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Abstract

We describe the development and application of a Bayesian statistical model for the prior

probability of phenotype–genotype association that incorporates data from past association

studies and publicly available functional annotation data regarding the susceptibility variants

under study. The model takes the form of a binary regression of association status on a set

of annotation variables whose coefficients were estimated through an analysis of associated

SNPs housed in the GWAS Catalog (GC). The set of functional predictors we examined in-

cludes measures that have been demonstrated to correlate with the association status of SNPs

in the GC and some whose utility in this regard is speculative: summaries of the UCSC Hu-

man Genome Browser ENCODE super–track data, dbSNP function class, sequence conservation

summaries, proximity to genomic variants included in the Database of Genomic Variants (DGV)

and known regulatory elements included in the Open Regulatory Annotation database (ORe-

gAnno), PolyPhen–2 probabilities and RegulomeDB categories. Because we expected that only

a fraction of the annotation variables would contribute to predicting association, we employed a

penalized likelihood method to reduce the impact of non–informative predictors and evaluated

the model’s ability to predict GC SNPs not used to construct the model. We show that the

functional data alone are predictive of a SNP’s presence in the GC. Further, using data from a

genome–wide study of ovarian cancer, we demonstrate that their use as prior data when testing

for association is practical at the genome–wide scale and improves power to detect associations.
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1 Introduction

The purpose of genetic association studies is to discover genetic loci that contribute to an inherited

trait, identify the variants behind these associations and ascertain their functional role in determin-

ing the phenotype (Manolio, 2010). Modern association studies bring to bear on this problem high

coverage genotype data, comprehensive databases of genetic variation that allow imputation of most

common ungenotyped variants to high accuracy and extensive, publicly available, in silico resources

housing a growing assortment of genomic data that allow functional characterization of vast regions

of the human genome. In the typical genome–wide association study (GWAS), the first two forms

of data are combined to reconstruct genotypes to a desired density and these genotypes are then

systematically tested for association with the phenotype. The functional annotation data are most

frequently used in post hoc interpretation of evident associations raised by the analysis (Freedman

et al., 2011).

To date, functional annotation data have rarely played more than an indirect role in assessing

evidence for association. For example, they may be used to suggest candidate genes and SNPs

for study or to support links between candidate SNPs and genes. While methods to incorporate

functional annotation data a priori in genetic association analyses exist, they are infrequently used.

The prevailing approach to this is via a two–staged hierarchical model in which coefficients in the

stage I generalized linear model for phenotype given genotype and exposure measurements are

regressed, in stage II, on the annotation data (Witte et al., 1994; Aragaki et al., 1997; Hung et al.,

2004, 2007). This is limited to analysis of a modest number of variants and does not make use of

prior data derived from previous association studies to inform the nature of that relationship.

It is becoming increasingly clear that a widening array of annotation data correlates with a

variant’s having been associated with a human phenotype (Hindorff et al., 2009; Nicolae et al.,

2010; The ENCODE Project Consortium, 2012; Schaub et al., 2012). In what follows, we describe

a formal approach to inference for association that combines functional annotation data (through a

prior distribution) with genotype data (through a sampling model for the phenotype given genetic

and other covariate data). We construct the prior distribution through careful analysis of SNPs

housed in the GWAS Catalog (Hindorff et al., 2009). We refer to the linear combination of the
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annotation variables defined by this model and evaluated for a given SNP as its ’functional anno-

tation signature.’ We show that functional signatures so derived are predictive of the association

status of SNPs not used in their creation and that, when coupled with genetic association data

following the method we describe, improve the efficiency of association testing in a GWAS study

of ovarian cancer.

2 Results

The ultimate goal of association studies is to identify the set of common polymorphisms that

influence a phenotype. This goal is approached through a statistical analysis designed to measure

the evidence in favor of association followed by a decision rule used to declare each variant’s true

status as ’associated,’ ’uncertain,’ or ’unassociated.’ The data that inform these analyses usually

comprise phenotype labels, SNP genotype data and a set of non–genetic covariates in addition

to functional annotations of the variants under study. The statistical analysis may take many

forms, varying according to choice of modeling approach and inferential paradigm (Frequentist or

Bayesian). The approach we develop here relies on Bayesian inference but can also be applied

when the genetic association summaries are p–values. In this paradigm, prior data on a quantity of

interest (such as the binary association status of a genetic variant) are updated to reflect evidence

in the current data set.

A Bayesian analysis of genetic association data returns an estimate of the odds of association of

each marker given the available data. When the data take two distinct forms — here subject–level

phenotype, genotype and covariate data and variant–level functional annotations — the odds of

association may be calculated in two stages, either by incorporating functional data prior to or

following evaluation of the genetic data. The latter represents the heuristic typically followed in

practice, whereby functional data is evaluated in an informal way (from the probabilistic point

of view) conditional on evidence for association. Here we describe a model–based framework for

combining functional and association data following the second factorization. We focus on the

case–control study design for purposes of illustrating integration of the a priori (to association

data) models for functional annotation data we describe below into analyses of genetic association
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data. Details of the models and their assumptions are provided in Methods.

When the functional data are incorporated as prior information, the odds of a SNP’s association

given the functional and subject–level data can be written as the product of the Bayes factor (BF) in

favor of association and the prior odds of association given the functional data. The BF is the ratio

of the integrated likelihood of the phenotype data given the covariate and genotype data assuming

the SNP is associated to the integrated likelihood of the phenotype data given the covariate data

only (i.e. assuming the SNP is not associated). It is a commonly used Bayesian statistical measure

of association and is calculated by the SNPTEST (Marchini et al., 2007) and BIMBAM (Servin and

Stephens, 2007) packages for analysis of GWAS data. Alternately, Sellke et al. (2001) show that an

upper bound on the Bayes factor in favor of association is approximately equal to −1/(ep loge(p))

when p < (1/e) and 1.0 otherwise, where p is the p–value for association. This allows the method

to be used in conjunction with standard frequentist association testing software.

In short, the functional annotation data are incorporated into an analysis by formally updating

the prior odds of association given the annotation data by a standard measure of genetic association.

This process is depicted schematically in Figure 1. In what follows, we describe the model used to

calculate prior odds of association and demonstrate its use in a GWAS of ovarian cancer. In it, the

log of a SNP’s prior odds of association, its ’functional signature,’ is a linear combination of the

functional data.

2.1 Functional Signatures of Known Associations

We constructed the functional annotation signatures by estimating the multivariate relationship

between a set of functional annotation variables and the binary association status of a set of SNPs.

Figure 2 provides a schematic of our approach. In brief, we identified a set of associated SNPs

and, for each, we chose a matching, unassociated ’control’ SNP. We divided the matched pairs

into ’training’ and ’validation’ sets and used the former to construct a series of models to predict

association status given the function data and used the latter to compare the performance of these

models. We chose the model that demonstrated the best predictive accuracy in the validation data,

as measured by concordance index, to define the functional annotation signatures.
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We began by constructing a matched case–control study of SNPs in which the cases were drawn

from the GWAS Catalog (Hindorff et al., 2009) and the controls were identified from the HapMap

database, Release 27, Phases II and III merged genotypes. We identified 2,093 case SNPs and, for

each, identified one control SNP matched on chromosome, minor allele frequency and the genotyping

platform(s) it appeared on. Since SNPs in the GWAS Catalog are arguably more frequently tags

than the directly associated variant, we followed Hindorff et al. (2009) and identified ’LD partners’

for each case and control SNP. We grouped each case and control SNP together with its LD partners

to form blocks.

Using on–line bioinformatics resources, we assembled a set of functional annotation variables

representing a variety of contextual descriptions and empirical measurements with which we an-

notated each of the 48,889 case, control and LD partner SNPs. We included annotation variables

shown to be correlated with presence in the GWAS Catalog or that we believed likely to be so.

These were: dbSNP function designation; summaries of ENCODE Project (The ENCODE Project

Consortium, 2007, 2011) data on transcription levels assayed by RNA–seq (Mortazavi et al., 2008;

Langmead et al., 2009), measures of signal enrichment for H3K4Me1, H3K27Ac and H3K4Me3 his-

tone modifications associated with enhancer and promoter activity (Bernstein et al., 2006; Mikkelsen

et al., 2007), evidence for overlap with a DNaseI hypersensitivity cluster (Sabo et al., 2006, 2004)

and evidence for transcription factor binding (Euskirchen et al., 2004, 2007; Martone et al., 2003;

Robertson et al., 2007; Rozowsky et al., 2009); PhyloP evolutionary conservation scores (Siepel

et al., 2006); indicators for whether or not the variant falls in a region of known copy number

variation, a region containing insertions or deletions or a region with inversions (Iafrate et al.,

2004; Zhang et al., 2006); PolyPhen–2 (Adzhubei et al., 2010) probability that a mutation is dam-

aging; and RegulomeDB score (Boyle et al., 2012). The latter represents a synthesis of regulatory

data derived from ENCODE and other sources. While not a comprehensive set, they covered the

major annotation classes available at the time of analysis and are readily available to individuals

executing an association study. The infrastructure and methods described here are easily updated

to accommodate new variables as they become generally available. Table 1 lists the 57 variables

that we used to construct the functional signatures of association.
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The 48,889 SNPs included in the analysis were grouped into 2,093 case and an equal number of

control blocks. We randomly selected 1,675 of these matched case–control pairs for development of

the model (the ’training set’) and left the remaining 418 pairs for model evaluation and comparison

(the ’evaluation set’). We modeled the probability that a SNP is associated given its functional

data using a logistic regression model. Further, we assumed that each case block contained one or

more associated SNPs and that each control block contained none.

While the assembled list of functional predictors includes measures that have been demonstrated

to correlate with the association status of SNPs in the GC, it also includes a number of measures

whose utility in this regard was unclear. Hence, we expected that only a fraction of the 57 variables

would contribute to predicting phenotype association. We used shrinkage priors (Hans, 2009;

Richardson et al., 2011) to reflect this belief and chose the normal–exponential–gamma (NEG)

distribution for its ability to penalize heavily weakly determined predictors and to penalize weakly

those that are well determined (Griffin and Brown, 2007; Hoggart et al., 2008; Griffin and Brown,

2010). Further details of the model and the Markov chain Monte Carlo (MCMC) algorithm used

for inference can be found in Methods.

Table 2 provides a summary of the coefficient estimates obtained for the binary regression of

association status on the 57 functional annotation variables. Because all variables in the model

were standardized, coefficients measure the difference in the log–odds of phenotype association

attributed to an increase of one standard deviation in the covariate when the others remain fixed.

The majority of predictive variation (51%) in the functional scores as measured in the control

block SNPs from the validation set, is due to the Broad promoter/enhancer ChIP–seq principal

components (PCs) and nearly all (> 97%) of this variation is due to PCs 1, 2, 4, 5, 6, 8 and 13.

Each PC is a linear combination of the 75 summary statistics of the 25 assays. Supplemental Figure

1 depicts the loadings (weights in the linear combinations) for these PCs as they depend on histone

modification, cell line and summary statistic. Grossly, PC 1 measures total signal strength across

all cell lines and histone modifications, PC 2 contrasts average signal strength of the H3k4me3

assay with variation over all assays, while the remaining PCs each contrast signal in one subset

of cell lines with that in another (PC 4: HMEC and NHEK versus GM12878 and K562; PC 5:
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GM12878, HMEC and NHEK versus HSMM, HUVEC and NHLF; PC 6: H1-hESC, HepG2 and

HSMM versus GM12878 and HUVEC; PC 8: K562 versus H1-hESC; and PC 13: HepG2 versus

H1-hESC).

The sequence conservation PCs collectively make the next largest contribution, explaining 16%

of variation in the functional scores; PCs 1 and 3 explain > 97% of this. Each PC is a linear

combination of the summary statistics of the 28 and 44 species PhyloP scores, each for all species

and restricted to placental mammals. Supplemental Figure 2 graphs the loadings for these PCs

as they depend on number of species, depth of alignment and summary statistic. Briefly, PC 1

measures total signal strength across scores with the scores based on the 28–way alignment weighted

more heavily than those based on the 44–way alignment, while PC 3 contrasts the 28–way with

44-way scores.

The CalTech RNA–seq PCs collectively explain 10% of the signature, with PCs 1, 2, 4 and 8

contributing 87% of this. Supplemental Figure 3 depicts the loadings for these PCs as they depend

on cell line and summary statistic. PC 1 provides a measure of total signal strength across all cell

lines, while the remaining PCs each contrast signal in one subset of cell lines with that in another

(PC 2: H1-hESC and K562 versus GM12878 and NHEK; PC 4: GM12878 and H1-hESC versus

K562, NHEK and HepG2; PC8: HUVEC versus NHEK).

RegulomeDB score explains the next largest fraction (8%) of variation. It is represented by

six variables, each indicating a functional category; category 7 serves as the reference (’baseline’).

Categories 2, 4, 5 and 6 explain 99% of this variation suggesting that other annotation variables

in the model better characterize the probability of phenotype association for variants in categories

1 and 3. Virtually all (96%) of the 2.5% contribution to variation made by the DGV variables is

due to the copy number and inversion variables. Finally, the dbSNP functional class variables are

the only remaining that contribute more (=1.7%) than 1% of the variation in functional scores.

Virtually all (99%) of this contribution is due to the non–synonymous designation within which

the PolyPhen–2 probability contributes significant resolution to the model.

We estimated the concordance indexes (equivalent to AUC, area under the ROC curve) for each

model using the 418 matched case–control block pairs in the validation set as a tool for comparing

8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 11, 2013. ; https://doi.org/10.1101/000158doi: bioRxiv preprint 

https://doi.org/10.1101/000158
http://creativecommons.org/licenses/by-nd/4.0/


the accuracy of their out–of–sample predictions. Table 3 provides the estimates of concordance and

associated 95% interval estimates. While the concordance statistics are not discernibly different

from one another, the best out–of–sample predictive ability is achieved using the model with the

prior distribution having the strongest shrinkage properties, i.e. the ’NEG3’ model.

2.2 Application to an Ovarian Cancer Multi–GWAS Study

Here we compare the ranks assigned to a group of variants in a GWAS analysis when those ranks

are calculated with and without the functional annotation data. Each in the group of variants is

assumed to have known association status (associated/unassociated) with epithelial ovarian cancer,

where this determination is based on confirmatory studies subsequent to the GWAS. The group

is constructed as follows. There are currently 11 published, genome–wide significant loci for ep-

ithelial ovarian cancer. Nine of the 11 have come to light through analysis of genome–wide SNP

data. These are rs3814113 (Song et al., 2009), rs8170 (Bolton et al., 2010), rs2072590, rs2665390,

rs7814937, rs9303542 (Goode et al., 2010), rs11782652, rs7084454, rs757210 (Pharoah et al., 2013).

The remaining two (rs10069690 and rs2077606) were identified by candidate gene/pathway inves-

tigations (Bojesen et al., 2013; Permuth-Wey et al., 2013); all 11 have been evaluated in very large

confirmatory studies. We consider these to be ’true positive’ variants. Our analysis of data from

the large–scale follow–up study of GWAS candidates described in Pharoah et al. (2013) allowed us

to identify a group of variants with strong evidence against association that we treat here as ’true

negatives.’

Table 4 summarizes the GWAS results for the true positive and true negative SNPs when the

analysis is conducted with (subscript ’A+F’) and without (subscript ’A’) the functional signa-

tures and where the association summaries (Bayes factors) are calculated directly (columns labeled

’Bayesian Analysis’) and approximated from the results of standard likelihood ratio tests using

the method of Sellke et al. (2001) (columns labeled ’P–Value Approximation’). We focus here on

results of the Bayesian analysis, noting that the approximate method yields very similar results.

Note that the candidate SNPs are ranked substantially lower than the GWAS ’hits.’ Indeed, the

evidence in the association data related to these variants is actually against association (both of
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their Bayes factors are less than 1.0). The GWAS hits are all ranked in the top 50,000 (of approx-

imately 2.5 million) by the same measure and all have Bayes factors of at least 3 to 1 in favor of

association.

Only two of the truly associated SNPs (rs11782652 and rs9303542) are ranked higher when the

functional data are ignored than when they are used, however their respective changes in rank are

small. The median (alt. average) rank of the truly associated SNPs was 5,272 (178,246) without and

3,532 (80,143) with the functional data included. If design constraints allowed only for followup of

the top 5,000 variants, a larger fraction (7/11) would be discovered with addition of the functional

data than without (5/11); with followup of 10,000 variants, these fractions become 8/11 and 7/11.

In contrast, when the function data were included the median (alt. average) rank among a set

of ’true negative’ SNPs increased from 181,116 (438,664) to 244,393 (517,810), while the number

selected for followup fell from 244 to 204 under the 5K scenario and from 443 to 373 under the 10K

scenario.

Functional signatures of tag SNPs correlate with function of tagged SNPs. While a

few of the functional variables, such as the function class designation ’nonsynonymous,’ incorporated

in the signature are base pair specific, most map to contiguous regions of 100’s or 1000’s of base

pairs. Hence, the functional signatures associated with nearby SNPs are correlated. Figure 3 is

a plot of the correlation between the functional signatures of adjacent SNPs that passed QC in

the ovarian cancer GWAS described above as a function of the distance, measured in base pairs

(BPs), between the two variants. This correlation is greater than 0.72 (alt 0.68) for more than 80%

(alt 97.5%) of adjacent variants, corresponding to those at distances of 1470 (alt 4376) BPs or less.

Hence, while there are gains to be realized in doing so, it is not necessary to impute to and annotate

at the highest possible density to realize an increase in power to detect association through the use

of functional signatures, a fact we demonstrated empirically above. Note that typical BP distances

between tagged (not genotyped or imputed) variants and their nearest tag will be on the order of

one half of the distances reported here for adjacent tags.
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3 Discussion

Using the GWAS Catalog as a sampling frame, we developed a model for the probability that a

given polymorphism is associated with an observable human phenotype given a set of functional

annotation variables and demonstrated that this model has the ability to predict a set of phenotype

associated variants not used in the model building exercise. We demonstrate several methods for

incorporating functional annotation signatures defined by this model and evaluated for a SNP’s

annotation data as prior data and show through example that by doing so we improve the efficiency

of GWAS scale analysis to identify true positive associations for follow–up study.

The approach we describe is computationally tractable and scalable to modern genome–wide

analysis. Our use of penalized regression techniques to model the functional data and construct

the function signatures allows us to consider a relatively large number of individual annotation

variables while controlling for over–fitting. We evaluated sensitivity of the model’s out–of–sample

predictions to choice of shrinkage prior and found that the most aggressive choice we examined,

the model whose results are summarized herein, resulted in the best out–of–sample concordance

estimates. Our approach can be expanded and adapted to incorporate more detailed annotation

data such as was recently released by the ENCODE consortium (The ENCODE Project Consortium,

2012) or generated experimentally in individual labs.

In principle, estimates of the parameters in the model for SNP association status given the

functional data can be refined via Bayesian updating as part of an association analysis. This requires

an additional layer of analysis that is feasible, but computationally demanding to implement on

a genome–wide scale. However, the value of this will be limited in settings where there are few

truly associated SNPs and/or the case–control data supporting associations are weak, i.e. the vast

majority of applications. Here, Bayesian updating will yield estimates equivalent to those using the

approach we describe above up to Monte Carlo simulation error. Indeed, we formally compared

the two approaches using the ovarian cancer GWAS data and found little change in the median

ranks of the true positive (3,532 versus 3,705) and true negative SNPs (244,393 versus 248,459).

This suggests that the added value of Bayesian updating to the functional signatures will typically

be limited.
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Performance for our integrative approach likely depends on the depth, specificity and den-

sity of coverage of the available annotation data. The current study defines a starting point and

benchmark in each of these dimensions. In particular, while the depth of annotation considered

here is sufficient to noticeably improve inference for association, it is clear from recent ENCODE

Project Consortium publications that it reflects only a small fraction of the complexity present in

the regulatory landscape. Further, none of the annotation variables are tailored to the outcome

phenotype; indeed, the ENCODE super track data enter the model through linear combinations of

the cell–line specific measurements, effectively averaging over cell type. Many regulatory processes

are cell–type–specific (The ENCODE Project Consortium, 2012; Schaub et al., 2012) and hence

will be more informative for a given phenotype if measured in the appropriate cell type. However,

determining the relevant annotation data, assuming it exists, for a given phenotype requires domain

expertise and more careful modeling to create functional signatures. While Bayesian updating did

not improve inferences in the ovarian cancer GWAS example, a generalization of it that couples

the existing signature structure with context–specific annotations such as cell type specific eQTL

data and an independent prior distribution on its multivariate adjusted effect is one approach to

improving specificity.

Finally, our analyses have been carried out entirely at the HapMap III density. Our approach

succeeds at this density because the functional signatures of SNPs nearby, at distances typical

of HapMap III, are highly correlated and hence the functional signatures of HapMap III poly-

morphisms essentially tag function of nearby polymorphisms not in the database. As coverage

(genotype/imputation density) of the typical association study becomes more complete, the need

to rely on correlations between functional signatures will diminish and their power to assist in iden-

tifying and localizing associations is expected to increase. Association analyses at the density of the

1000 Genomes Project database (The 1000 Genomes Project Consortium, 2012) are now possible

and will likely become common. The specificity of the functional signatures should improve when

reconstructed and applied at this density as we plan to do as we continue to develop this approach.
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4 Methods

4.1 Association Analysis Given Annotation Data

Let G be an n by p matrix of SNP genotypes, D be an n by 1 vector of disease indicators where

Di = 1 if individual i has the disease and Di = 0 otherwise, X be an n by r matrix of covariates

used in the association model and F be a p by m matrix of SNP–level functional annotation data

where n is the number of individuals, p is the number of SNPs, r is the number of covariates and

m is the number of annotation variables. Finally, let A be a p by 1 vector of 0-1 indicators of

the (unknown) association status of the variants where As = 1 if SNP s is associated with the

phenotype of interest.

In what follows, we specify the likelihood for the association indicator given the association

(X, D, G) and function (F) data. To this end, we let Pr(A |D,X,G,F) ∝
∏p

s=1 Pr(As |D,X, Gs, Fs).

This relies on two assumptions: (1) that the As’s are conditionally independent given (X, D, G, F)

and (2) that theAs’s are conditionally independent of other variants (G−s, F−s) given (X, D, Gs, Fs).

The notation G−s indicates the matrix obtained by removing column s from G.

Further, we assume that the disease phenotype data are conditionally independent of the func-

tional data for SNP s given the association status of that SNP, the covariate data and the genotype

data for that SNP and that the association status indicator for SNP s is conditionally independent

of the covariate data and its genotype data given its functional data. The latter assumption may be

violated, for example, if the genotype data Gs carries information about function (e.g. minor allele

frequency) not included in F. Given this, the odds of association of SNP s given its association

and functional data can be written as the product of the (prior) odds of its association given its

functional data times the (integrated) likelihood ratio or Bayes Factor (BF) of the phenotype given

the SNP genotype and other covariate data, i.e.

odds(As = 1 |D,X, Gs, Fs) =
Pr(As = 1 |D,X, Gs, Fs)
Pr(As = 0 |D,X, Gs, Fs)

=
Pr(D |As = 1,X, Gs) Pr(As = 1 |Fs)
Pr(D |As = 0,X, Gs) Pr(As = 0 |Fs)

= BFs × odds(As = 1 |Fs),
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We describe estimation of the association summary Bayes factor below.

Given the binary, logistic link model developed below for association status given the functional

data and the parameters α and β, odds(As |Fs) = exp (α + Fsβ) and hence, given α and β

Pr(As = 1 |D,X, Gs, Fs, α, β) =
BFs exp (α + Fsβ)

1 + BFs exp (α + Fsβ)
. (1)

Provided that estimates of α and β are available from an external analysis such as described in the

next section, one can estimate Pr(As = 1 |D,X, Gs, Fs) by

I∑
i=1

Pr(As = 1 |D,X, Gs, Fs, αi, βi)/I

where the αi and βi are samples from the posterior distribution from an analysis such as described

in Section 2.1.

The above procedure depends on estimates of the marginal likelihoods,

Pr(D |X, Gs, As = a) =
∫

Pr(D |X, Gs, As = a, θa)Pr(θa),

of the association data for each SNP under Ho (As = 0) and under Ha (As = 1). Pr(D |X, Gs, As =

a, θa) is a logistic regression of the disease status indicator, D, on the covariates, X, and SNP

genotype, Gs, and with coefficient vector θ1 under Ha and is a logistic regression D on X with

coefficient vector θ0 under Ho. We place independent normal mean 0, standard deviation 10 prior

distributions on all components of θ0 and θ1, with exception of the coefficient of Gs, which is

accorded a normal mean 0, standard deviation 0.25 prior distribution, as the majority of log–odds

estimates cited in the GWAS catalog are smaller than 0.5 in absolute value. We estimate the SNP–

specific marginal likelihoods under each hypothesis of association using the Laplace approximation

(Kass and Raftery, 1995) implemented in software described in Wilson et al. (2010) and available

from the authors.

Since it is not always convenient or possible to directly calculate Bayes factors, we consider

the performance of our method when applied to Bayes factors estimated from p–values using the
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approximation described in Sellke et al. (2001). These authors show that the Bayes factor against

association can be approximated by the function −eps loge(ps) when ps < 1/e and 0.0 otherwise,

where ps is a p–value from a standard test of association, and that this function provides a lower

bound for that quantity that is sharp (i.e. accurate) for ps < 1/e. As a consequence, its multi-

plicative inverse provides a sharp upper bound on the Bayes factor in favor of association. We

evaluate our method using both this and the ratio of Laplace approximations described above to

calculate BFs in Equation 1.

4.2 Construction of Functional Signatures

In what follows, we detail the steps we took to assemble the case–control study of SNPs used to

build and evaluate the models for a variant’s association status given the functional data. These

comprised identification of a representative set of phenotype–associated SNPs to serve as ’cases’ in

the analysis and a matched set of ’controls’ and the collection of a set of measurements related to

function to serve as annotations for the variants. The process is depicted in Figure 4 and described

in detail below.

Sampling Frame. Many genomewide genotyping arrays were designed to over–sample variants

with characteristics related to their ability to explain phenotypic variation, such as proximity

to coding regions, type of variant (e.g. missense) and minor allele frequency (MAF). Hence, a

comparison of case SNPs identified using such assays to control SNPs drawn randomly from the

HapMap or dbSNP, for example, may lead to spurious associations between assay design variables

and the SNP’s association with a human phenotype. In order to avoid confounding due to the

selection method employed in the design of the genomewide genotyping platform, we constructed a

sampling frame of SNPs by combining SNPs on the Affymetrix GeneChip Human Mapping 500K

Array Set and the Illumina HumanHap550 Genotyping BeadChip, as this generation of arrays

and their predecessors cover most of the reported findings in the GWAS Catalog attributed to an

Affymetrix or Illumina product and these products were the most commonly used. We labeled

SNPs in the sampling frame according to whether they appeared only on the Affymetrix list, only

on the Illumina list or on both and confined attention to those variants appearing in both the
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Genome Browser’s dbSNP 130 and HapMap Release 27 tables (see Supplemental Table 1) and

having a MAF estimated in HapMap’s CEU sample to be 0.05 or larger. The sampling frame

comprises 803,991 SNPs with 421,072 unique to Illumina, 305,672 to Affymetrix and the remaining

77,247 common to both.

Case and Control Selection. The GWAS Catalog is subject to constant update and versions

are available from several locations. We downloaded the GWAS Catalog from the Genome Browser

(time stamp and location in Supplemental Table 1). We confined attention to non–CNV variants

in the GWAS Catalog discovered by association studies utilizing an Affymetrix and/or an Illumina

genomewide array and present in the sampling frame. We randomly chose a single representative

of each set of SNPs appearing multiple times in the GWAS Catalog or sharing one or more ’LD

partners’ (see below). This left 2093 unique case SNPs, 1306 of which were unique to Illumina,

403 unique to Affymetrix and 384 in common. We randomly matched one control SNP drawn

from the sampling frame to each case SNP on chromosome, platform (Illumina only, Affymetrix

only, on both) and MAF rounded to the nearest 0.02. We excluded SNPs in the sampling frame

in LD (R2 > 0) with one or more case SNPs as reported in the HapMap Release #27 LD files (see

Supplemental Table 1) or sharing an LD partner with another control SNP.

LD Partner Identification. SNPs in the GWAS Catalog are arguably more likely to tag

the variant that is directly associated with the phenotype than to be that variant (Hindorff et al.,

2009). Hence, following Hindorff et al. (2009) we identified and annotated each case and control

SNP’s ’LD partners.’ We defined LD partners as those SNPs with R2 ≥ 0.8 with a case or control

SNP as reported in the HapMap Release #27 LD files. Hindorff et al. (2009) chose a threshold

of 0.9 but noted that their results were nearly the same when using thresholds of 1.0 and 0.8. We

identified 20,924 LD partners of the case SNPs and 23,779 LD partners of the control SNPs.

Annotation Data. All data drawn from the UCSC Genome Browser (Rhead et al. (2010))

used the “March 2006 (NCBI36/hg18)” assembly. Supplemental Table 1 provides locations, revision

dates and references for each of the annotation files referred to below. In what follows, we describe

each class of annotation variable, its source and the parameterization we use for it in the models

we fit.
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Variants described in dbSNP (Sherry et al., 2001) release 130 are classified according to their

predicted function as determined by their locations relative to known genes in the reference as-

sembly. Variants that fall within the coding sequence of a known gene are further described as

’non–synonymous’ if they result in a change to the associated amino acid or ’synonymous’ if they

do not. A variant may have several such designations; for purposes of our analysis, we con-

fine attention to each variant’s primary designation. Those observed among the SNPs included

in our analysis are ’unknown,’ ’coding–synon,’ ’intron,’ ’near–gene–3,’ ’near–gene–5,’ ’nonsense,’

’missense,’ ’untranslated–3,’ and ’untranslated–5.’ Given the small number (n = 5) of nonsense

variants, we created a ’coding–nonsynonymous’ designation by combining the ’missense’ and ’non-

sense’ categories; similarly, we combined the ’untranslated–3,’ and ’untranslated–5’ designations

into the category ’untranslated.’

Measures of sequence conservation are frequently employed as evidence regarding the disease

association status of rare missense variants (Tavtigian et al., 2008). We examined the PhyloP

evolutionary conservation scores of Siepel et al. (2006) applied to 28– and 44–species alignments,

and to those alignments restricted to the placental mammals and human, for their ability to predict

the disease association status of common variants. Each of the four relevant Genome Browser tables

provides the sum of the score, its sum of squares and the number of nucleotides that contribute to

these statistics within ranges of contiguous nucleotides. We calculated a standardized score (mean

divided by standard deviation) for each range and alignment and assigned these values to SNPs

within the range. The PhyloP conservation scores exhibited pairwise correlations of up to 0.984.

The top four, six, and nine PCs explain 90%, 96%, and 99% of the variability, respectively, in the

24 variables. The top four PCs were used.

The Database of Genomic Variants (DGV; Iafrate et al. (2004); Zhang et al. (2006)) is a compi-

lation of reported genomic alterations spanning more than 1000 bases (>100 in the case of indels)

observed in healthy subjects. We formed three variables indicating, respectively, whether (=1) or

not (=0) each SNP falls in a region of copy number variation, a region containing insertions or

deletions or a region with inversions.

The ENCODE Project (The ENCODE Project Consortium, 2007, 2011) is an ambitious project
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to identify and characterize the various functional elements present in the human genome sequence

and to facilitate public access to the data it generates; its overarching objective is to improve our

knowledge of human disease processes by providing a more comprehensive understanding of human

molecular biology. Application of ENCODE functional annotation data to the design, analysis and

interpretation of GWAS studies is one way in which ENCODE data can quickly be put to use to

shed light on human disease processes (The ENCODE Project Consortium, 2011). To this end, we

examine the utility of the recently released ENCODE regulation supertrack data available from, and

displayed on, the Genome Browser for a priori prediction of functional, disease-associated variants.

In particular, we include variables (see below) summarizing: transcription levels assayed in six cell

lines by RNA–seq (Mortazavi et al., 2008; Langmead et al., 2009) and represented as a density

measure of signal enrichment (’raw signal’); density measures of signal enrichment for H3K4Me1

(Histone H3 Lysine 4 monomethylation) associated with enhancer and promoter activity measured

in eight cell lines, similarly coded measures of promoter– and enhancer–associated H3K27Ac (Hi-

stone H3 Lysine 27 acetylation) in eight cell lines and of promoter–associated H3K4Me3 (Histone

H3 Lysine 4 tri–methylation) in nine cell lines (Bernstein et al., 2006; Mikkelsen et al., 2007);

evidence for the variant falling within a DNaseI hypersensitivity cluster (Sabo et al., 2006, 2004);

and the evidence for transcription factor binding measured via ChIP–seq (Euskirchen et al., 2004,

2007; Martone et al., 2003; Robertson et al., 2007; Rozowsky et al., 2009).

The Broad ChIP–seq, Caltech RNA–seq, and PhyloP signal tracks are summarized at the level

of genomic bins. The ChIP–seq signals are measured within 118,084 contiguous bins of 25,600 bases

apiece. The RNA–seq and PhyloP signals are measured in sets of non-overlapping, non-uniform

bins. Bins are indexed according to the hierarchical scheme described in (Kent et al., 2002).

The ENCODE database provides basic summary statistics (the minimum, range, count, sum

and sum of squares) of the signal enrichment density measures within each bin. For purposes of

our analysis, we summarized each cell line’s bin level data by loge(sum/count), loge(maximum),

and loge(z), where z is the standardized score; in bins where sum=0, we set sum=1 (sums are

non–negative and range across six orders of magnitude).

The three Broad types (signal enrichment for H3K4Me1, H3K27Ac and H3k4Me3 histone mod-
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ifications) comprise data on eight, eight and nine cell lines, respectively. We found significant

pairwise correlations among the 75 variables (25 each of log(mean), log(maximum), and log(z)),

ranging as high as 0.949, and therefore conducted a principal components analysis to identify the

linear combinations, i.e. principal components (PCs), that explain most of the variability in the

data. The top 18, 27 and 44 PCs explain 90%, 95% and 99% of variability, respectively, in the 75

measures. Finally, we mapped each SNP to the appropriate Broad bin and annotated each with

the top 18 PCs for purposes of the analysis.

The Caltech tables comprise RNA–seq raw signal enrichment data on six cell lines. In addition

to the three ENCODE variables described above, an indicator variable for a SNP falling within a

bin was included. Pairwise correlations among the 24 variables ranged as high as 0.970. The top

11, 12, and 16 PCs explain 92%, 95%, and 99% of the variability. The top 11 PCs were used in the

analysis.

The transcription factor ChIP–seq data are summarized by scores, ranging from 6 to 1000,

measuring strength of evidence for binding within specified, sometimes overlapping, chromosomal

bins (’clusters’). We summarize these data as they apply to each SNP using two variables: the

number of clusters it intersects with (’TFBSfreq’) and the average loge(score) (’logTFBS’) assigned

to those clusters (coded as 0 if the SNP does not intersect with a cluster). Similarly, the DNaseI

hypersensitivity data are summarized by scores, ranging from 16 to 1000, within specified chromo-

somal bins (’clusters’). We summarize these data as they apply to each SNP using (1) an indicator

for the variant falling within a clusters and (2) the loge(score) assigned to that cluster.

The Open REGulatory ANNOtation database (ORegAnno) Montgomery et al. (2006); Griffith

et al. (2008) is a curated collection of regulatory elements. The Genome Browser ORegAnno table

provides start and stop coordinates and annotations for elements in the database. For purposes of

our analysis, we summarize these data with an indicator variable for whether or not a variant falls

within an ORegAnno regulatory region.

PolyPhen–2 (PPh2; Adzhubei et al. (2010)) assigns to nonsynonymous SNPs a probability of

being damaging based on the sequence, phylogenetic and structural information characterizing the

amino acid substitution.
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RegulomeDB (Boyle et al., 2012) annotates SNPs with known and predicted regulatory elements

in the intergenic regions of the human genome. Each SNP is assigned one of seven categories based

on its likelihood of affecting protein binding.

Model. For purposes of the analysis, we assumed that blocks and the SNPs within the blocks

were independent conditional on the functional data. We modeled the probability that a SNP s in

block b was an associated SNP, πsb, given the functional data for that SNP, Fsb, using the logistic

regression model logit(πsb) = α+ Fsbβ. We assumed that there was at least one associated SNP in

each case block and that there were no associated SNPs in control blocks. Hence, each case block

contributed the factor [1 −
∏nb

s=1(1 − πsb)] to the likelihood, while each control block contributed∏nb
s=1(1 − πsb). As a result, we expected at least 1,675 of the 48,888 SNPs in the training set to

be phenotype associated. This corresponds to α = −3.34 (columns of F are centered); if 10% (alt

20%) of case blocks contain two phenotype associated SNPs, α = −3.24 (alt -3.15). Hence the

normal mean -3.24, standard deviation 0.1 prior distribution we placed on α is consistent with our

expectation that there were fewer than 2,178 (= 1.3 × 1, 675) true phenotype associated variants

among the case blocks.

Our specification of the prior distribution on β was guided by the observation that, in the

normal model with the normal–exponential–gamma (NEG) distribution as prior on the mean and

the variance known, the posterior mode is identically zero when the maximum likelihood estimator

(MLE) is in a neighborhood around zero, but rapidly converges to the MLE as the MLE diverges

from zero (this setting approximates the more general one in which the NEG distribution is used as

the prior distribution for a parameter whose likelihood is approximately normal). The NEG distri-

bution is specified by its shape and scale parameters and the width of the threshold neighborhood

is a function of these parameters. For purposes of our analysis, we chose parameter values for which

no more than 10% of the coefficients are outside of the threshold region with probability 0.90, a

priori. We placed independent NEG prior distributions on the components of β; in addition, we

also considered the model with independent standard normal distributions on the components of β.

Inference for each of these models was carried out using the training set and were evaluated using

the evaluation set.
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We used random–walk Markov Chain Monte Carlo (MCMC) algorithms (Metropolis et al., 1953;

Gilks et al., 1996) to estimate summaries of the posterior distribution under each of the models. We

started 10 independent chains per model from starting points drawn from the prior distribution.

In each case, step sizes were adusted so that parameter level acceptance ratios fell between 0.3

and 0.5 during an initial, ’burn–in’ set of iterations not used for inference. We fixed the step sizes

and ran the 10 chains from their leave–off positions for an additional 50,000 iterations per chain.

Inspection of trace plots, as well as computation of the Gelman–Rubin (Gelman and Rubin, 1992),

Heidelberger–Welch (Heidelberger and Welch, 1983), Raftery–Lewis (Raftery and Lewis, 1996), and

Geweke (Geweke, 1992) diagnostics implemented in the CODA package (Plummer et al., 2010) in

R (Ihaka and Gentleman, 1996), indicated satisfactory convergence. We thinned the 10 chains by

1,000 and combined them to produce a sample of 500 coefficient vectors.

We used the concordance index (CI) to measure the out–of–sample predictive accuracy of the

model. We calculated the CI as the fraction of matched pairs in the ’evaluation set’ in which the

average probability of association given the functional data over the n1 SNPs in the case block

(’b1’) was larger than the corresponding average over the n0 SNPs in the matched control block

(’b0’); i.e. if
n1∑

s=1

Pr(As,b1 |Fs,b1)/n1 >
n0∑

s=1

Pr(As,b0 |Fs,b0)/n0,

where we estimated Pr(As,bn |Fs,bn) by

500∑
i=1

Pr(As,bn = 1 |Fs,bn, αi, βi)/500,

where the αi and βi are MCMC samples saved from analysis of the training data.

4.3 Evaluation

We carried out a genome–wide association analysis of serous ovarian cancer using the methods

described above. The data for this analysis were drawn from GWAS studies conducted in the

US (Permuth-Wey et al., 2011) and the UK (Song et al., 2009). The genotype data from these

studies were combined and imputed to HapMap III density, resulting in an data set comprising
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analyzable genotypes at 2,500,004 SNPs for 7,272 subjects of European ancestry. The association

analysis was confined to the 2,004 cases with advanced stage serous ovarian cancer and the 3,272

available controls and was adjusted for study site and the first two principal components of the

sample genotypes. We calculated Bayes factors (BFs) as described above and set the prior prob-

ability of association to be 0.00001 when estimating posterior probabilities; ranks are invariant to

this choice. P–values used in the Bayes factor approximation were from likelihood ratio tests of the

model including versus the model excluding a SNP.

Several large scale studies conducted to follow up promising associations from these GWAS have

identified the eleven genome–wide significant loci listed in Table 4. We treat these as established or

’true positive’ associations for purposes of evaluating the various association measures. In addition,

we identified a set of likely unassociated, ’true negative’ SNPs from among 22,254 GWAS followup

SNPs placed on the iCOGS chip (Pharoah et al., 2013). This analysis included 8,344 cases with

advanced stage serous ovarian cancer and 22,913 controls of European ancestry and was adjusted

for study site and the first five European ancestry principal components. We identified a subset

of 5,155 SNPs with strong evidence against association (defined as BF<0.1 on Jeffreys’ scale of

evidence (Jeffreys, 1961)) to serve as the ’true negatives.’

We compared the rankings of these two sets of SNPs in the original GWAS analysis when

association was measured using genotype data only to those obtained with incorporation of the

functional signatures. We compared the procedures based on their power to identify the truly

associated variants for follow–up assuming budgets allowing for evaluation of the top 5,000 or

10,000 SNPs.

In most association studies, genotypes are determined, through a combination of genotyping

and imputation, for only a subset of the universe of variants. In this setting, it is standard to rely

on correlations between genotyped variants (’tags’) and those that are ’tagged’ (not genotyped)

to identify and localize associations. Likewise, the utility of functional signatures in a typical

study will depend on the degree to which they reflect the likelihood of function of both the tag

for which it is calculated and for the set of variants it tags. We evaluated correlations between

functional signatures, defined as (Fsβ), for adjacent pairs of SNPs included in the ovarian cancer
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GWAS analysis. We identified the quantile of each adjacent variant pair in the overall distribution

of distances measured in base pairs (BPs). For purposes of this analysis, we defined quantiles in

increments of 0.025, i.e. with each containing 2.5% of the mass of the distance distribution. We

estimated the Pearson correlation between the functional signatures of the adjacent SNP pairs

within each quantile and plotted these estimates against BP distance, locating the estimates at the

midpoints of the quantile bins.

Data Access

The data used to construct and evaluate the functional signatures we describe are available at

ftp://stat.duke.edu/pub/Users/iversen/FunctionalSignatures/.
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Figure Legends

Figure 1

Figure 1: Two–staged procedure for integrating variant–level functional annotation data with
subject–level genetic association data. At the first stage, functional annotation data are com-
bined to estimate the prior (to observing the genetic association data) probability of association
for each variant. At stage two, these estimates are combined with the Bayes Factor (a metric of as-
sociation) in favor of genetic association via Bayes’ formula to estimate the posterior (to observing
the functional and genetic association data) probability of association for each variant.

Figure 2

Figure 2: Construction and evaluation of models for (prior) probability of association given the
functional annotation data. The purple arrows represent model construction (’training’), while the
green arrows represent evaluation of the models. Construction of the training set, validation set and
functional annotation database are depicted in Figure 4 and described in Methods. The training
data were used to construct a series of models, each distinguished by the coefficients (or ’weights’)
it assigns to the various annotation variables. We chose the best amongst these by comparing their
predictions in the validation set using the concordance index.

Figure 3

Figure 3: Correlation of functional signatures between adjacent HapMap II/III SNPs as a function
of base pair distance (black line). Cumulative distribution function(CDF) of base pair distances
across the genome (red line).

Figure 4

Figure 4: Construction of data sets and functional annotation database. Case SNPs from the GWAS
Catalog are matched with control SNPs from HapMap III to generate training and validation sets.
The matched SNP IDs and their locations are used to interrogate several online databases. These
results are merged to build the functional annotation database.
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Tables

Table 1. Annotations used to construct the functional signatures. Def-
initions of the 54 variables appearing in the prior model for association
status arranged by type/class of annotation.

Name Annotation Class Description

MAF1..4 Minor Allele Frequency Natural spline basis for MAF
funcIntron dbSNP Function Class Indicator that variant is intronic.
funcNg3 dbSNP Function Class Indicator that variant is near-gene-3.
funcNg5 dbSNP Function Class Indicator that variant is near-gene-5.
funcNonsynon dbSNP Function Class Indicator that variant is missense or nonsense.
funcSynon dbSNP Function Class Indicator that variant is synonymous.
funcUTR dbSNP Function Class Indicator that variant is in the 3′ or 5′ UTR.
PhyPC1..4 phyloP Evol. Cons. Score First 4 PCs for PhyloP data.
IndelInd DGV Regions Indicator that SNP is in the region of a known in–del.
CNVInd DGV Regions Indicator that SNP is in the region of a known CNV.
InvInd DGV Regions Indicator that SNP is in the region of a known inversion.
BrPC1..18 ENCODE Super Track PCs of Broad promoter/enhancer ChIP–seq data.
CalPC1..11 ENCODE Super Track PCs of CalTech transcription level RNA–seq data.
logDNase ENCODE Regulatory Super Track DNaseI hypersensitivity cluster log(score).
TFBSfreq ENCODE Regulatory Super Track SNP in ChIP–seq TFBS region(s) – count.
logTFBS ENCODE Regulatory Super Track SNP in ChIP–seq TFBS region(s) – log(TFBS score).
ORegInd Open REGulatory ANNOtation DB Indicator that SNP is in ORegAnno DB.
PPh2Prob PolyPhen–2 Probability that SNP is damaging.
RegDBcat RegulomeDB RegulomeDB category.
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Table 2. Summary of estimates for the model for association status given
the functional annotation data. Estimates of the posterior mean and stan-
dard deviation are provided for each coefficient in the model along with
the ratio of these quantities, a ’signal–to–noise’ measure analogous to the
Z statistic.
Coefficient Mean SD Mean/SD Coefficient Mean SD Mean/SD
MAF1 0.029 0.0272 1.051 CalPC8 0.096 0.0608 1.584
MAF2 0.003 0.0185 0.151 CalPC9 0.009 0.0218 0.406
MAF3 0.018 0.0236 0.759 CalPC10 -0.019 0.0234 -0.809
MAF4 -0.008 0.0199 -0.425 CalPC11 -0.044 0.0468 -0.943
BrPC1 -0.348 0.0388 -8.983 PhyPC1 0.225 0.0452 4.982
BrPC2 0.174 0.0360 4.845 PhyPC2 -0.023 0.0308 -0.742
BrPC3 0.002 0.0172 0.099 PhyPC3 0.053 0.0395 1.336
BrPC4 -0.077 0.0301 -2.561 PhyPC4 0.024 0.0289 0.839
BrPC5 0.149 0.0301 4.932 funcIntron -0.003 0.0199 -0.160
BrPC6 0.097 0.0329 2.961 funcNg3 0.002 0.0238 0.098
BrPC7 -0.019 0.0229 -0.825 funcNg5 0.003 0.0200 0.158
BrPC8 -0.078 0.0312 -2.498 funcNonsynon 0.089 0.0387 2.308
BrPC9 -0.012 0.0202 -0.573 funcSynon -0.007 0.0236 -0.283
BrPC10 0.007 0.0182 0.407 funcUTR 0.002 0.0210 0.078
BrPC11 0.021 0.0239 0.887 logDNase 0.011 0.0253 0.419
BrPC12 -0.039 0.0290 -1.343 TFBSfreq 0.024 0.0267 0.885
BrPC13 -0.094 0.0318 -2.972 logTFBS 0.019 0.0299 0.641
BrPC14 -0.000 0.0175 -0.015 ORegInd 0.027 0.0236 1.163
BrPC15 -0.039 0.0286 -1.354 IndelInd -0.023 0.0337 -0.693
BrPC16 0.009 0.0185 0.467 CNVInd 0.059 0.0321 1.842
BrPC17 -0.015 0.0213 -0.696 InvInd 0.090 0.0305 2.938
BrPC18 -0.014 0.0210 -0.688 rDBcat1 0.014 0.0257 0.550
CalPC1 -0.103 0.0492 -2.084 rDBcat2 0.066 0.0378 1.741
CalPC2 0.090 0.0441 2.030 rDBcat3 0.012 0.0264 0.467
CalPC3 -0.019 0.0270 -0.709 rDBcat4 0.116 0.0461 2.508
CalPC4 0.086 0.0457 1.889 rDBcat5 0.106 0.0527 2.003
CalPC5 0.053 0.0395 1.350 rDBcat6 -0.056 0.0552 -1.018
CalPC6 -0.012 0.0233 -0.496 pph2prob 0.078 0.0269 2.905
CalPC7 0.002 0.0207 0.078
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Table 3. Means and 95% interval estimates of the concordance indices for
each of the four models.

Concordance Index
Label Prior Mean 95% CI
Normal N(0, 1) 0.6348 (0.6112, 0.6555)
NEG1 NEG(0.834, 0.1610) 0.6397 (0.6148, 0.6615)
NEG2 NEG(0.950, 0.0588) 0.6433 (0.6208, 0.6675)
NEG3 NEG(0.978, 0.0245) 0.6487 (0.6244, 0.6675)
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Table 4. Functional signatures improve inference for association status
in a GWAS of ovarian cancer. Ranks of known associated variants (la-
beled ’true +’) tend to improve (i.e. are closer to one) when association
and functional data are incorporated in the analysis (RankA+F) relative to
when only the association data are used (RankA) and, hence, are more
likely to be studied further. Conversely, ranks of (very likely) unassoci-
ated variants (labeled ’true −’) tend to fall with inclusion of the functional
data. The functional data for a given variant is summarized by its ’func-
tional signature,’ defined as the prior log–odds of its association given
the functional data (LOF). Aggregate (mean and median) values are pro-
vided for the true + set and the true − set. Results are provided both
for when the Bayes Factors in favor of genetic association (BFA) are es-
timated from a Bayesian analysis and for when they are approximated
using a transformation of p–values. Ranks are out of approximately 2.5M
variants.

Bayesian Analysis P–Value Approximation
Variant Locus MAF LOF log(BFA) RankA RankA+F log(BFA) RankA RankA+F

rs2072590 2q31 0.34 1.46 8.63 65 59 8.97 65 59

rs2665390 3q25 0.09 0.77 8.08 77 73 8.42 76 71

rs10069690 5p15 0.23 0.91 -1.38 1,549,122 651,710 0.00 1,716,235 378,319

rs11782652 8q21 0.08 0.22 2.98 5,272 6,843 3.23 6,602 9,476

rs7814937 8q24 0.12 1.54 14.61 21 16 15.11 21 17

rs3814113 9p22 0.30 -0.09 14.01 38 38 14.31 38 38

rs7084454 10p12 0.31 1.44 1.19 45,616 12,221 1.81 38,214 11,018

rs757210 17q12 0.37 1.74 2.31 11,630 2,411 2.86 10,245 2,177

rs2077606 17q21 0.18 0.70 -0.25 339,456 200,494 0.48 255,254 228,953

rs9303542 17q21 0.27 0.05 3.70 2,276 3,532 4.13 2,293 3,852

rs8170 19p13 0.19 0.82 2.72 7,133 4,179 3.13 7,479 4,846

Mean True + 0.23 0.87 5.15 178,246 80,143 5.68 185,138 58,075

Median True + 0.23 0.82 2.98 5,272 3,532 3.23 6,602 3,852

Mean True − 0.35 0.11 0.37 438,664 517,810 1.21 310,830 554,051

Median True − 0.36 0.06 0.14 181,116 244,393 0.91 129,608 267,892
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Supplement

Annotation Location Date�

GWAS Catalog gwasCatalog.txt 11/15/10
Affymetrix 500K Set snpArrayAffy250{Nsp, Sty}.txt 08/02/07
Illumina 550K Set snpArrayIllumina550.txt 08/02/07
dbSNP 130 snp130.txt 09/20/09
HapMap Rel27 hapmapSnpsCEU.txt 07/11/07
HapMap Rel27 LD† ld.chr{1..22}.CEU.txt 02/09
Broad GM12878 H3K27ac wgEncodeBroadChipSeqSignalGm12878H3k27ac.txt.gz 06/22/10
Broad GM12878 H3K4me1 wgEncodeBroadChipSeqSignalGm12878H3k4me1.txt.gz 06/22/10
Broad GM12878 H3K4me3 wgEncodeBroadChipSeqSignalGm12878H3k4me3.txt.gz 06/22/10
Broad H1hesc H3K4me1 wgEncodeBroadChipSeqSignalH1hescH3k4me1.txt.gz 06/22/10
Broad H1hesc H3K4me3 wgEncodeBroadChipSeqSignalH1hescH3k4me3.txt.gz 06/22/10
Broad HepG2 H3K27ac wgEncodeBroadChipSeqSignalHepg2H3k27ac.txt.gz 06/22/10
Broad HepG2 H3K4me3 wgEncodeBroadChipSeqSignalHepg2H3k4me3.txt.gz 06/22/10
Broad HMEC H3K27ac wgEncodeBroadChipSeqSignalHmecH3k27ac.txt.gz 06/22/10
Broad HMEC H3K4me1 wgEncodeBroadChipSeqSignalHmecH3k4me1.txt.gz 06/22/10
Broad HMEC H3K4me3 wgEncodeBroadChipSeqSignalHmecH3k4me3.txt.gz 06/22/10
Broad HSMM H3K27ac wgEncodeBroadChipSeqSignalHsmmH3k27ac.txt.gz 06/22/10
Broad HSMM H3K4me1 wgEncodeBroadChipSeqSignalHsmmH3k4me1.txt.gz 06/22/10
Broad HSMM H3K4me3 wgEncodeBroadChipSeqSignalHsmmH3k4me3.txt.gz 06/22/10
Broad HUVEC H3K27ac wgEncodeBroadChipSeqSignalHuvecH3k27ac.txt.gz 06/22/10
Broad HUVEC H3K4me1 wgEncodeBroadChipSeqSignalHuvecH3k4me1.txt.gz 06/22/10
Broad HUVEC H3K4me3 wgEncodeBroadChipSeqSignalHuvecH3k4me3.txt.gz 06/22/10
Broad K562 H3K27ac wgEncodeBroadChipSeqSignalK562H3k27ac.txt.gz 06/22/10
Broad K562 H3K4me1 wgEncodeBroadChipSeqSignalK562H3k4me1.txt.gz 06/22/10
Broad K562 H3K4me3 wgEncodeBroadChipSeqSignalK562H3k4me3.txt.gz 06/22/10
Broad NHEK H3K27ac wgEncodeBroadChipSeqSignalNhekH3k27ac.txt.gz 06/22/10
Broad NHEK H3K4me1 wgEncodeBroadChipSeqSignalNhekH3k4me1.txt.gz 06/22/10
Broad NHEK H3K4me3 wgEncodeBroadChipSeqSignalNhekH3k4me3.txt.gz 06/22/10
Broad NHLF H3K27ac wgEncodeBroadChipSeqSignalNhlfH3k27ac.txt.gz 06/22/10
Broad NHLF H3K4me1 wgEncodeBroadChipSeqSignalNhlfH3k4me1.txt.gz 06/22/10
Broad NHLF H3K4me3 wgEncodeBroadChipSeqSignalNhlfH3k4me3.txt.gz 06/22/10
Caltech Rep1 GM12878 Long PolyA BB1 2x75 wgEncodeCaltechRnaSeqRawSignalRep1Gm12878CellLongpolyaBb12x75.txt.gz 12/20/09
Caltech Rep1 H1hesc PAP BB2R 2x75 wgEncodeCaltechRnaSeqRawSignalRep1H1hescCellPapBb2R2x75.txt.gz 06/14/10
Caltech Rep1 HUVEC PAP BB2R 2x75 wgEncodeCaltechRnaSeqRawSignalRep1HuvecCellPapBb2R2x75.txt.gz 06/14/10
Caltech Rep1 K562 Long PolyA BB1 2x75 wgEncodeCaltechRnaSeqRawSignalRep1K562CellLongpolyaBb12x75.txt.gz 12/20/09
Caltech Rep1 NHEK PAP BB2R 2x75 wgEncodeCaltechRnaSeqRawSignalRep1NhekCellPapBb2R2x75.txt.gz 06/15/10
Caltech Rep2 HepG2 PAP BB2R 2x75 wgEncodeCaltechRnaSeqRawSignalRep2Hepg2CellPapBb2R2x75.txt.gz 06/14/10
DNase I Hypersensitivity Clusters wgEncodeRegDnaseClustered.txt.gz 08/15/10
TFBS Clustered ChIP-seq wgEncodeRegTfbsClustered.txt.gz 08/15/10
PhyloP 28–Way Base Cons phyloP28way.txt.gz 11/30/08
PhyloP 28-Way Base Cons Plac Mammal phyloP28wayPlacMammal.txt.gz 11/30/08
PhyloP 44-Way Base Cons phyloP44wayAll.txt.gz 02/02/09
PhyloP 44-Way Base Cons Plac Mammal phyloP44wayPlacMammal.txt.gz 02/02/09
PhyloP 44-Way Base Cons Primate phyloP44wayPrimate.txt.gz 02/02/09
ORegAnno oreganno.txt.gz 07/31/08
DGV Indel‡ indel.hg18.v10.nov.2010.txt 11/10
DGV Variation‡ variation.hg18.v10.nov.2010.txt 11/10
PolyPhen–2 pph2-full.hg18.txt 06/26/13
RegulomeDB RegulomeDB.dbSNP132.Category[1-7].txt 06/25/13

All files downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database, except as noted.
†http://hapmap.ncbi.nlm.nih.gov/downloads/ld data/2009-04 rel27 ‡http://projects.tcag.ca/variation/downloads �For UCSC,
date stamp is for associated SQL file, e.g. gwasCatalog.sql.

Supplemental Table 1: Summary of data sources.
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Supplemental Figure 1: Plot of the loadings (weights in the linear combinations) for the most
highly associated Broad promoter/enhancer ChIP–seq principal components (PCs) as they depend
on histone modification, cell line and summary statistic.
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Supplemental Figure 1, Continued: Plot of the loadings (weights in the linear combinations)
for the most highly associated Broad promoter/enhancer ChIP–seq principal components (PCs) as
they depend on histone modification, cell line and summary statistic.
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Supplemental Figure 1, Continued: Plot of the loadings (weights in the linear combinations)
for the most highly associated Broad promoter/enhancer ChIP–seq principal components (PCs) as
they depend on histone modification, cell line and summary statistic.
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Supplemental Figure 1, Continued: Plot of the loadings (weights in the linear combinations)
for the most highly associated Broad promoter/enhancer ChIP–seq principal components (PCs) as
they depend on histone modification, cell line and summary statistic.
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Supplemental Figure 2: Plot of the loadings (weights in the linear combinations) for the most
highly associated sequence conservation principal components (PCs) as they depend on number of
species, depth of alignment and summary statistica.
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Supplemental Figure 3: Plot of the loadings (weights in the linear combinations) for the most
highly associated CalTech RNA–seq principal components (PCs) as they depend on cell line and
summary statistic.
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Supplemental Figure 3, Continued: Plot of the loadings (weights in the linear combinations)
for the most highly associated CalTech RNA–seq principal components (PCs) as they depend on
cell line and summary statistic.
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