is on a high copy plasmid, the response regulator is on a medium copy plasmid,
and the kinase and phosphatase are on the same low copy plasmid. Thus, we estimated Sc,, to be 10 times
more than RR,,, and 100 times more than HK, , and Ph,.

The phosphorylation reactions describe the autophosphorylation of HK and dephosphorylation of RR,,.
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Key reactions that describe this process are:

e,
HK <= HK, (1)

HKp

kf
RR, + Ph ==RR,:Ph ~“*%, RR + Ph

I
kPh

The phosphatase forms a complex with the RR, prior to dephosphorylation. We model both phosphory-
lation and dephosphoryaltion with a two-step reaction model, an approach consistent with previous models
(Huang and Ferrell, 1996). Rate constants for kinase phosphorylation and dephosphorylation of the response
regulator were chosen based on cognate and noncognate phosphorylation rates measured for natural two-
component systems, and occur on the order of seconds (Groban et al, 2009). The following equations show
phosphorylation in the absence and presence of scaffold:

12

"noncog

HK, + RR HK + RR, (2)

r
noncog

k{o P
Se:HK,:RR == Sc:HK:RR,,

”
kcogp

Reaction rates for scaffold complex formation were based on the kinetics of the protein-protein interaction
domains SH3 domain/ligand and LZX/LZx. SH3 domain/ligand binding has an estimated association affinity
K4 of 0.1 uM while leucine zippers have a K of approximately 0.01 uM (Whitaker and Dueber, 2011). Here
we have examples of histidine kinase and response regulator binding to scaffold via SH3 and LZX binding,
respectively:

!
4k5us

Sc + HK,, Sc:HK, (3)

0.25k% 4

k{ZX
Sc:HKp + RR r: SC:HKP:RR

kLZX

A phosphorylated response regulator becomes an active transcription factor. We considered all possible
complexes with RR,, as possible activators. This sum of all possible species is referred to as RR, ;.- Since
we did not anticipate cooperativity to be a significant factor, a first-order Hill function is used to represent
activation of AS production:

B
RR, =% RR,, + AS (4)
d[AS] _ RRaCtive
dt B /3/15 {[30 %i <:1 _F I{I{aCtivel/]{j) ) ] (5)
where RR, ;.. = RR, + Sc:RR, + Sc:HK:RR,, + Sc:HK;:RR, + Sc:RR,:AS.
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The negative feedback component comes about through the irreversible sequestration of the scaffold once
it has bound to the anti-scaffold. We made the assumption that the individual SH3 and LZX domains on
the anti-scaffold bind independently, at the same rates as HK and RR binding. However, once either the
SH3 or LZX component of the AS has bound to the Sc, the other domain quickly displaces any competing
species and sequesters the entire Sc. The irreversibility comes about through steric hinderance of competing
HK and RR species, both of which only have one compatible binding domain to the Sc:

k!
Sc+ AS — Sc:AS (6)

kI{ZX &
Sc:HK + AS == Sc:HK:AS Ksms, geiAS + HK

kLZX

k‘f r
Sc:RR + AS == Sc:RR:AS “225 Sc:AS + RR

kSHB

After creating the model, we tested its validity by comparing the open and closed loop circuits. In
the open loop circuit, the negative feedback binding reactions are set to zero (Table 1). Experimentally,
this was done by deleting the anti-scaffold gene sequence and leaving only the fluorescent reporter. Figure
2A shows simulated steady state values for anti-scaffold (or fluorescent reporter) output over a range of
scaffold concentrations. In the cases with no response regulator, the circuit does not function and there
is no production of output. When response regulators are present, the open loop circuit output decreases
significantly with increasing scaffold. Though it is not intuitive, this can be explained as the scaffold single
occupancy effect (Whitaker and Dueber, 2011; Good et al, 2011), where an overabundance of free scaffold
leads to binding of only kinase or response regulator but not both. If we examine the prevalence of these
intermediate species (Sc:HK, Sc:RR) in simulation, we can see that the total concentration of singly-bound
scaffold increases in correspondence to the decrease in output (Supplementary Fig. S1A). The same effect
also occurs in the closed loop circuit, but much higher concentrations of scaffold are needed, since the
anti-scaffold sequestration lowers the effective number of free scaffold in solution (Supplementary Fig. S1B).
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Figure 2: Open loop versus closed loop. A) Model predictions of scaffold circuit with and without negative feedback.
Solid lines show anti-scaffold output over a range of scaffold concentrations for open and closed loop circuits with
constant response regulator. Dotted lines show lack of output in the absence of response regulator. Open loop circuit
shows scaffold single occupancy effect. B) Steady state experimental data of open and closed loop circuits with and
without response regulator matches model predictions.

Experimental data for the circuit closely recapitulated the model predictions (Figure 2B). First, without
induction of RR, there is no output YFP. Secondly, we see the single scaffold occupancy effect in the open
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loop circuit, but not the closed loop circuit. In the case of no scaffold induction, the open loop circuit has
about three times more background than the closed loop circuit (Figure 2A), behavior that is predicted by
the model (Figure 2B). We believe this is due to leakiness in scaffold production in the absence of aTc. In
the closed loop circuit, this leaky production is subdued by the negative feedback, while in the open loop,
we see significant production of YFP. The open and closed loop circuits have the same maximum output,
but only the closed loop circuit shows a linear increase with increasing scaffold. These experiments validated
our model, and demonstrated that this synthetic scaffold technology could be used for negative feedback.

Model-informed exploration of parameter space
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Figure 3: Model-based exploration of parameter space. A) Simulations of scaffold to anti-scaffold inputs and outputs
over a range of phosphatase and response regulator from 0 - 100 nM. Enlargement shows the scaffold single occupancy
limit concentration and curve fitting for each curve. Red dotted lines show curve fits - the slope represents the anti-
scaffold to scaffold ratio. B) Heat map showing anti-scaffold to scaffold ratio for each curve shown in part A. Gray box
represents estimated experimental phosphatase induction range. Black box estimates experimental response regulator
induction range. C) Heat map of maximum scaffold occupancy limit for each curve.

Once we had validated the model, circuit limitations were explored in silico. Specifically, we investigated
the effects of tuning response regulator and phosphatase concentrations, parameters which were easily ac-
cessible via inducible promoters in our experimental system. In Figure 3A, a scan of input-output response
curves is shown over a range of response regulator and phosphatase concentrations. For each curve in the
grid, the scaffold concentration in which the single occupancy drop-off occurs was found, and the slope of
the curve up to that concentration was found with a linear fit. The maximum scaffold occupancy limit is
the concentration of scaffold molecules at which each scaffold molecule only has either a response regulator
or histidine kinase. The slope of the curve up to that point represents the anti-scaffold to scaffold ratio
which can be achieved by the circuit. In the case where the single occupancy limit does not appear, the last
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concentration is used. Data shown in Figure 3B indicates that increasing response regulator values result
in a greater AS/Sc ratio (up to 0.5 fold increase), while increasing phosphatase serves to bring down that
ratio. A majority of the space tested shows that AS/Sc ratio is approximately 1:1 (See Figure S3 for explicit
values). The effect of increasing phosphatase is apparent when the maximum scaffold occupancy limit is
examined (Figure 3C). As phosphatase concentration increases, active response regulators are quickly de-
phosphorylated, decreasing the efficacy of the scaffolds and lowering the maximum occupancy concentration.

By modulating response regulator and phosphatase concentrations, a range of maximal expression levels
for scaffold and anti-scaffold can be achieved. Figures 4A and C shows steady state circuit response to
varying levels of response regulator induction in both the model and experimental circuit. Increasing RR
concentrations increases the gain of the system by increasing the number of available active transcription
factors for the AS promoter. In simulation data (Figure 4A), we see that the scaffold occupancy effect is
mitigated by higher levels of response regulator. This is consistent with our previous explanation, since more
regulator means almost all free scaffold molecules will exist as Sc:RR. Experimental data for tuning response
regulator concentration via ten-fold increases of arabinose (Figure 4C) do not extend the scaffold levels far
enough to show the occupancy effect, but the increasing output gain is evident.

The presence of phosphatase in the circuit modulates the amount of time that phosphorylated response
regulator is active. Hence, tuning phosphatase concentrations changes RR <— RR,, cycling time. Figures
4B and D shows steady state responses across a range of phosphatase concentrations. Simulation results
show that increasing phosphatase decreases overall circuit output (Figure 4B) by decreasing the average time
RR,, is active. Experimental results (Figure 4D) support model predictions and show this suppression of
output with increased induction via salicylate.

In Figures 4E and F, these experimental steady state data are analyzed using the same techniques
shown in Figure 3. Figure 4E shows anti-scaffold to scaffold ratio and scaffold occupancy limit as calculated
based on fluorescence data with ten-fold increases in response regulator induction with no phosphatase
present. Similar to the analysis used in the model, if the single occupancy drop is not observed, the highest
scaffold concentration is taken. Figure 4F shows the same metrics with ten-fold increases in phosphatase
induction with constant response regulator (0.001% arabinose induction). Experimental data is presented
as a function of fold change from background fluorescence, and so cannot be compared directly with model
data (presented in nM). However, the overall trends are in agreement. As response regulator increases, we
see a significant increase in anti-scaffold to scaffold ratio, and little change in the occupancy limit. With
increasing phosphatase, we see a slight decrease in AS/Sc ratio and scaffold occupancy limit. We believe
these data show us that our experimental range occupies only a small fraction of that shown by our model
(Figure 3B,C), and that these limitations are due to the non-linear nature of the pBAD and pSal inducible
promoters (pBAD-RR, pSal-Phos).

Characterization of step response

Having verified the functionality and potential range of the negative feedback loop, we tested circuit response
to step inputs. Using a microfluidic plate under a microscope, step induction of the scaffold protein was
achieved by flowing in 0, 37.5, or 75 nM of aTc after 30 minutes of growth in normal media (Figure 5).
Cell production of response regulator and phosphatase is pre-induced by incubating cells with arabinose
and salicylate. In all conditions, expression of scaffold-RFP begins about 30 minutes after induction, and
occurs almost simultaneously with that of anti-scaffold-YFP. In order to better visualize the fold change,
fluorescence output is normalized by the maximum value of the lowest step input.

We quantified the response time of the circuit by calculating the response time (7;.) of scaffold (RFP)
and anti-scaffold (YFP). In control theory, response time is the amount of time needed for an output signal
to increase from 10% to 90% of its final steady state. Here, we use the maximum output rather than a
final steady state. As cells reach stationary phase, circuit expression gradually turns off, and no steady
state in fluorescence output is maintained. Figure 5A shows that scaffold induction, regulated by a pTet
promoter, has a 4-fold expression increase between 37.5 nM and 75 nM induction, but only a 2-fold increase
in response time (50 min to 100 min). In Figure 5B, we see that anti-scaffold output, regulated by the
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Figure 4: Steady state experimental tuning of response regulator and phosphatase. A) Simulation data of input-
output curves with increasing response regulator concentrations (0 - 500 nM). Increasing response regulator increases
the scaffold occupancy limit as well as overall AS/Sc ratio. B) Simulation data of input-output curves with increasing
phosphatase concentrations (0 - 1000 nM) with constant response regulator concentration of 100 nM. Increasing phos-
phatase decreases the scaffold occupancy limit and overall AS/Sc ratio. C) Experimental data of steady state scaffold
to anti-scaffold curves with ten-fold increases in response regulator induction (0 - 0.01 % arabinose). D) Experimental
data of steady state circuit behavior with ten-fold increases in salicylate. Response regulator concentration is con-
stant (0 - 100 uM salicylate). E) Heat maps showing quantified AS/Sc ratio and scaffold occupancy limit values with
increasing response regulator. Scaffold occupancy limit was not observed so the last scaffold expression was taken.
F) Heat maps showing quantified AS/Sc ratio and scaffold occupancy limit values with increasing phosphatase. All
experimental data was normalized by baseline auto-fluorescence values.

scaffold concentration, shows a 2.5 fold increase in maximum expression and a 3-fold increase in response
time (40 min to 120 min).

This step input characterization revealed that scaffold and anti-scaffold fluorescence could be observed
almost simultaneously about one cell cycle (30 min) after aTc induction of scaffold transcription. Following
induction of the circuit, the response time to maximum expression increases in a linear-like fashion with
increasing scaffold induction.

Circuit closely follows three step induction

Following step input characterization, we investigated circuit response to multiple step-up inputs. Figure 6
shows the results of a three step scaffold induction experiment with one hour steps corresponding to 50nM
increases of aTc inducer. The single negative feedback loop in the circuit represses overproduction of anti-
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Figure 5: Step induction of closed loop circuit. A) aTc induction of Sc-RFP began 30 minutes after start of
experiment and continued for the rest of the experiment. B) Scaffold-RFP/OD measurements for no induction (left),
37.5 nM induction (middle), and 75 nM induction (right). Response time (7’.) is quantified by finding the time
needed for fluorescence to increase from 10% (gray dotted line) to 90% of the maximum value (blue dotted line). A
two-fold increase in aTc results in a four-fold increase in scaffold expression and a two-fold increase in response time.
C) AS-YFP/OD measurements show 2.5 fold increase between the two inputs and a three-fold increase in response
time. Fluorescent measurements are normalized such that the maximum of the middle column (37.5nM aTc) is 1 a.u.
to better visualize fold change.

scaffold but there is no mechanism for feedback in the case of an excess of scaffold or anti-scaffold. As such,
the model predicts that increases in inducer will lead to immediate increases of scaffold followed closely
by the anti-scaffold but once induction is turned off, degradation of proteins depends on the endogenous
ClpXP degradation machinery (Figure 6B). Additionally, the upward slope of each curve should overlap
until induction ceases.

Step-up induction was performed on cells pre-incubated in arabinose and salicylate, activating expression
of response regulator and phosphatase, respectively. As shown in Figure 6C, experimental results for a
three step induction are consistent with model predictions, and show overlapping curves during the ascent,
with each individual curve dropping off slowly as induction ceases. The chemical induction of the scaffold
produces a much smoother output curve compared to the response regulator-modulated anti-scaffold.

Degradation rates contribute to cumulative effect of sequential pulses

We observed in our model that variations in protein degradation rate would great affect the outcome of
sequential pulses (Figure 7A). A new parameter, vssr4 is defined to separate the faster ssrA-mediated
degradation from the slower, normal protein degradation/dilution rate . Given two sequential 30 minutes
pulses spaced one hour apart, degradation rate determined whether two independent, identical outputs
occurred, or if an additive effect would take place. Essentially, if the first pulse of scaffold is not given
sufficient time to degrade, scaffold molecules from the first pulse are still present when the second pulse
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Figure 6: Multi-step induction of tracker circuit. A) aTc induction pattern with one hour steps increasing in
50 nM increments starting 30 minutes after start of experiment. B) Simulation results for a three step induction
show overlapping response times with each curve decreasing based on degradation rate after induction ceases. C)
Experimental time traces for Sc-RFP show overlapping fluorescence output, with each curve decreasing at a time
proportional to the number of steps. Corresponding anti-scaffold-YFP data show similar overlaps and proportional
decreases. Fluorescent measurements are normalized such that the maximum value of the one step curve is 1 a.u. to
better visualize fold change.

occurs. Figure 7A shows two pulse simulation results when the default degradation rate (vssra = 3.84 X 1074
molecules/sec, middle column) is increased or decreased by 10-fold.

When we tested two pulse induction in vivo (Figure 7B), we ran simultaneous experiments with zero, one,
and two 30 minute pulses of 50 nM aTc. The single pulse fluorescence maximum (Fig. 7B, middle column)
was normalized to 1 a.u. It is clear from the two pulse fluorescence output data that the degradation rate
in vivo was actually much slower than the default we had been using in silico. In fact, so little of the
scaffold from the first pulse had degraded that there was almost a two fold increase in maximal expression
during the second pulse. This was an effect which had not been apparent previously during the multi-step
inductions, where we showed sequential increases in inducer concentration. This set of data shows that
modulation of pulse frequency, but not concentration, can result in the same additive effect as increasing
inducer concentration.

We then sought to improve our model by decreasing protein degradation rate by ten-fold (Figure 7C),
generating outputs which demonstrated the nearly two-fold increase observed in vivo. Although the slower
rate better captured gene expression during log phase, we consistently observed a rapid decrease in fluores-
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cence as cells approached stationary phase. We believe this is due to upregulation of ClpX and other ssrA
machinery in stationary phase (Farrell et al, 2005), and so included a three-fold increase in 7454 after the
final pulse. This resulted in improved model performance when simulating dynamic circuit behavior.
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Figure 7: Two pulse induction of circuit. A) Model results for a range of protein degradation rates from 3.84x 1072 to
107° molecules per second. Fast degradation (left) shows two independent pulses, intermediate degradation (middle)
results show some overlapping protein from first and second pulses, and slow degradation (right) shows large amounts
of overlapping protein from the first to the second pulse. B) Experimental data for zero, one, and two pulses of 50

nM aTc. Data are normalized by maximum of single pulse induction (middle column). C) Simulations with improved
degradation rates.

Discussion

We have designed a novel negative feedback tracker circuit using modular synthetic scaffold proteins and a
two-component system with scaffold-dependent phosphorylation. The use of scaffold proteins for negative
feedback could potentially be a robust way of linking modules and ensuring constant performance despite
intrinsic and extrinsic noise. Scaffold proteins have been shown to be powerful hubs for organization of
regulatory feedback in natural networks, usually by colocalization of phosphorylation machinery (Good
et al, 2011). Previous studies have rewired the naturally occurring Ste5 scaffold in the yeast MAPK cascade
to redirect signals, to modify delays in signaling time, and to introduce ultra sensitivity (Park et al, 2003;
Bashor et al, 2008). Here we have taken synthetic scaffold proteins, which were designed and optimized
to increase flux through metabolic pathways (Dueber et al, 2009; Moon et al, 2010; Whitaker and Dueber,
2011), and built an entirely synthetic feedback circuit. The system is designed with multiple inducible

promoters and most components can be tuned. Most importantly, the circuit is quite robust to changes in
component concentration.
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After we designed the circuit framework, we constructed and then experimentally validated an ODE-
based mathematical model. Through selection of parameters and reaction rates based on the literature,
we obtained a model able to reasonably predict circuit behavior. Comparisons between simulation and
experimental data confirmed the presence of scaffold-mediated negative feedback, and we used the model
to scan the parameter space in a way that would have been time and resource intensive to explore in vivo.
We found that steady state circuit gain can be tuned by changing response regulator concentrations and
cycling time is controlled by varying phosphatase levels, observations which were supported by experimental
data. Following initial step induction system characterization of step input response time, expression of both
the reference (Sc-RFP) and output (AS-YFP) protein was shown to be fast and responsive to multi-step
inputs. Finally, we found that pulse-modulated induction could result in additive circuit response, leading
to improvement of the model through more accurate protein degradation parameter values.

This work demonstrates the design and implementation of a scaffold-based biomolecular tracking circuit
that has potential applications in active regulation of component expression in synthetic circuits. The rela-
tively small size (approx. 60 AA) of the scaffold and anti-scaffold proteins facilitates attachment to larger
proteins, represented in this work by mCherry-RFP and Venus-YFP. Rather than open loop tuning of regula-
tory sequences and large-scale screening, scaffold-based negative feedback could be utilized. By attaching the
scaffold to a native protein, it may also be possible to tie synthetic circuit inputs to naturally occurring cycles
in vivo. It is well known that many natural cell processes such as developmental segmentation, circadian
clocks, and stem cell multipotency involve oscillatory gene expression (Bessho, 2003; Imayoshi et al, 2013).
Furthermore, response to signal transduction may be modulated not by amplitude, but by frequency (Cai
et al, 2008). We have shown that the scaffold-modulated protein tracker follows changes in both amplitude
and frequency, and exhibits good agreement with a mass-action model. Future iterations of this design may
improve tracking fidelity by including reverse feedback loop to damp down over expression.

Materials and methods

Cell strain, media

The circuit was implemented in the E.coli cell strain WW62, a variant of BW27783 (CGSC 12119) with
knockouts of EnvZ, OmpR, CusS, CusR, CpxA, and CpxR. All cell culture was done in optically clear MOPS
EZ Rich defined medium (Teknova, M2105), with 0.4% glycerol instead of 20% glucose. The use of glycerol
as a carbon source was done to prevent interference with the arabinose induction of the pBAD promoter.

Tested arabinose induction levels were 0, 0.0001%, 0.001%, 0.01%, and 0.1% (20% stock ). Anhydrote-
tracycline (ATc) was diluted in media at concentrations of 0, 5, 15, 30, 60, 90, 120, 150nM. Sodium salicylate
was resuspended at a stock concentration of 100mM and diluted 1:1000 in media for experiments.

Plasmids

The plasmid encoding the SH3-ligand-LZX-mCherry scaffold (pVHO001) has a high copy backbone(ColE1)
with ampicillin resistance. The CusR-LZx response regulator and SH3-domain-LZx-VenusYFP anti-scaffold
plasmids (pVH003, pVHO009) are on a medium copy backbone (pBBR1) with kanamycin resistance. The
4SH3-domain-Taz histidine kinase and CusS-G448A phosphatase are on a low copy plasmid (pl15A) with
chloramphenicol resistance. Detailed plasmid maps are shown in Figure S4, and a complete list of plasmids
and strains can also be found in the Supplementary Information.

Microscopy

Step induction data were taken using the CellAsic ONIX microfluidic perfusion system for bacteria (B04A).
The microscope is an Olympus IX81-ZDC enclosed in a custom heater box. Images were taken using a 100x
oil immersion phase objective. Fluorescence filters are 580/630 for mCherry (Chroma 41027) and 510,/560
for YFP (Chroma 31040 JP2). Microscope media was augmented with oxidative scavengers Trolox (200 nM)
and sodium ascorbate (2 mM).
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Cells are pre-induced with arabinose(0.01%) and salicylate(100uM) to ensure the RR and Ph are pre-
expressed prior to addition of aTc. Overnight cultures are diluted 1:500 in media containing arabinose and/or
salicylate four hours prior to loading in the CellAsic plate. Cells are diluted 1:10 again before loading. During
the movie the temperature is kept at 37C, and images are taken once every 10 minutes. Exposure time is
10 ms for bright field and 500 ms for both mCherry and YFP.

Analysis of microscope movies is done using custom algorithms in ImageJ and Matlab. For each frame, the
phase image is converted to a binary mask of the cell colony. The mask and then used to find total mCherry
and YFP fluorescence in the frame. After subtraction of background fluorescence, the total fluorescence
is normalized by the total cell area (fluorescence intensity per pixel). For step induction experiments,
fluorescence is normalized such that the maximum fluorescence of the lowest concentration induction is
equal to 1 a.u. Figure S5 shows the microscopy analysis workflow.

Plate reader experiments

Plate reader data were collected on a Biotek HIMF machine using the kinetic read feature. Cells were
incubated in the plate reader at 37C and shaken at 800rpm between reads. Cells were grown in clear bottomed
96-well microplates (PerkinElmer, ViewPlate, 6005182) and sealed with breathable clear membranes (Sigma
Aldrich, Breath-Easy, Z380059). mCherry was read at excitation/emission of 580/610 with gain 140, Venus
was found to be optimally read at 500/540 with gain 100.

Analysis of the data was done by taking fluorescence readings at late log phase for each independent well.
Experimental conditions were done in triplicate and repeats were averaged. Fluorescence per OD was nor-
malized by the fluorescence of a control strain (lacking mCherry or YFP) such that the cell autofluorescence
equals 1 a.u.

Model implementation

The model was implemented using the Simbiology toolbox in MATLAB and the odel5 solver (See Supple-
mentary files for MATLAB code).
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