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Abstract

Adaptation in response to selection on polygenic phenotypes occurs via subtle allele frequencies
shifts at many loci. Current population genomic techniques are not well posed to identify such
signals. In the past decade, detailed knowledge about the specific loci underlying polygenic traits
has begun to emerge from genome-wide association studies (GWAS). Here we combine this knowledge
from GWAS with robust population genetic modeling to identify traits that have undergone local
adaptation. Using GWAS data, we estimate the mean additive genetic value for a give phenotype
across many populations as simple weighted sums of allele frequencies. We model the expected
differentiation of GWAS loci among populations under neutrality to develop simple tests of selection
across an arbitrary number of populations with arbitrary population structure. To find support
for the role of specific environmental variables in local adaptation we test for correlations with the
estimated genetic values. We also develop a general test of local adaptation to identify overdispersion
of the estimated genetic values values among populations. This test is a natural generalization of
QST /FST comparisons based on GWAS predictions. Finally we lay out a framework to identify
the individual populations or groups of populations that contribute to the signal of overdispersion.
These tests have considerably greater power than their single locus equivalents due to the fact that
they look for positive covariance between like effect alleles. We apply our tests to the human genome
diversity panel dataset using GWAS data for six different traits. This analysis uncovers a number of
putative signals of local adaptation, and we discuss the biological interpretation and caveats of these
results.

1 Introduction
From the earliest days, the study of the genetic basis of evolutionary change has generated a great deal
of controversy over the nature of the variation that contributes to evolution and adaptation (Pearson,
1897; Bateson, 1902; Weldon, 1902, 1903; Pearson, 1903; Darbishire, 1905). The earliest debates
pitted Mendelians against biometricians, and often centered on the question of whether evolution proceeds
by continuous or discontinuous changes (see Provine, 2001, for a full account). The resolution of this
conflict (Yule, 1902;Weinberg, 1909; Fisher, 1918) was central to the development of early population
and quantitative genetics, with both fields seeded in large part by Fisher’s (1918) demonstration that
the inheritance and evolution of quantitative characters could be explained by small contributions from
many independent Mendelian loci.

While still theoretically aligned (Turelli and Barton, 1990), these two fields have often been
divergent in empirical practice. Evolutionary quantitative geneticists have historically focused either
on mapping the genetic basis of relatively simple traits (Slate, 2004), or in the absence of any such
knowledge, on understanding the evolutionary dynamics of phenotypes in response to selection over
relatively short time-scales (Kingsolver et al., 2001). Population geneticists, on the other hand, have
focused on understanding the subtle signals left in genetic data by selection over longer time scales
(Hudson et al., 1987; McDonald and Kreitman, 1991; Begun and Aquadro, 1992), usually at the
expense of a clear relationship between these patterns of genetic diversity and evolution at the phenotypic
level. Given this still imperfect understanding, it should come as no surprise that much debate remains
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over the nature of the genetic variation that matters for evolution and adaptation (e.g. Orr and Coyne,
1992; Rockman, 2012).

Enabled by technological advancements allowing for the generation of vast quantities of DNA poly-
morphism or sequence data, population genomic techniques have revolutionized our ability to identify
recent individual selective events. These approaches are typically based on identifying unusually large
allele frequency changes either by observed differentiation among populations; by identifying the diver-
sity reducing signatures of selective sweeps (Maynard Smith and Haigh, 1974; Kaplan et al., 1989;
Sabeti et al., 2002, 2007; Bersaglieri et al., 2004; Nielsen et al., 2005; Wang et al., 2006; Voight
et al., 2006; Sabeti et al., 2006; Nielsen et al., 2007; Fujimoto et al., 2008; Pickrell et al., 2009;
Akey, 2009; Chen et al., 2010) or by identifying large allele frequency changes along geographic or envi-
ronmental gradients (Coop et al., 2010; Hancock et al., 2010, 2011). While the interpretation of these
tests remains difficult (e.g. Coop et al., 2009; Hernandez et al., 2011), they provide the first insights
into the mechanistic and ecological basis of adaptive evolutionary change at a genome-wide scale.

Such approaches are nonetheless limited because they rely on identifying individual loci that look
unusual, and thus are only capable of identifying selection on traits where an individual locus has a large
effect on fitness. When selection acts weakly on a phenotype that is underwritten by a large number
of loci, the response at any given locus is expected to be modest (Pritchard et al., 2010), and the
signal instead manifests as a coordinated shift in allele frequency across many loci, with the phenotype
increasing (decreasing) alleles all on average shifting in the same direction (Latta, 1998, 2003; Le Corre
and Kremer, 2003, 2012; Kremer and Le Corre, 2011). Because this signal is so weak at the level
of the individual locus, it is impossible to identify against the genome-wide background without a very
specific annotation of which sites are the target of selection on a given trait.

The advent of well-powered genome wide association studies with large sample sizes (Risch and
Merikangas, 1996) has allowed for just this sort of annotation, enabling the mapping of many small
effect alleles associated with phenotypic variation down to the scale of linkage disequilibrium in the popu-
lation. The development and application of these methods in human populations has identified thousands
of loci associated with a wide array of traits, largely confirming the polygenic view of phenotypic variation
(Visscher et al., 2012).

Although the field of human medical genetics has been the largest and most rapid to adopt such
approaches, evolutionary geneticists studying non-human model organisms have also carried out GWAS
for a wide array of fitness-associated traits, and the development of further resources is ongoing (Atwell
et al., 2010; Fournier-Level et al., 2011; Mackay et al., 2012). In human populations, the cumulative
contribution of these loci to the additive variance so far only explain a fraction of the narrow sense
heritability for a given trait (usually less than 15%), a phenomenon known as the missing heritability
problem (Manolio et al., 2009; Bloom et al., 2013). Nonetheless, these GWAS hits represent a rich
source of information about the loci underlying phenotypic variation.

Many researchers have begun to test whether the loci uncovered by these studies tend to be enriched
for signals of selection, in the hopes of learning more about how adaptation has shaped phenotypic
diversity and disease risk (e.g. Myles et al., 2008; Casto and Feldman, 2011; Jostins et al., 2012).
The tests applied are generally still predicated on the idea of identifying individual loci that look unusual,
such that a positive signal of selection is only observed if some subset of the GWAS loci have experienced
strong enough selection to make them individually distinguishable from the genomic background. As
noted above, it is unlikely that such a signature will exist if adaptation is truly polygenic, and thus many
selective events will not be identified by this approach.

Here we develop and implement a general method based on simple quantitative and population genetic
principals, using allele frequency data at GWAS loci to test for a signal of selection on the phenotypes
they underwrite while accounting for the hierarchical structure among populations induced by shared
history and genetic drift. Our work is most closely related to the recent work of Turchin et al. (2012);
? and Corona et al. (2013), who look for co-ordinated shifts in allele frequencies of GWAS alleles
for particular traits. Our approach constitutes an improvement over the methods implemented in these
studies as it provides a high powered and theoretically grounded approach to investigate selection in an
arbitrary number of populations with an arbitrary relatedness structure.

Using the set of GWAS effect size estimates and genome wide allele frequency data, we estimate
the mean genetic value (Fisher, 1930; Falconer, 1960) for the trait of interest in a diverse array of
human populations. These genetic values may in some cases be poor predictors of the actual phenotypes
for reasons we address below and in the Discussion. As such, we place little weight on their prediction
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ability, and focus instead on population genetic modeling of their joint distribution across populations,
which provides a strong and robust way of indirectly investigating the effects of selection on the genetic
basis of complex phenotypes.

We develop a framework to describe how genetic values covary across populations based on a flexible
model of genetic drift and population history. Using this null model, we implement simple test statistics
based on transformations of the genetic values that remove this covariance among populations. We judge
the significance of the departure from neutrality by comparing to a null distribution of test statistics
constructed from well matched sets of control SNPs. Specifically, we test for local adaptation by asking
whether the transformed genetic values show excessive correlations with environmental or geographic
variables. We also develop and implement a less powerful but more general test, which asks whether
the genetic values are over-dispersed among population compared to our null model of drift. We show
that this overdispersion test, which is closely related to QST (the phenotypic analog of FST ; Prout and
Barker, 1993; Spitze, 1993), as well as Lewontin and Krakauer’s (1973) test and subsequent exten-
sions (Bonhomme et al., 2010; Günther and Coop, 2012), gains considerable power to detect selection
over single locus tests by looking for unexpected covariance among loci in the deviation they take from
neutral expectations. Lastly, we develop an extension of our model that allows us to identify individual
populations or groups of populations whose genetic values deviate from their neutral expectations given
the values observed for related populations, and thus have likely been impacted by selection.

2 Results

Estimating Genetic Values with GWAS Data
Consider a trait of interest where L loci (SNPs) have been identified from a genome-wide association
study. We arbitrarily label the alleles A1 and A2 at each locus. These loci have additive effect size
estimates α1, · · ·αL, where α` is the average effect on an individual’s phenotype of replacing an A2 allele
with an A1 allele at locus `. We have allele frequency data forM populations at our L SNPs, and denote
by pm` the observed sample frequency of allele A1 at the `th locus in the mth population. From these,
we estimate the mean genetic value in the mth population as

Zm = 2
L∑
`=1

α`pm` (1)

and we take ~Z to be the vector containing the mean genetic values for all M populations.
The relationship between our estimated genetic values and true phenotypic values is imperfect, and

thus it is worth taking a moment to cover these differences:

1. We assume that the L loci act strictly in an additive manner, i.e. no dominance or epistasis. This is
likely to be a reasonable assumption for small effect loci, as typically found by GWASs (Hill et al.,
2008; Crow, 2010). However, if this assumption is violated, differences in allele frequencies across
populations will result in differences in the additive effect size, and may lead to inconsistencies
between estimated genetic values and observed phenotypes.

2. For the majority of GWAS associations we do not know the causal variant(s) at a locus, but rather
a SNP that is in linkage disequilibrium (LD) with the causal variant(s). As the structure of LD
may vary between populations, our estimates will be better in some populations than in others.

3. We assume that the effect sizes are perfectly estimated, when they may in fact by biased upward or
downward due to the winner’s curse (Zollner and Pritchard, 2007) or incomplete LD (Spencer
et al., 2011) respectively.

4. The genetic values strictly apply only to the environment of the population in which the associ-
ation study was done. They will only be representative of the phenotypes of the populations in
their “natural” environment to the extent that environmental differences between populations are
unimportant.
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5. We do not have all of the causal variants in the population that the GWAS was performed in, and
we may be missing other loci that contribute to variation in other populations but not the one in
which the GWAS was done.

These limitations may result in inconsistencies between our estimated genetic values and the true
genetic values, as well as the actual observed phenotypic values. However, because the methods we
develop below rely only on the rejection of a neutral null model, none of them can lead to us infer a
false positive signal of selection if the mapped loci evolve neutrally. They do, however, result in a loss
of statistical power, and significantly complicate the biological interpretation of a positive signal. We
note that one can obtain a false positive, however, due to unaccounted for population structure in the
original GWAS ascertainment panel. We return to both of these issues in greater depth in the Empirical
Applications and Discussion sections.

A Model of Genetic Value Drift
We are chiefly interested in developing a framework for testing the hypothesis that the joint distribution
of ~Z is driven by neutral processes alone, with rejection of this hypothesis implying the action of selection.
We first describe a general model for the expected joint distribution of estimated genetic values (~Z) across
populations under neutrality, accounting for genetic drift and shared population history.

A simple approximation to a model of genetic drift is that the current frequency of an allele in a
population is normally distributed around some ancestral frequency (ε). Under a Wright-Fisher model
of genetic drift, the variance of this distribution is approximately fε(1 − ε), where f is a property of
the population shared by all loci, reflecting the compounded effect of many generations of binomially
sampling (see Nicholson et al., 2002, for more justification). Note also that for small values, f is
approximately equal to the inbreeding coefficient of the present day population relative to the defined
ancestral population, and thus has an interpretation as the correlation between two randomly chosen
alleles relative to the ancestral population (Nicholson et al., 2002).

We can expand this framework to describe the distribution of allele frequencies in an arbitrary number
of populations for an arbitrary demographic history by assuming that the vector of allele frequencies in
M populations follows a multivariate normal distribution

~p ∼MVN
(
ε~1, ε (1− ε)F

)
. (2)

where F is an M by M positive definite matrix describing the correlation structure of allele frequencies
across populations relative to the mean/ancestral frequency. Note again that for small values it is also
approximately the matrix of inbreeding coefficients (on the diagonal) and kinship coefficients (on the off-
diagonals) describing the relatedness among populations (WEIR and HILL, 2002; Bonhomme et al.,
2010). This flexible model was introduced, to our knowledge, by Cavalli-Sforza et al. (1964) (see
Felsenstein, 1982, for a review), and has subsequently been used as a computationally tractable model
for population history inference (e.g. Nicholson et al., 2002; ?), and as a null model for signals of
selection (e.g. Coop et al., 2010; Bonhomme et al., 2010; Günther and Coop, 2012; Fariello et al.,
2013). So long as the multivariate normal assumption of drift holds reasonably well, this framework
can summarize arbitrary population histories, including tree-like structures with substantial gene flow
between populations (?), or even those which lack any coherent tree-like component (e.g. isolation by
distance models: Guillot, 2012; Bradburd et al., 2013).

Recall that our estimated genetic values (~Z) are merely a sum of sample allele frequencies weighted
by effect size. If the underlying allele frequencies are well described by the multivariate normal model
described above, then the distribution of ~Z is a weighted sum of multivariate normal distributions, such
that this distribution is itself multivariate normal:

~Z ∼MVN
(
µ~1, VAF

)
(3)

where µ = 1
L

∑L
`=1 2α`ε` and VA = 4

∑L
`=1 α

2
`ε`(1 − ε`) are respectively the expected phenotypic value

and additive genetic variance of the ancestral (global) population. The covariance matrix describing the
distribution of ~Z therefore differs from that describing the distribution of frequencies at individual loci
only by a scaling factor that can be interpreted as the contribution of the associated loci to the additive
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genetic variance present in a hypothetical population with allele frequencies equal to those of the entire
metapopulation.

The assumption that the drift of allele frequencies around their shared mean is normally distributed
(2) may be problematic if there is substantial drift. However, even if that is the case, the estimated
genetic values may still be assumed to follow a multivariate normal distribution by appealing to the
central limit theorem, as each estimated genetic value is a sum over many loci. We show in the Results
that this assumption often holds in practice.

Note that in light of the caveats discussed above, the elements of ~Z are likely to be imperfect pre-
dictions both of the true genetic values, and the observed phenotypic values. However these caveats do
not invalidate our null model, as it describes only the expected allele frequency change under neutral-
ity at the associated loci, which should be independent from their identification in a GWAS (provided
that ascertainment schemes are not too complicated) and from the effect sizes estimated. As such, if
the GWAS loci truly are evolving neutrally, then their evolution should be well described be our model
regardless of which of the assumptions outlined above are violated.

Fitting the Model and Standardizing the Estimated Genetic Values

As described above, we obtain the vector ~Z by summing allele frequencies across loci while weighting by
effect size. We do not get to observe the ancestral genetic value of the sample (µ), so we assume that
this is simply equal to the mean genetic value across populations (µ = 1

M

∑
m Zm). This assumption

costs us a degree of freedom, and so we must work with a vector ~Z ′, which is the vector of estimated
genetic values for the first M − 1 populations, centered at the mean of the M (see Methods for details).
Note that this procedure will be the norm for the rest of this paper, and thus we will always work with
vectors of length M − 1 that are obtained by subtracting the mean of the M vector and dropping the
last component.

To estimate the null covariance structure of the M − 1 populations we sample a large number K
random unlinked SNPs. In our procedure, the K SNPs are sampled so as to match certain properties
of the L GWAS SNPs (the specific matching procedure is described in more depth below and in the
Methods section). Setting εk to be the mean sample allele frequency across populations at the kth SNP,
we standardize the sample allele frequency in populationm as (pmk−εk)/ (εk (1− εk)). We then calculate
the sample covariance matrix (F) of these standardized frequencies, accounting for the M − 1 rank of
the matrix (see Methods). We estimate the scaling factor of this matrix F as

VA = 4
L∑
`=1

α2
`ε`(1− ε`). (4)

We now have an estimated genetic value for each population, and a simple null model describing
their expected covariance due to shared population history. Under this multivariate normal framework,
we can transform the vector of mean centered genetic values ( ~Z ′) so as to remove this covariance. First,
we note that the Cholesky decomposition of the F matrix is

F = CCT (5)

where C is a lower triangular matrix, and CT is its transpose. Informally, this can be thought of as
taking the square root of F, and so C can be thought of as analogous to the standard deviation matrix.

Using this matrix C we can transform our estimated genetic values as:

~X =
1√
VA

C−1 ~Z ′. (6)

If ~Z ′ ∼ MVN(~0, VAF) then ~X ∼ MVN(0, I), where I is the identity matrix. Therefore, under the
assumptions of our model, these standardized genetic values should be independent and identically
distributed ∼ N(0, 1) random variates.

It is worth spending a moment to consider what this transformation has done to the allele frequencies
at the loci underlying the estimated genetic values. As our original genetic values are written as a
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weighted sum of allele frequencies, our transformed genetic values can be written as a weighted sum of
transformed allele frequencies (which have passed through the same transform). We can write

~X =
1√
VA

C−1 ~Z ′ =
2√
VA

∑
`

α`C
−1~p` (7)

and so we can simply define the vector of transformed allele frequencies at locus ` to be

~p′` = C−1~p`. (8)

This set of transformed frequencies exist within a set of transformed populations, which by definition
have zero covariance with one another under the null, and are related by a star-like population tree with
branches of equal length.

As such, we can proceed with simple, straightforward and familiar statistical approaches to test
for the impact of spatially varying selection on the estimated genetic values. Below we describe three
simple methods for identifying the signature of polygenic adaptation, which arise naturally from this
observation.

Environmental correlations
Assume we have a vector ~Y , containing measurements of a specific environmental variable of interest in
each of the M populations. We mean-center this vector and put it through a transform identical to that
which we applied to the estimated genetic values in (7). This gives us a vector ~Y ′, which is in the same
frame of reference as the transformed genetic values.

There are many possible models to describe the relationship between a trait of interest and a particular
environmental variable that may act as a selective agent. We first consider a simple linear model,
where we model the distribution of transformed genetic values ( ~X) as a linear effect of the transformed
environmental variables ( ~Y ′)

~X ∼ β ~Y ′ + ~e (9)

where ~e under our null is a set of normal, independent and identically distributed random variates (i.e.
residuals), and we can estimate β by finding the value that minimizes the variance of ~e (i.e. ordinary least
squares regression). We can also calculate the associated squared Pearson correlation coefficient (r2) as
a measure of the fraction of variance explained by our variable of choice, as well as the non-parametric
Spearman’s rank correlation ρ

(
~X, ~Y ′

)
, which is robust to outliers that can mislead the linear model. In

the Methods we show that the linear environmental model applied to our transformed genetic values has a
natural interpretation in terms of the underlying individual loci. Therefore, exploring the environmental
correlations of estimated genetic values nicely summarizes information in a sensible way at the underlying
loci identified by the GWAS.

In order to assess the significance of these measures, we implement an empirical null hypothesis testing
framework, using β, r2, and ρ as test statistics. We sample many sets of L SNPs randomly from the
genome, again applying a matching procedure discussed below and in the Methods. With each set of L
SNPs we construct a vector ~Znull, which represents a single draw from the genome-wide null distribution
for a trait with the given ascertainment profile. We then perform an identical set of transformations and
analyses on each ~Znull, thus obtaining an empirical genome-wide null distribution for all test statistics.

Excess Variance Test
As an alternative to testing the hypothesis of an effect by a specific environmental variable, one might
simply test whether the estimated genetic values exhibit more variance among populations than expected
due to drift. Here we develop a simple test of this hypothesis.

As ~X is composed of M − 1 independent, identically distributed standard normal random variables,
a natural choice of test statistic is given by

QX = ~XT ~X =
~Z ′
T
F−1 ~Z ′

VA
. (10)
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This QX statistic represents a standardized measure of the among population variance in estimated
genetic values that is not explained by drift and shared history. It is also worth noting that by comparing
the rightmost form in (10) to the multivariate normal likelihood function, we find that QX is proportional
to the negative log likelihood of the estimated genetic values under the model, and is thus the natural
measurement of the model’s ability to explain their distribution. Values of this statistic that are in the
upper tail correspond to an excess of variance among populations (i.e. local adaptation), while values in
the lower tail correspond a paucity of variance, and thus potentially to stabilizing selection. Multivariate
normal theory predicts that this statistic should follow a χ2 distribution with M − 1 degrees of freedom
under the null hypothesis. Nonetheless, we use a similar approach to that described for the linear model,
generating the empirical null distribution by resampling SNPs genome-wide. As discussed below, we
find that in practice the empirical null distribution tends to be very closely matched by the theoretically
predicted χ2

M−1 distribution.

The Relationship of QX to Previous Tests Our QX statistic is closely related to QST , the phe-
notypic analog of FST , which measures the fraction of the genetic variance that is among populations
relative to the total genetic variance (Wright, 1951; Spitze, 1993; Prout and Barker, 1993). QST is
typically estimated in traditional local adaptation studies via careful measurement of phenotypes from
related individuals in multiple populations in a common garden setting. If the loci underlying the trait
act in a purely additive manner and are experiencing only neutral genetic drift, then E[QST ] = E[FST ]
(Lande, 1992; Whitlock, 1999).

If both quantities are well estimated, and we also assume that there is no hierarchical structure
among the populations, then (M−1)QST

FST
is known to have a χ2

M−1 distribution under a wide range of
models (Rogers and Harpending, 1983; Whitlock, 2008; Whitlock and Guillaume, 2009). Thus
the statistic (M−1)QST

FST
is a natural phenotypic extension of the Lewontin and Krakauer (1973) FST

based-test (LK test).
To see the close correspondence between QX and QST , consider the case of a starlike population tree

with branches of equal length (i.e. fmm = FST and fm6=n = 0). Under this demographic model, we have

QX =

(
~Z − µ

)T
F−1

(
~Z − µ

)
VA

=
(Z1 − µ)2

VAFST
+ · · ·+ (ZM−1 − µ)2

VAFST

=
(M − 1)Var

(
~Z
)

VAFST

=
(M − 1) Q̂ST

FST
(11)

where Q̂ST is an estimated value for QST obtained from our estimated genetic values. This relationship
between QX and QST breaks down when some pairs of populations do not have zero covariance in allele
frequencies under the null, in which case the χ2 distribution of the LK test also breaks down (Robertson,
1975; Nei and Maruyama, 1975). Bonhomme et al. (2010) recently proposed an extension to the LK
test that accounts for a population tree, thereby recovering the χ2 distribution (see also Günther
and Coop, 2012, who relax the tree-like assumption), and our QX statistic is the natural phenotypic
extension of this enhanced statistic.

Given that our estimated genetic values are simple linear sums of allele frequencies, it is natural to
ask how QX can be written in terms of these frequencies. Again, restricting ourselves to the case where
F is diagonal, (i.e. fmm = FST and fm6=n = 0), we can express QX as

QX =
4

VAFST

M−1∑
m=1

∑
`,`′

α`α`′(pm` − ε`)(pm`′ − ε`′), (12)

which can be rewritten as

QX =
M − 1

FST

( ∑
` α

2
`V ar(~p`)∑

` α
2
`ε`(1− ε`)

+

∑
` 6=`′ α`α`′Cov(~p`, ~p`′)∑

` α
2
`ε`(1− ε`)

)
. (13)
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The numerator of the first term inside the parentheses is the weighted sum of the variance among
populations over all GWAS loci, scaled by the contribution of those loci to the additive genetic variance
in the total population. As such this first term is similar to FST calculated for our GWAS loci, but
instead of just averaging the among population and total variances equally across loci in the numerator
and denominator, these quantities are weighted by the squared effect size at each locus. This weighting
nicely captures the relative importance of different loci to the trait of interest.

The second term in (13) is less familiar; the numerator is the weighted sum of the covariance of allele
frequencies between all pairs of GWAS loci, and the denominator is again the contribution of those loci
to the additive genetic variance in the total population. This term is thus a measure of the correlation
across loci in the deviation they take from the ancestral value, or the across population component of
linkage disequilibrium (for a more in depth discussion of this relationship in the context of QST , see
Latta, 1998, 2003).

Under the neutral null hypothesis, the expectation of this second term is equal to zero, as drifting loci
are equally likely to covary in either direction. With differential selection among populations, however,
we expect loci underlying a trait not only to vary more than we would expect under a neutral model, but
also to covary in a consistent way, e.g. we expect the alleles with a positive effect on the trait to increase
or decrease in concert with one another. Models of local adaptation predict that it is this covariance
among alleles that is primarily responsible for differentiation at the phenotypic level (Latta, 1998, 2003;
Le Corre and Kremer, 2003, 2012; Kremer and Le Corre, 2011), and as such, we expect this test
statistic to offer considerably higher power than simply averaging FST over loci, or inspecting FST at
individual GWAS loci, a point which we investigate with simulations below.

As noted above (8), when F is non-diagonal, our transformed genetic values can be written as a
weighted sum of transformed allele frequencies. Consequently, we can obtain a similar expression to
(13) when population structure exists, but now expressed in terms of the covariance of a set of allele
frequencies in transformed populations that have no covariance with each other under the null hypothesis.
Specifically, when the covariance is non-diagonal we can write:

QX =
M − 1

VA

∑
`

α2
`V ar(~p

′
`) +

M − 1

VA

∑
` 6=`′

α`α`′Cov(~p′`, ~p
′
`′). (14)

We refer to the first term in this sum as the standardized FST -like component and the second term
as the standardized LD-like component. We use this decomposition below to demonstrate for empirical
examples that significant QX statistics are due to unexpected covariance between like effect alleles, rather
than unexpectedly large variance at individual loci.

Identifying Outlier Populations
Having detected a putative signal of selection for a given trait, one may wish to identify individual regions
and populations which contribute to the signal. Here we rely on our multivariate normal model of relat-
edness among populations, along with well understood methods for generating conditional multivariate
normal distributions, in order to investigate specific hypotheses about individual populations or groups
of populations.

Briefly, using standard results from multivariate normal theory, we can generate the expected joint
conditional distribution of genetic values for an arbitrary set of populations given the observed genetic
values in some other set of populations. These conditional distributions allow for a convenient way
to ask whether the estimated genetic values observed in certain populations or groups of populations
differ significantly from the values we would expect them to take given the values observed in related
populations.

Specifically, we exclude a set of populations and then calculate the expected mean and variance of
genetic values in these excluded populations given the remaining populations. Using this mean and
variance we calculate a Z-score to describe how well fit the estimated genetic values of the excluded
populations are by our model of drift, conditional on the values in the remaining populations. The details
of our procedure are given in the Methods section, and we pursue implementations of this approach at
two levels of population structure in our Empirical Applications.
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Datasets
We conducted power simulations and an empirical application of our methods based on the Human
Genome Diversity Panel (HGDP) population genomic dataset (Li et al., 2008), and a number of GWAS
SNP sets. To ensure that we made the fullest possible use of the information in the HGDP data, we
took advantage of a genome wide allele frequency dataset of ∼3 million SNPs imputed from the Phase II
HapMap into the 52 populations of the HGDP. These SNPs were imputed as part of the HGDP phasing
procedure in Pickrell et al. (2009); see our Methods section for a recap of the details. We applied our
method to test for signals of selection in six human GWAS datasets identifying SNPs associated with
height, skin pigmentation, body mass index (BMI), type 2 diabetes (T2D), Crohn’s Disease (CD) and
Ulcerative Colitis (UC).

Choosing null SNPs Various components of our procedure involve sampling random sets of SNPs
from across the genome. While we control for biases in our test statistics introduced by population
structure through our F matrix, we are also concerned that subtle ascertainment effects of the GWAS
process could lead to biased test statistics, even under neutral conditions. We control for this possibility
by sampling null SNPs so as to match the joint distribution of certain properties of the ascertained
GWAS SNPs. Specifically, we chose our random SNPs to match the GWAS SNPs in each study in
terms of their minor allele frequency (MAF) in the ascertainment population and the imputation status
of the allele in our population genomic dataset. In addition, we were concerned that GWAS SNPs
might be preferentially found close to genes and in low recombination regions, the latter due to better
tagging, and as such may be subject to a high rate of drift due to background selection, leading to higher
levels of differentiation at these sites (Charlesworth et al., 1997). Therefore, in addition to MAF
and imputation status, we also matched our random SNPs to an estimate of the background selection
environment experienced by the GWAS SNPs, as measured by B value (McVicker et al., 2009), which
is a function of both the density of functional sites and recombination rate calibrated to match the
reduction in genetic diversity due to background selection. We detail the specifics of the binning scheme
for matching the discretized distributions of GWAS and random SNPs in the Methods.

Power Simulations
To assess the power of our methods in comparison to other possible approaches, we conducted a series
of power simulations. As statistical power is necessarily a function of the data, we sample 1000 null
sets of SNPs for each phenotype according to the same matching procedure described above and in the
Methods. We then gradually increase the effect of selection on these underlying loci, and measure the
corresponding increase in power.

For each set of matched SNPs, we compared two of our statistics, (r2 and QX) against their naive
counterparts, which are not adjusted for population structure (nr2 and QST ). For QX and QST , we
count a given simulation as having detected the signal of selection if it lies in the upper 5% tail of the
null distribution, whereas for the environmental correlation statistics (r2 and nr2) we use a two-tailed
5% test. We also compared our tests to two single locus enrichment tests, the first where we counted the
number of loci with individual SNP environmental correlations in the 5% tail using the single locus r2
(slr2) and in the second we counted the number of loci in the upper 5% tail of FST (slFST ). We then
considered these enrichment tests to have detected the signal of selection if the number of individual
loci in the 5% tail was itself in the 5% tail using a binomial test. We do not include our alternative
linear model statistics β and ρ in these plots for the sake of figure legibility, but they generally had very
similar power to that of r2. While slightly more powerful versions of the single locus tests that account
for sampling noise are available (e.g. WEIR and HILL, 2002; Coop et al., 2010), note that our tests
could be extended similarly as well, so the comparison is fair.

We base our power simulations on empirical data altered to have an increasing effect of selection
along a latitudinal gradient. In order to mimic the effect of selection, we generate a new set of allele
frequencies (ps,m`) by taking the original frequency (pm`) and adding a small shift according to

ps,m` = pm` + pm` (1− pm`)α`δYm (15)

where α` is the effect size assigned assigned to locus `, and Ym is the mean centered absolute latitude
of the population. We used the 1000 simulations at δ = 0 to form null distribution for each of our test
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Figure 1: Power of our statistics as compared to alternative approaches (A) Across a range of effect sizes
(β) of latitude, and (B) when we hold β constant at 0.06 and decrease φ, the genetic correlation between
the trait of interest on the selected trait.

statistics, and from this established the 5% significance level. We then increment δ and give the power
of each statistic as the fraction of simulations whose test statistic falls beyond this cutoff. While this
approach to simulating selection is obviously naive to the way selection actually operates, it captures
most of the important effects on the loci underlying a given trait. Namely, loci will have greater shifts if
they experience rather extreme environments, have large effects on the phenotype, or are at intermediate
frequencies. Because we add these shifts to allele frequencies sampled from real, putatively neutral loci,
the effect of drift on their joint distribution is already present, and thus does not need to be simulated.
Figure 1 shows simulations matched to the set of p` and α` of the Type 2 Diabetes dataset (see Figures
S1-S5 for all other traits).

Our population structure adjusted statistics clearly outperform tests that do not account for structure,
as well as single locus outlier based tests. Notably, tests based on an excess of FST outliers or average
FST (not shown here) have essentially zero power for cases in which our tests have nearly 100% power.
This nicely illustrates the fact that for highly polygenic traits, nearly all of the differentiation at the trait
level arises as a consequence of across population linkage disequilibrium among the underlying loci, and
not as a result of substantial differentiation at the loci themselves. While our environment-genetic value
correlation tests outperform QX , this is somewhat artificial as it assumes that we know the environmental
variable responsible for our allele frequency shift. In reality we may at best hope to guess a correlate of
the selection pressure, so QX may outperform the environmental correlations.

In many cases, it may be that selection has not acted directly on the phenotype in question, but
rather on one that is genetically correlated. Therefore, we are interested in the power of our tests to
detect selection on traits genetically correlated with those for which we have GWAS data. The question
of how to properly simulate this relationship is largely an empirical one, as the correlation structure
underlying any two traits will depend on their shared genetic architecture. We therefore chose a simple
and general approach to capture a flavor of this situation. We simulate the effect of selection as above
(15), but using effect sizes (α′`) for an unobserved phenotype which are only partially correlated with
our observed effect sizes. For simplicity we assume that α` and α′` have a bivariate normal distribution
around zero with equal variance and correlation parameter φ, and then simulate α′` from its conditional
distribution given α` (i.e. α′` | α` ∼ N(φα`, (1− φ2)V ar(α))). For each SNP ` in (15) we replaced α` by
its effect α′` on the unobserved phenotype. Here φ can be thought of as the genetic correlation between
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Table 1: The contribution of each geo-climatic variable to each of our four principal
components, scaled such that the absolute value of the entries in each column sum
to one (up to rounding error). We also show for each principal component the
percent of the total variance across all eight variables that is explained by the PC.

Geo-Climatic Variable SUMPC1 SUMPC2 WINPC1 WINPC2
Latitude -0.16 -0.10 -0.17 -0.01
Longitude 0.02 0.12 0.04 0.05

Maximum Temp 0.24 -0.08 0.17 -0.03
Minimum Temp 0.24 0.07 0.17 0.08
Mean Temp 0.25 -0.03 0.17 0.03

Precipitation Rate -0.01 0.16 0.07 0.32
Relative Humidity -0.06 0.21 -0.06 0.34

Short Wave Radiation Flux -0.03 -0.22 0.15 -0.13
Percent of Variance Explained 38% 35% 58% 20%

our phenotypes if this simple multivariate form held true for all of the loci contributing to our two traits.
In Figure 1 we hold the value of β constant at 0.06 and vary this genetic correlation φ from one down

to zero. Predictably, our GWAS prediction-based statistics lose power as the two traits become more
and more genetically independent, but do retain reasonable power out to quite low genetic correlations.
In contrast, counting the number of SNPs that are significantly correlated with a given environmental
variable remains equally powerful across all effect sizes, as these loci are still altered from neutral expec-
tations along the environmental gradient, and the loci’s effect sizes and directionality do not enter into
our calculation.

In some ways this may be considered a desirable property of the environmental outliers enrichment
approach, it can still detect the effect of selection on these loci, even if the genetic effect sizes of the two
traits are uncorrelated. On the other hand, this is also problematic, as it implies that without detailed
knowledge of the various phenotypic associations at each locus, such tests may often be detecting selection
on pleiotropically related phenotypes. Our approaches, however, are more suited to determining whether
the genetic basis of a trait of interest has been affected by selection on a trait that is at least somewhat
genetically correlated.

Empirical Applications
We estimated genetic values for each of six traits from the subset of GWAS SNPs that were present in
the HGDP dataset, as described above. We discuss the analysis of each dataset in detail below, and
address general points first. For each dataset, we constructed the covariance matrix from a sample of
approximately 20, 000 appropriately matched SNPs, and the null distributions of our test statistics from
a sample of 10, 000 sets of null genetic values, which were also constructed according to a similar matching
procedure (as described in the Methods).

To test for an effect of major climate variables on the genetic basis of a given trait, we used the
set of six climate variables (measured in both summer and winter seasons) considered by Hancock
et al. (2008) in their analysis of adaptation to climate at the level of individual SNPs. We followed
their general procedure by running principal components (PC) analysis for both seasons on a matrix
containing the six climate variables, as well as latitude and longitude (following Hancock et al.’s (2008)
rationale that these two geographic variables may capture certain elements of the long term climatic
environment experienced by human populations). The percent of the variance explained by these PCs
and their weighting (eigenvectors) of the different environmental variables are given in Table 1.

We also applied our QX test to identify traits whose underlying loci showed consistent patterns of
unusual differentiation across populations. In Figure 2 we show for each GWAS set the observed value of
QX and the empirical null distribution of QX using SNPs matched to the GWAS loci as described above.
We also plot the expected null distribution of the QX statistic (∼ χ2

51). The expected null distribution
closely matches the empirical distribution, suggesting that our multivariate normal framework provides
a good null model for the data (although we will use the empirical null distribution to obtain measures
of statistical significance).
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Figure 2: Histogram of the empirical null distribution of QX for each trait, obtained from genome-wide
resampling of well matched SNPs. The mean of each distribution is marked with a vertical black bar
and the observed value is marked by a red arrow. The expected χ2

M−1 density is shown as a black curve.

For each GWAS SNP set we can also separate our QX statistic into its two components (an FST -like
component and an LD-like term), as described in (14). In Figure 3 we plot the null distributions of these
two components for the height dataset as histograms, with the observed value marked by red arrows. As
with all of the significant QX statistics we have examined, the signal of unusual differentiation comes
largely from the standardized LD-like component (see Figures S6-S10 for all other traits at the global
level). This highlights the fact that the information about departures from neutrality comes largely from
a subtle signal of covariance across loci of like effect alleles.

As discussed above and in the Methods, we can use our multivariate normal framework to identify
specific regions or populations that are poorly fit by the neutral model when predicted from other popu-
lations. We do this for each of our GWAS SNP sets at two different levels of population structure: seven
broad geographic regions (as identified by Rosenberg et al., 2002) as well as individual populations.
We first calculate the average of the estimated genetic values within one of the seven broad regions. We
then calculate the expected joint conditional distribution for the populations in that region, given the
estimated genetic values observed in each of the other six regions. This results in a vector of expectations
for each population, and a conditional covariance matrix relating them, which we can convert into to the
expected conditional mean and variance of our regional average. We use this expected conditional mean
and variance and the observed regional average to calculate a Z score as a measure of how differentiated
that region is from the rest of the world. In Figures 5 and 6, we present the conditional expectation
for each region as a light grey dashed line, and the observed mean as a solid bar, with darkness and
thickness proportional to Z score.

We also calculate the conditional expectation and variance for each population in turn, given the
values observed for all other populations in the dataset, allowing us to calculate population specific Z
scores. Whereas our regional level Z scores are designed to detect selection events occurring over broader
geographical regions (and potentially deeper time scales), our populations specific Z scores are designed to
identify individual populations that are not well predicted by the model, and thus may have experienced
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Figure 3: The two components of QX for the height dataset, as described by the left and right terms in
(14). The null distribution of each statistic is shown as a histogram. The mean value is shown as a black
bar, and the observed value as a red arrow.

more recent selection. In Figures 5 and 6, we present each population’s estimated genetic value as a
colored circle, with its size proportional to its population specific Z score. Full characterizations of these
results are available in Tables S3-S14.

Height We first analyzed the set of 180 height associated loci identified by Lango Allen et al. (2010),
which explain approximately 14% of the additive genetic variance for height (Zaitlen et al., 2013).
This dataset is an ideal first test for our methods because it contains the largest number of associations
identified for a single phenotype to date, maximizing our power gain over single locus methods (Figure
S1). In addition, Turchin et al. (2012) have already identified a signal of pervasive weak selection
at these same loci in European populations, and thus we should expect our methods to replicate this
observation.

Of the 180 loci identified by Lango Allen et al. (2010), 161 were present in our HGDP dataset.
We used these 161 loci in conjunction with the allele frequency data from the HGDP dataset to estimate
genetic values for height in the 52 HGDP populations. Although these genetic values are correlated with
the observed heights of these populations, as expected they are far from perfect predictions (see Figure
S11 and Table S1, which compares our estimated genetic values to observed sex-average heights for the
subset of HGDP populations with a close proxy in the dataset of Gustafsson and Lindenfors, 2009).
We find a signal of excessive correlation with winter PC2 (Figure 4 and Table 2), but find no effect of
any other climatic variables. Our QX test also strongly rejects the neutral hypothesis, suggesting that
our estimated genetic values are overly dispersed compared to the null model of neutral genetic drift and
shared population history (Figure 2 and Table 2),

We followed up on this signal of differentiation by conducting regional level analyses, which indicate
that the worldwide signal of excess variance arises from both inter– and intra–regional processes. We
find that the mean genetic height in Africa is lower than expected given the values observed in the rest
of the world (Z = −2.0, p = 0.045; see also Figure 5 and Table S3). We also find evidence for differential
selection within Europe, as suggested by Turchin et al. (2012), and to a somewhat lesser extent in the
Middle East and Central Asia (Figure 5 and Table 3).

Skin Pigmentation We next analyzed data from a recent GWAS for skin pigmentation in an African-
European admixed population of Cape Verdeans (Beleza et al., 2013), which identified four loci of
major effect that explain approximately 35% of the variance in skin pigmentation in that population
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Figure 4: Estimated genetic height (A) and skin pigmentation score (B) plotted against winter PC2
and absolute latitude respectively. Both correlations are significant against the genome wide background
after controlling for population structure (Table 2).

after controlling for admixture proportion. Beleza et al. (2013) report effect sizes in units of modified
melanin (MM) index, which is calculated as 100× log(1/%melanin reflectance at 650 nM), i.e. a higher
MM index corresponds to darker skin, and a lower value to lighter skin.

We used these four loci to calculate a genetic skin pigmentation score in each of the HGDP popula-
tions. As expected, we identified a strong signal of excess variance among populations, as well as a strong
correlation with latitude (Figure 4 and Table 2). Note, however, that this signal was driven entirely by
the fact that populations of western Eurasian descent have a lower genetic skin pigmentation score than
populations of African descent. Using only the markers from Beleza et al. (2013), light skinned pop-
ulations in East Asian and the Americas have a genetic skin pigmentation score that is almost as high
as that of most African populations, an effect that is clearly visible when we plot the measured skin
pigmentation and skin reflectance of HGDP populations (Jablonski and Chaplin, 2000; Lao et al.,
2007) against their genetic values (see Figures S12 and S13).

The correlation with latitude is thus weaker than one might expect, given the known phenotypic
distribution of skin pigmentation in human populations (Jablonski and Chaplin, 2000, 2010). To
illustrate this point further, we re-ran the analysis on a subsample of the HGDP consisting of populations
from Europe, the Middle East, Central Asia, and Africa. In this subsample, the correlation with latitude,
and signal of excess variance, was notably stronger (r2 = 0.2, p = 0.019; QX = 60.1, p = 8× 10−4).

This poor fit to observed skin pigmentation is due to the fact that we have failed to capture all

Table 2: Climate Correlations and QX statistics for all six phenotypes in the global analysis. We
report sign(β)r2, for the correlation statistics, such that they have an interpretation as the fraction
of variance explained by the environmental variable, after removing that which is explained by the
relatedness structure, with sign indicating the direction of the correlation. P-values are two–tailed for
r2 and upper tail for QX . Values for β and ρ are reported in Tables S15 and S16.

Phenotype SUMPC1 SUMPC2 WINPC1 WINPC2 Latitude QX

Height −0.03 (0.21) 10−5 (0.99) −0.008 (0.52) 0.086 (0.035) 0.009 (0.50) 86.9 (0.002)
Skin Pigmentation 0.061 (0.073) 0.003 (0.69) 0.048 (0.13) −0.008 (0.51) −0.085 (0.038) 79.1 (0.006)
Body Mass Index −0.034 (0.19) 0.001 (0.82) −0.022 (0.31) 0.044 (0.14) 0.031 (0.22) 67.2 (0.087)
Type 2 Diabetes 0.014 (0.40) 0.012 (0.45) 0.025 (0.27) −0.006 (0.573) −0.05 (0.11) 39.3 (0.902)
Crohn’s Disease 0.07 (0.062) −0.099 (0.022) 0.0001 (0.94) −0.09 (0.039) 0.01 (0.55) 47.1 (0.68)
Ulcerative Colitis 0.03 (0.21) −0.087 (0.034) 0.004 (0.67) −0.049 (0.12) 0.01 (0.43) 48.58 (0.61)
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of the loci that contribute to variation in skin pigmentation across the range of populations sampled,
likely due to the partial convergent evolution of light skin pigmentation in Western and Eastern Eurasian
populations (Norton et al., 2006). Including other loci putatively involved in skin pigmentation (Miller
et al., 2007; Edwards et al., 2010) decreases the estimated genetic pigmentation score of the other
Eurasian populations (Figures S12 and S13), but we do not include these in our main analyses as they
differ in ascertainment (and the role of KITLG in pigmentation variation has been contested by Beleza
et al., 2013).

Within Africa, the San population has a decidedly lower genetic skin pigmentation score than any
other HGDP African population. This is in accordance with the observation by Jablonski and Chaplin
(2000) that the San are more lightly pigmented than other African populations represented by the HGDP
and the observation that other putative light skin pigmentation alleles have higher frequency in the San
than other African populations (Norton et al., 2006). A regional analysis of the six African populations
alone identified a marginally significant correlation with latitude (r2 = 0.62, p = 0.0612), and a signal
of excess variance among populations (QX = 16.19, p = 0.01), suggesting a possible role for selection in
shaping pigmentation variation within Africa.

Body Mass Index We next investigate two traits related to metabolic phenotypes (BMI and Type 2
diabetes), as there is a long history of adaptive hypotheses put forward to explain phenotypic variation
among populations, with little conclusive evidence emerging thus far. We first focus on the set of 32
BMI associated SNPs identified by Speliotes et al. (2010) in their Table 1, which explain approximately
2-4% of the genetic variance for BMI. Of these 32 associated SNPs, 28 were present in the HGDP dataset,
which we used to calculate a genetic BMI score for each HGDP population. We identified no significant
signal of selection at the global level (Table 2).

Our regional level analysis indicated that the mean genetic BMI score is significantly lower that
expected in East Asia (Z = −2.48, p = 0.01; see also Figure 5 and Table S7), while marginal QX
statistics identify excess intraregional variation within East Asia and the Americas (Table 3).

Type 2 Diabetes We next investigated the 65 loci reported by Morris et al. (2012) as associated
with T2D in their supplementary Table 2. Of these 65 SNPs, 61 were present in the HGDP dataset. We
used effect sizes from stage 1 meta-analysis, and where Morris et al. (2012) reported a range of allele
frequencies (due to differing sample frequencies among cohorts), we simply used the average. Where
multiple SNPs were reported per locus we used the lead SNP from the combined meta-analysis. Also
note that Morris et al. (2012) report effects in terms odds ratios (OR), which can be converted into
additive effects by taking the logarithm (the same is true of the IBD data from Jostins et al., 2012,
analyzed below).

The distribution of genetic T2D risk scores showed no significant correlations with any of the five eco-
geographic axes we tested, and was in fact fairly underdispersed worldwide relative to the null expectation
due to population structure (Table 2).

Our regional level analysis revealed that while T2D genetic risk is well explained by drift in Africa,
Central and Eastern Asia, Oceania, and the Americas, European populations have far lower T2D genetic
risk than expected (Z = −2.79, p = 0.005) and Middle Eastern populations a higher genetic risk than
expected (Z = 2.37, p = 0.018). It’s not necessarily clear, however, that these observations should
be interpreted as evidence for selection either in Europe or the Middle East. While the dichotomous
regional labels “Europe” vs. “Middle East” and genetic T2D risk explains the majority of the variance
not accounted for by population structure (r2 = 0.77, p = 5 × 10−4), this is essentially the same signal
detected by the regional Z scores, and our QX statistic finds no signal of excess variance (QX = 10.9,
p = 0.48) among the twelve HGDP populations in these two regions. Expanding to the next most closely
related region, we tested for a signal of excess differentiation between Central Asia and either Europe or
Middle East, but find no convincing signal in either case (r2 = 0.13, p = 0.21; QX = 12.0, p = 0.75 and
r2 = 0.15, p = 0.19; QX = 9.8, p = 0.63 respectively).

To the extent that our results are consistent with an impact of selection on the genetic basis of T2D
risk, they appear to be consistent only with a scenario in which selection has pushed the frequency of
alleles that increase T2D risk up in Middle Eastern populations and down in European populations.
This is an extremely subtle signal, which arises only after deep probing of the data, and as such we are
skeptical that our results represent a meaningful signal of selection.
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Figure 5: Visual rep-
resentation of outlier
analysis at the re-
gional and individual
population level for
(A) Height, (B) Skin
Pigmentation, and
(C) Body Mass Index.
For each geographic
region we plot the
expectation of the re-
gional average, given
the observed values in
the rest of the dataset
as a grey dashed line.
The true regional
average is plotted
as a solid bar, with
darkness and thick-
ness proportional to
the regional Z score.
For each population
we plot the observed
value as a colored
circle, with circle size
proportional to the
population specific
Z score. For exam-
ple, in (A), one can
see that estimated
genetic height is
systematically lower
than expected across
Africa. Similarly,
estimated genetic
height is significantly
higher (lower) in the
French (Sardinian)
population than
expected, given the
values observed for
all other populations
in the dataset.
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Figure 6: Visual rep-
resentation of outlier
analysis at the re-
gional and individ-
ual population level
for (A) Type 2 Di-
abetes, (B) Crohn’s
Disease, and (C) Ul-
cerative Colitis. See
Figure 5 for explana-
tion.
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Figure 7: Estaimted genetic risk score for Crohn’s Disease (A) and Ulcerative Colitis (B) risk plotted
against summer PC2. Both correlations are significant against the genome wide background after con-
trolling for population structure (Table 2). Since a large proportion of SNPs underlying these traits are
shared, we note that these results are not independent.

IBD Finally, we analyzed the set of associations reported by Jostins et al. (2012) for Crohn’s Disease
(CD) and Ulcerative Colitis (UC). Because CD and UC are closely connected phenotypes that share
much of their genetic etiology, Jostins et al. (2012) used a likelihood ratio test of four different models
(CD only, UC only, both CD and UC with equal effects on each, both CD and UC with independent
effects) to distinguish which SNPs where associated with either or both phenotypes, and to assign effect
sizes to SNPs (see their supplementary methods section 1d). We take these classifications at face value,
resulting in two partially overlapping lists of 140 and 135 SNPs associated with CD and UC, of which
95 and 89 respectively were present in our HGDP dataset.

We used these sets of SNPs to calculate genetic risk scores for CD and UC across the 52 HGDP
populations. Both CD and UC showed strong negative correlations with summer PC2 (Figure 7), while
CD also showed a significant correlation with winter PC1, and a marginally significant correlation with
summer PC1 (Table 2).

We did not observe any significant QX statistics for either trait, either at the global or the regional
level, suggesting that our environmental correlation signals most likely arise from subtle differences
between regions, as opposed to divergence among closely related populations. Indeed, we find moderate
signals of regional level divergence in Europe (UC: Z = −2.08, p = 0.04), Central Asia (CD: Z = 2.21, p =
0.03), and East Asia (CD: Z = −1.90, p = 0.06 and UC: Z = −2.12, p = 0.03; see also Figure 6 and
Tables S13 and S14).

3 Discussion
In this paper we have developed a powerful framework for identifying the influence of local adaptation
on the genetic loci underlying variation in polygenic phenotypes. Below we discuss two major issues
related to the application of such methods, namely the effect of the GWAS ascertainment scheme on our
inference, and the interpretation of positive results.
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Table 3: QX statistics and their empirical p-values for each of our six traits in each of the seven geographic
regions delimited by Rosenberg et al. (2002). The theoretical expected value of the statistic under
neutrality for each region is equal to M − 1, where M is the number of populations in the region. We
report the value of M − 1 next to each region for reference.

Europe (7) Middle East (3) Central Asia (8) East Asia (16) Americas (4) Oceania (1) Africa (6)
Height 32.6 (< 10−4) 7.3 (0.07) 15.5 (0.05) 18.2 (0.33) 4.2 (0.43) 0.007 (0.94) 5.4 (0.53)

Skin Pigmentation 9.7 (0.22) 9.6 (0.026) 23.4 (0.002) 13.8 (0.62) 1.3 (0.89) 0.38 (0.57) 16.2 (0.011)
Body Mass Index 9.1 (0.24) 1.6 (0.66) 9.3 (0.32) 28.4 (0.03) 13.1 (0.016) 1.2 (0.31) 1.9 (0.94)
Type 2 Diabetes 2.0 (0.96) 0.90 (0.83) 8.1 (0.43) 7.5 (0.96) 8.0 (0.13) 2.5 (0.15) 2.5 (0.88)
Crohn’s Disease 6.6 (0.47) 0.87 (0.84) 7.56 (0.48) 15.5 (0.52) 1.3 (0.88) 2.5 (0.13) 2.6 (0.82)
Ulcerative Colitis 8.4 (0.30) 2.6 (0.48) 10.9 (0.21) 9.2 (0.907) 0.43 (0.986) 2.6 (0.12) 3.5 (0.77)

Ascertainment and Population Structure
Among the most significant potential pitfalls of our analysis (and the most likely cause of a false positive)
is the fact that the loci used to test for the effect of selection on a given phenotype have been obtained
through a GWAS ascertainment procedure, which can introduce false signals of selection if potential
confounds are not properly controlled. We condition on simple features of the ascertainment process via
our allele matching procedure, but deeper issues may arise from artifactual associations that result from
the effects of population structure in the GWAS ascertainment panel. Given the importance of addressing
this issue to the broader GWAS community, a range of well developed methods exist for doing GWAS in
structured populations, and we refer the reader to the existing literature for a full discussion (Freedman
et al., 2004; Campbell et al., 2005; Price et al., 2006; Kang et al., 2008; Price et al., 2010; Diao and
Chen, 2012; Liu et al., 2013). Here, we focus on two related issues. First, the propensity of population
structure in the GWAS ascertainment panel to generate false positives in our selection analysis, and
second, the difficulties introduced by the sophisticated statistical approaches employed to deal with this
issue when GWAS are done in strongly structured populations.

The problem of population structure arises generally when there is a correlation in the ascertainment
panel between phenotype and ancestry (due to either genetic or environmental effects), such that SNPs
that are ancestry informative will appear to be associated with the trait, even when no causal relationship
exists (e.g. Campbell et al., 2005). To make matters worse, multiple false positive associations will often
line up with same axis of population structure. If the populations being tested with our methods lie
at least partially along the same axis of structure present in the GWAS ascertainment panel, then the
ascertainment process will serve to generate the very signal of positive covariance among like effect alleles
that our methods rely on to detect the signal of selection.

The primary takeaway from this observation is that the more diverse the array of individuals sampled
for a given GWAS are with respect to ancestry, the greater the possibility that failing to control for
population structure will generate false associations and hence false positives for our method.

What bearing do these complications have on our empirical results? The GWAS datasets we used
can be divided into those conducted within populations of European descent and the skin pigmentation
dataset (which used an admixed population). We will first discuss our analysis of the former.

The European GWAS loci we used were found in relatively homogeneous populations, in studies with
rigorous standards for replication and control for population structure. Therefore, we are reasonably
confident that these loci are true positives. Couple this with the fact that they were ascertained in
(European) populations that are fairly homogenous relative to the global scale of our analyses, it is
unlikely that population structure in the ascertainment panels is driving our positive signals. One might
worry that we could still generate false signals by including European populations in our analysis, however
many of the signals we see are driven by patterns outside of Europe (where the influence of structure
within Europe should be much lessened). For height, where we do see a strong signal from within Europe,
we use a set of loci that Turchin et al. (2012) have independently verified using a family based design
that is immune to the effects of population structure.

We further note that for a number of our GWAS datasets, studies of non-European populations have
replicated many of these loci (Cho et al., 2009, 2011; Voight et al., 2010; Kooner et al., 2011; N’Diaye
et al., 2011; Carty et al., 2012; ?). More broadly, a recent study by Marigorta and Navarro (2013)
found that replication rates for disease GWAS in European populations were quite high in East Asian
populations, consistent with simple power considerations, an unlikely result if associations are driven
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primarily by population structure. This suggests that, at least for GWAS done in relatively homogenous
human populations, structure is unlikely to be a major confounding factor.

The issue of population structure may be more profound for our style of approach when GWAS are
conducted using individuals from more strongly structured populations. In some cases it is desirable to
conduct GWAS in such populations as locally adaptive alleles will be present at intermediate frequencies
in these broader samples. A range of methods have been developed to adjust for population structure in
these setting (Kang et al., 2010; Zhou and Stephens, 2012; Liu et al., 2013). While generally effective
in their goal, these methods present their own issues for our selection analysis. Consider the extreme
case, such as that of Atwell et al. (2010), who carried out a GWAS in Arabidopsis thaliana for 107
phenotypes across an array of 183 inbred lines of diverse geographical and ecological origin. Atwell
et al. (2010) used the genome-wide mixed model program EMMA (Kang et al., 2008, 2010; Zhou and
Stephens, 2012) to control for the complex structure present in their ascertainment panel. This practice
helps ensure that many of the identified associations are likely to be real, but also means that the loci
found are likely to have unusual frequencies patterns across the species range. This follows from the fact
that the loci identified as associated with the trait must stand out as being correlated with the trait
in a way not predicted by the individual kinship matrix (as used by EMMA and other mixed model
approaches). Our approach is predicated on the fact that we can use genome-wide patterns of kinship
to adjust for population structure, but this correction is exactly the null model that loci significantly
associated with phenotypes by mixed models have overcome. For this reason, both the theoretical χ2

distribution of the QX statistic, as well as the empirical null distributions we construct from resampling,
are likely to be inappropriate.

The Cape Verde skin pigmentation data we used could qualify as this second type of study. The
Cape Verde population is an admixed population of African/European descent, and has substantial inter-
individual variation in admixture proportion. Due to its admixed nature, the population segregates alleles
which would not be at intermediate frequency in either parental population, and the four loci mapped
in the study explain approximately 35% of the variance in skin pigmentation within the population
(Beleza et al., 2013).

Despite the considerable population structure, the fact that interbreeding continues to mix genotypes
in this population means that much of the LD due to the African/European population structure has
been broken up (and the remaining LD is well predicted by an individual’s genome-wide admixture
coefficient). Population structure seems to have been well controlled for in this study, and a number of
the loci have been replicated in independent admixed populations. While it is thus unlikely that the four
loci we use are false associations, they could in principle suffer from the structured ascertainment issues
described above, so it is unclear that the null distributions we use are strictly appropriate. That said,
provided that Beleza et al. (2013) have indeed appropriately controlled for population structure, under
neutrality there would be no reason to expect that the correlation among the loci should be strongly
positive with respect to the sign of their effect on the phenotype, and thus the pattern observed is at
least consistent with a history of selection, especially in light of the multiple alternative lines of evidence
for adaptation on the basis of skin pigmentation (Jablonski and Chaplin, 2000; Sabeti et al., 2007;
Lao et al., 2007; Williamson et al., 2007; Sturm, 2009; Jablonski and Chaplin, 2010).

Further work is needed to determine how best to modify the tests proposed herein to deal with GWAS
performed in structured populations.

Complications of Intepretation
Our understanding of the genetic basis of most complex traits remains very incomplete, and as such the
results of these analyses must be interpreted with care. That said, because our methods are based simply
on the rejection of a neutral null model, an incomplete knowledge of the genetic basis of a given trait
should only lead to a loss of statistical power, and not to a high false positive rate.

For all traits analyzed here except for skin pigmentation, the within population variance for genetic
value is considerably larger than the variance between populations. This suggests that much of what
we find is relatively subtle adaptation even on the level of the phenotype, and emphasizes the fact that
for most genetic and phenotypic variation in humans, the majority of the variance is within populations
rather than between populations (see Figures S14–S19). The influence of the environment likely plays
a stronger role in the differences between populations for true phenotypes than the subtle differences
we find here (as demonstrated by the rapid change in type 2 diabetes incidence with changing diet, e.g.
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Franco et al., 2013). That said, an understanding of how adaptation has shaped the genetic basis of a
wide variety of phenotypes is clearly of interest, even if environmental differences dominate as the cause
of present day population differences, as it informs our understanding of the biology and evolutionary
history of these traits.

The larger conceptual issues relate to the interpretation of our positive findings, which we detail
below. A number of these issues are inherent to the conceptual interpretation of evidence for local
adaptation (Kawecki and Ebert, 2004).

Environmental Correlations Significant correlation with environmental variables must be inter-
preted with caution. It is unlikely that the environmental variables included in our PC set will include
the agent of selection and rather may simply be a correlate of the actual selection pressure. Further,
given the large geographic and temporal scales considered here, it seems unlikely that many of our posi-
tive findings are the result of any single selection pressure, but rather may result from a combination of
many different pressures, with perhaps different pressures acting in different geographic regions.

Consider also that we investigate only a limited set of phenotypes, which will each covary genetically
with many other phenotypes. As such, any evidence for selection acting on the genetic basis of one of
our phenotypes may represent selection on some correlated phenotype(s) not included in our study.

As an example, consider the fact that both UC and CD show a negative correlation with summer
PC2, which include humidity and rainfall as primary components. However, it seems very unlikely that
UC or CD have been the direct target of selection. It has been proposed that UC and CD might be
understood as pleiotropic side effects of pathogen response (Hansen et al., 2010; Vatn, 2012; Cagliani
et al., 2013), in which case the signal we see might correspond to local adaptation to variation in pathogen
load/diversity (with humidity and/or rainfall as a possible predictor of these differences). Our results
are likely to be compatible with many different hypotheses, however, and thus we consider this only one
possible explanation.

Gene-by-Environment Interactions Gene by environment interactions may also complicate con-
siderably the interpretation of a positive result. For example, we find evidence for adaptation in height,
particularly in western Eurasia (consistent with the results of Turchin et al., 2012), along with a
worldwide correlation with winter PC2. However, our effect estimates are specific to a modern, northern
European environment (although we note that the loci thus far identified in non European populations
tend to overlap those discovered in Europe: Cho et al., 2009; N’Diaye et al., 2011; Carty et al., 2012).
It is possible that these alleles have experienced selection due to different effects in different environ-
ments, and so evidence for differentiation at the genetic level may not align with the observed phenotypic
distribution. In an extreme case, different sets of alleles could be locally selected to maintain a constant
phenotype across populations due to gene-by-environment interactions. Such a scenario could lead to
a signal of local adaptation on a genetic level but no change in the phenotype across populations, a
phenomenon known as countergradient variation (Conover and Schultz, 1995).

It is also the case that GWAS loci as yet only explain a fraction of the total genetic variation for any
given trait in any given environment. Because statistical power to detect the effect of a given locus is
inversely related to its effect size, they are also likely those with the largest effect on the additive variance
of a phenotype, and thus may also exhibit a great deal of pleiotropy. In this scenario, selection on a
correlated trait could be responsible for the signals we observe, while loci not included in the GWAS set
may evolve in a compensatory manner to maintain the same phenotypic optimum.

Missing variants The missing variant problem may also arise simply due to the interaction between
demographic history and adaptation. A particularly dramatic example of this is offered by our analysis
of skin pigmentation associated loci, where the alleles found by a GWAS in the Cape Verde population
completely fail to predict the skin pigmentation of East Asians and Native Americans. This reflects
the fact that the alleles responsible for light skin pigmentation in those populations are not variable in
Cape Verde due to the independent and convergent adaptive evolution of light skin pigmentation in the
ancestral East Asian population (Norton et al., 2006). It is unclear how prevalent convergent evolution
by geographically separated populations is, but there a number of examples (Ffrench-Constant et al.,
2000; Arendt and Reznick, 2008; Pearce et al., 2009; Novembre and Di Rienzo, 2009), and theory
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suggests that it might be surprisingly easy for traits with a more moderate number of loci contributing
to variation (Ralph and Coop, 2010).

While such cases should not create a false signal of selection if only drift is involved, they do compli-
cate the interpretation of positive signals. As an illustration, when we take a subset of all the Eurasian
HGDP populations we see a significant correlation between genetic skin pigmentation score and lon-
gitude (r2 = 0.15, p = 0.015), despite the fact that no such phenotypic correlation exists. While the
wrong interpretation is easy to avoid here because we have a good understanding of the true phenotypic
distribution, for the majority of GWAS studies such complications will be subtler and so care will have
to be taken in their interpretation.

Loss of constraint and mutational pressure One further complication in the interpretation of
our results is in how loss of constraint may play a role in driving apparent signals of local adaptation.
Traits evolving under uniform stabilizing selection across all populations should be less variable than
predicted by our covariance model of drift, due to negative covariances among loci, and so should be
underrepresented in the extreme tails of our environmental correlation statistics and the upper tail of
QX . As such, loss of constraint (i.e. weaker stabilizing selection in some populations than others), should
not on its own create a signal of local adaptation. While the loci underpinning the phenotype can be
subject to more drift in those populations, there is no systemic bias in the direction of this drift, and
thus it should be well accommodated by our model. Loss of constraint, therefore, will not tend to create
significant environmental correlations or systematic covariance between alleles of like effect.

An issue may arise, however, when loss of constraint is paired with biased mutational input (i.e.
new mutations are more likely to push the phenotype in one direction than another; Zhang and HILL,
2008) or if it is asymmetric (i.e. stabilizing selection is relaxed on one tail of the phenotypic distribution,
but not the other). Under these two scenarios, mutations that push the phenotype in one particular
direction would tend to drift up in frequency in populations with loss of constraint, creating systematic
trends and positive covariance among like effect alleles at different loci, and resulting in a positive signal
under our framework. While one would be mistaken to assume that the signal was necessarily that of
recent positive directional selection, these scenarios do still imply that selection pressures on the genetic
basis of the phenotype vary across space. Positive tests under our methods are thus fairly robust in
being signals of differential selection among populations, but are themselves agnostic about the specific
processes involved. Further work is needed to establish whether these scenarios can be distinguished
from recent directional selection based on only allele frequencies and effect sizes, and as always, claims of
recent adaptation should be supported by multiple lines of evidence beyond those provided by population
genomics alone.

Limited evidence of adaptation on the genetic basis of variation in type 2 diabetes sus-
pectibility Given the strong interest and history of investigation into whether selection has shaped
phenotypic variation and disease risk, even the cases where we find limited evidence of local adaptation
are potentially interesting. For example, a number of investigators have claimed that individual GWAS
loci for Type 2 Diabetes show signals of selection (Helgason et al., 2007; Hancock et al., 2008, 2010;
Klimentidis et al., 2010), a fact that is seen as support for the idea that genetic variation for type 2
diabetes risk has been shaped by local adaptation, potentially consistent with the thrifty genotype hy-
pothesis (Neel, 1962, and variants on this hypothesis). However, we find no evidence of environmental
correlations and only a very subtle signal of significant differentiation for type 2 diabetes genetic risk in
the Europe/Middle East comparison.

This suggests that local adaptation has not had a large role in shaping the present day world-wide
distribution of type 2 diabetes susceptibility alleles (as mapped to date in Europe). One explanation
of this discrepancy is that it seems biologically unrealistic that the phenotype of type 2 diabetes sus-
ceptibility would exhibit strong adaptive differentiation. Rather, local adaptation may be shaping some
pleiotropically related phenotype (which shares only some of the loci involved). However, as seen in
Figure 1, our methods have better power than single locus statistics, even when the genetic correlation
between the GWAS phenotype and the phenotype under selection is weak. As such our results are more
consistent with the idea that local adaptation has had little influence on the genetic basis of type 2
diabetes or a closely correlated phenotype, based on our current (admittedly poor) understanding of the
genetic basis of this phenotype. This is not to say that some of the patterns seen at individual type 2
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diabetes loci are not due to selection, but rather that is seem unlikely that they have been selected for
due to their role in variation in a phenotype closely related to type 2 diabetes.

Future directions In this article we have focused on methods development and so have only just
scratched the surface of the wide-range of populations and phenotypes that these types of methods could
be applied to. Of particular interest is the possibility of applying these methods to GWAS performed
in other species where the ecological determinants of local adaptation are better understood (Atwell
et al., 2010; Fournier-Level et al., 2011).

One substantial difficulty with our approach, particularly in its application to other organisms, is
that genome-wide association studies of highly polygenic phenotypes require very large sample sizes to
map even a fraction of the total genetic variance. One promising way to partially sidestep this issue
is by applying methods recently developed in animal breeding. In these genomic prediction/selection
approaches, one does not attempt to map individual markers, but instead concentrates on predicting an
individual’s genetic value for a given phenotype using all markers simultaneously (Meuwissen et al.,
2001; Hayes et al., 2009; Meuwissen et al., 2013). This is accomplished by fitting simple linear models
to genome-wide genotyping data, in principle allowing common SNPs to tag the majority of causal sites
throughout the genome without attempting to explicitly identify them (see Zhou et al., 2013, for an
overview of approaches). These methods have been applied to a range of species, including humans
(Yang et al., 2010; Davies et al., 2011; Yang et al., 2011; Lee et al., 2012; de los Campos et al.,
2010, 2012, 2013), demonstrating that these predictions can potentially explain a relatively high fraction
of the additive genetic variance within a population (and hence much of the total genetic variance).
As these predictions are linear functions of genotypes, and hence allele frequencies, we might be able
to predict the genetic values of sets of closely related populations for phenotypes of interest and apply
very similar methods to those developed here. Such an approach may allow us to assess signals of local
adaptation acting on the genetic basis of a large fraction of the total genetic variance for traits across a
range of species. However, we note that if the only goal is to establish evidence for local adaptation in a
given phenotype, then common garden experiments and traditional QST -based analyses (or intermediate
approaches which use genome wide data to estimate relationships among populations but still focus on
phenotypic measurements as opposed to explicitly genetic estimates, e.g. Ovaskainen et al., 2011) may
offer a simpler approach in species where such comparisons are possible.

As discussed in various places above, it is unlikely that all of the loci underpinning the genetic basis
of a trait will have been subject to the same selection pressures, due to their differing roles in the trait
and their pleiotropic effects. One potential avenue of future investigation is whether, given a large set of
loci involved in a trait we can identify sets of loci in particular pathways or with a particular range of
effect sizes that drive the signal of selection on the additive genetic basis of a trait.

Another promising extension of our approach is to deal explicitly with multiple correlated phenotypes.
With the increasing number of GWAS efforts both empirical and methodological work are beginning to
focus on understanding the shared genetic basis of various phenotypes. This raises the possibility that we
may be able to disentangle the genetic basis of which phenotypes are more direct targets of selection, and
which are responding to correlated selection on these direct targets (see Kremer et al., 1997; Blows,
2007; Chenoweth and Blows, 2008, for progress along these lines using QST ). Such tools may also offer
a way of incorporating GxE interactions, as multiple GWAS for the same trait in different environments
could be treated as correlated traits.

As association data for a greater variety of populations, species, and traits becomes available, we view
the methods described out here, along with future extensions, as a productive way forward in developing
a quantitative framework to explore the genetic and phenotypic basis of local adaptation.
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5 Methods

Mean Centering and Covariance Matrix Estimation
Written in matrix notation, the procedure of mean centering the estimated genetic values and dropping
one population from the analysis can be expressed as

~Z ′ = T~Z (16)

where T is an M − 1 by M matrix with M−1
M on the main diagonal, and − 1

M elsewhere.
In order to calculate the corresponding expected neutral covariance structure about this mean, we

use the following procedure. Let G be an M by K matrix, where each column is a vector of allele
frequencies across theM populations at a particular SNP, randomly sampled from the genome according
to the matching procedure described below. Let εk be the mean allele frequency in column k of G, and
let S be a diagonal matrix such that skk = 1

εk(1−εk) and sk 6=i = 0. With this data, we can estimate F as

F = TGSGTTT. (17)

This transformation performs the operation of centering the matrix at the mean value, and rooting the
analysis with one population by dropping it from the covariance matrix (the same one we dropped from
the vector of estimated genetic values), resulting in a covariance matrix describing the relationship of
the remaining M − 1 populations. This procedure thus escapes the singularity introduced by centering
the matrix at the observed mean of the sample.

Note that as we do not get to observe the population allele frequencies, the entries of G are the
sample frequencies at the randomly chosen loci, and thus the covariance matrix F also includes the effect
of finite sample size. Because the noise introduced by the sampling of individuals is uncorrelated across
populations (in contrast to that introduced by drift and shared history), the primary effect is to inflate
the diagonal entries of the matrix (see the supplementary material of ?, for discussion).

Standardized environmental variable Given a vector of environmental variable measurements for
each population, we apply both the T and Cholesky tranformation as for the estimated genetic values

~Y ′ = C−1T~Y . (18)

This provides us with a set of M − 1 adjusted observations for the environmental variable which can be
compared to the transformed genetic values for inference. This step is necessary as we have rotated the
frame of reference of the estimated genetic values, and so we must do the same for the environmental
variables to keep them both in a consistent reference frame.

Identifying Outliers with Conditional MVN Distributions
As described in the Results, we can use our multivariate normal model of relatedness to obtain the
expected distribution of genetic values for an arbitrary set of populations, conditional on the observed
values in some other arbitrary set.

We first partition our populations into two groups, those for which we want to obtain the expected
distribution of genetic values (group 1), and those on which we condition in order to obtain this distribu-
tion (group 2). We then re–estimate the covariance matrix such that it is centered on the mean of group
2. This is a necessary step, as the amount of divergence between the populations in group 1 and the mean
of group 2 will always be greater than the amount of divergence from the global mean, even under the
neutral model, and our covariance matrix needs to reflect this fact in order to make accurate predictions.
We can obtain this re-parameterized F matrix as follows. If M is the total number of populations in the
sample, then let q be the number of populations in group one, and letM−q be the number of populations
in group 2. We then define a new TR matrix such that the q columns corresponding the populations
in group one have 1 on the diagonal, and 0 elsewhere, while the M − q columns corresponding to group
two have M−q−1

M−q on the diagonal, and − 1
M−q elsewhere. We can then re–estimate a covariance matrix

that is centered at the mean of the M − q populations in group 2. Recalling our matrices G and S from
(17), this matrix is calculated as

FR = TRGSGTTT
R (19)
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where we write FR to indicate that it is a covariance matrix that has been re-centered on the mean of
group two.

Once we have calculated this re–centered covariance matrix, we can use well known results from
multivariate normal theory to obtain the expected joint distribution of the genetic values for group one,
conditional on the values observed in group two.

We partition our vector of genetic values and the re–centered covariance matrix such that

~X =

[
~X1

~X2

]
(20)

and

FR =

[
F11 F12

F21 F22

]
(21)

where ~X1 and ~X2 are vectors of genetic values in group 1 and 2 respectively, and F11, F22 and F12 = FT21
are the marginal covariance matrices of populations within group 1, within group 2, and across the two
groups, respectively. Letting µ1 = µ2 = 1

M−q
∑M
m=M−qXm (i.e. the sum of the elements of ~X2), we wish

to obtain the distribution

~X1| ~X2, µ1, µ2 ∼MVN(~ξ,Ω), (22)

where ~ξ and Ω give the expected means and covariance structure of the populations in group 1, conditional
on the values observed in group 2. These can be calculated as

~ξ = E[ ~X1| ~X2, µ1, µ2] = µ1
~1 + F12F

−1
22

(
~X2 − µ2

~1
)

(23)

and

Ω = Cov[X1|X2, µ1, µ2] = F11 − F12F
−1
22 F21. (24)

where the one vectors in line (23) are of length q and M − q respectively.
This distribution is itself multivariate normal, and as such this framework is extremely flexible, as

it allows us to obtain the expected joint distribution for arbitrary sets of populations (e.g. geographic
regions or continents), or for each individual population. Further,

E

[
1

q

q∑
m=1

Xm

∣∣∣∣ ~ξ,Ω
]
=

1

q

q∑
m=1

ξm (25)

and

Var

[
1

q

q∑
m=1

Xm

∣∣∣∣ ~ξ,Ω
]
=
VA
q2

q∑
m=1

q∑
n=1

ωmn. (26)

where ωnm denotes the elements of Ω. In words, the conditional expectation of the mean estimated
genetic value across group 1 is equal to the mean of the conditional expectations, and its variance is
equal to the mean value of the elements of the conditional covariance matrix. As such we can easily
calculate a Z score (and corresponding p value) for group one as a whole as

Z =

1
q

∑q
m=1Xm − 1

q

∑q
m=1 ξm

1
q

√
VA
∑q
m=1

∑q
n=1 ωm,n

. (27)

This Z score is a normal random variable with mean zero, variance one under the null hypothesis, and
thus measures the divergence of the genetic values between the two populations relative to the null
expectation under drift. Note that the observation of a significant Z score in a given population or
region cannot necessarily be taken as evidence that selection has acted in that population or region, as
selection in the some of the populations on which we condition (especially the closely related ones) could
be responsible for such a signal. As such, caution is warranted when interpreting the output of these
sort of analyses, and is best done in the context of demographic history information (e.g. from TreeMix,
?, which uses the same basic model to draw inference about population history as we use to control for
it and to generate conditional distributions).
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The Linear Model at the Individual Locus Level
It is natural to ask about the relationship between our environmental correlation tests performed at the
genetic value level, and tests that could be performed on individual SNPS and then aggregated.

As noted in (8), we can obtain for each underlying locus a set of transformed allele frequencies, which
have passed through the same transformation as the estimated genetic values. We assume that each
locus ` has a regression coefficient

β` = α`γ (28)

where γ is shared across all loci
p′m` ∼ α`γY ′m + em` (29)

where the em` are independent and identically distributed residuals. We can find the maximum likelihood
estimate γ̂ by treating α`Y ′m as the linear predictor, and taking the regression of the combined vector ~p′,
across all populations and loci, on the combined vector

−−→
αY ′. As such

γ̂ =
Cov(p′, αY ′)

V ar(αY ′)
(30)

we can decompose this into a sum across loci

γ̂ =
1
L

∑
` Cov(p

′
`, α`Y

′)
1
L

∑
` V ar(α`Y )

=
1∑
` α

2
`

∑
` α`Cov(p

′
`, Y

′)

V ar(Y ′)
. (31)

As noted in (8), our transformed genetic values can be written as

Xm = 2
∑
`

α`p
′
m` (32)

and so the estimated slope (β̂) of our regression (X = βY ′) is

β̂ =
Cov(X,Y ′)

V ar(Y )
=

2
L

∑
` α`Cov(p

′
`, Y

′)

V ar(Y ′)
(33)

Comparing these equations, the mean regression coefficient at the individual loci (31) and the regression
coefficient of the estimated genetic values (33) are proportional to each other via a constant that is given
by the sum over effect sizes (i.e. γ = 2∑

` α
2
`
β), and thus the two approaches are equivalent.

HGDP data and imputation
We used imputed allele frequency data in the HGDP, where the imputation was performed as part of
the phasing procedure of Pickrell et al. (2009), as per the recommendations of Conrad et al. (2006).
We briefly recap their procedure here.

Phasing and imputation were done using fastPHASE (Scheet and Stephens, 2006), with the set-
tings that allow variation in the switch rate between subpopulations. The populations were grouped into
subpopulations corresponding to the clusters identified in Rosenberg et al. (2002). Haplotypes from
the HapMap YRI and CEU populations were included as known, as they were phased in trios and are
highly accurate. HapMap JPT and CHB genotypes were also included to help with the phasing.

Choosing null SNPs
Various components of our procedure involve sampling random sets of SNPs from across the genome.
While we control for biases in our test statistics introduced by population structure through our F matrix,
we are also concerned that subtle ascertainment effects of the GWAS process could lead to biased test
statistics, even under neutral conditions. We control for this possibility by sampling null SNPs so as
to match the joint distribution of certain properties of the ascertained GWAS SNPs. Specifically, we
were concerned that the minor allele frequency (MAF) in the ascertainment population, the imputation
status of the allele in the HGDP datasets, and the background selection environment experienced at a
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given locus, as measured by B value (McVicker et al., 2009) might influence the distribution of allele
frequencies across populations in ways that we could not predict.

We partitioned SNPs into a three way contingency table, with 25 bins for MAF (i.e. a bin size of
0.02), 2 bins for imputation (either imputed or not), and 10 bins for B value (B values range from 0 to
1, and thus our bin size was 0.1). As such, for each set of null genetic values, we sampled one null SNP
from the same cell in the contingency table as each of the GWAS SNPs, and assigned this null SNP the
effect size associated with the GWAS SNP it was sampled to match. While we do not assign effect sizes
to sampled SNPs used to estimate the covariance matrix F (instead simply scaling F by a weighted sum
of squared effect sizes, which is mathematically equivalent under our assumption that all SNPs have the
same covariance matrix), we follow the same sampling procedure to ensure that F describes the expected
covariance structure of the GWAS SNPs.

For the skin pigmentation GWAS (Beleza et al., 2013) we do not have a good proxy present in the
HGDP population, as the Cape Verdeans are an admixed population. Cape Verdeans are admixed with
∼ 59.53% African ancestry, and 41.47% European ancestry in the sample obtained by Beleza et al.
(2013) (Beleza, pers. comm., April 8, 2013). As such, we estimated genome wide allele frequencies in
Cape Verde by taking a weighted mean of the frequencies in the French and Yoruban populations of the
HGDP, such that pCV = 0.5953pY +0.4147pF . We then used these estimated frequencies to assign SNPs
to frequency bins.

Beleza et al. (2013) also used an admixture mapping strategy to map the genetic basis of skin
pigmentation. However, if they had only mapped these loci in an admixture mapping setting we would
have to condition our null model on having strong enough allele frequency differentiation between Africans
and Europeans at the functional loci for admixture mapping to have power (Reich and Patterson,
2005). The fact that Beleza et al. (2013) mapped these loci in a GWAS framework allows us to simply
reproduce the strategy, and we ignore the results of the admixture mapping study (although we note that
the loci and effect sizes estimated were similar). This highlights the need for a reasonably well defined
ascertainment population for our approach, a point which we comment further on in the discussion.
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6 Supplementary materials
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Figure S1: Power of tests described in the main text to detect a signal of selection on the mapped genetic
basis of height (Lango Allen et al., 2010) as an increasing function of the strength of selection (A),
and a decreasing function of the genetic correlation between height and the selected trait with the effect
of selection held constant at β = 0.14 (B).
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Figure S2: Power of tests described in the main text to detect a signal of selection on the mapped genetic
basis of skin pigmentation (Beleza et al., 2013) as an increasing function of the strength of selection
(A), and a decreasing function of the genetic correlation between skin pigmentation and the selected
trait with the effect of selection held constant at β = 0.12 (B).
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Figure S3: Power of tests described in the main text to detect a signal of selection on the mapped genetic
basis of BMI (Speliotes et al., 2010) as an increasing function of the strength of selection (A), and
a decreasing function of the genetic correlation between BMI and the selected trait with the effect of
selection held constant at β = 0.28 (B).
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Figure S4: Power of tests described in the main text to detect a signal of selection on the mapped
genetic basis of CD (Jostins et al., 2012) as an increasing function of the strength of selection (A),
and a decreasing function of the genetic correlation between CD and the selected trait with the effect of
selection held constant at β = 0.045 (B).
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Figure S5: Power of tests described in the main text to detect a signal of selection on the mapped
genetic basis of UC (Jostins et al., 2012) as an increasing function of the strength of selection (A),
and a decreasing function of the genetic correlation between UC and the selected trait with the effect of
selection held constant at β = 0.045 (B).
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Figure S6: The two components of QX for the skin pigmentation dataset, as described by the left and
right terms in (14). The null distribution of each component is shows as a histogram. The expected
value is shown as a black bar, and the observed value as a red arrow.
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Figure S7: The two components of QX for the BMI dataset, as described by the left and right terms in
(14). The null distribution of each component is shows as a histogram. The expected value is shown as
a black bar, and the observed value as a red arrow.
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Figure S8: The two components of QX for the T2D dataset, as described by the left and right terms in
(14). The null distribution of each component is shows as a histogram. The expected value is shown as
a black bar, and the observed value as a red arrow.
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Figure S9: The two components of QX for the CD dataset, as described by the left and right terms in
(14). The null distribution of each component is shows as a histogram. The expected value is shown as
a black bar, and the observed value as a red arrow.
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Figure S10: The two components of QX for the UC dataset, as described by the left and right terms in
(14). The null distribution of each component is shows as a histogram. The expected value is shown as
a black bar, and the observed value as a red arrow.
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Figure S11: The genetic values for height in each HGDP population plotted against the measured sex
averaged height taken from Gustafsson and Lindenfors (2004). Only the subset of populations
with an appropriately close match in the named population in Gustafsson and Lindenfors’s (2004)
Appendix I are shown, values used are given in Supplementary table ??
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Figure S12: The genetic skin pigmentation score for a each HGDP population plotted against the HGDP
populations values on the skin pigmentation index map of Biasutti 1959. Data obtained from Supple-
mentary table of Lao et al. (2007). Note that Biasutti map is interpolated, and so values are known to
be imperfect. Values used are given in Supplementary table S2
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Figure S13: The genetic skin pigmentation score for a each HGDP population plotted against the HGDP
populations values from the Jablonski and Chaplin (2000) mean skin reflectance (685nm) data (their
Table 6). Only the subset of populations with an appropriately close match were used as in the Supple-
mentary table of Lao et al. (2007). Values and populations used are given in Table S248
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Figure S14: The distribution of genetic height score across all 52 HGDP populations. Grey bars represent
the 95% confidence interval for the genetic height score of an individual randomly chosen from that
population under Hardy-Weinberg assumptions
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Figure S15: The distribution of genetic skin pigmentation score across all 52 HGDP populations. Grey
bars represent the 95% confidence interval for the genetic skin pigmentation score of an individual
randomly chosen from that population under Hardy-Weinberg assumptions

50

this version posted November 7, 2013. ; https://doi.org/10.1101/000026doi: bioRxiv preprint 

https://doi.org/10.1101/000026


−
4

.5
−

4
.0

−
3

.5
−

3
.0

−
2

.5
−

2
.0

−
1

.5

BodyMassIndex

C
o

n
s
tr

u
c
te

d
 B

M
I

A
d

y
g

e
i

B
a

s
q

u
e

F
re

n
c
h

It
a

lia
n

O
rc

a
d

ia
n

R
u

s
s
ia

n

S
a

rd
in

ia
n

T
u

s
c
a

n

B
e

d
o

u
in

D
ru

z
e

M
o

z
a

b
it
e

P
a

le
s
ti
n

ia
n

B
a

lo
c
h

i

B
ra

h
u

i

B
u

ru
s
h

o

H
a

z
a

ra

K
a

la
s
h

M
a

k
ra

n
i

P
a

th
a

n

S
in

d
h

i

U
y
g

u
r

C
a

m
b

o
d

ia
n

D
a

i

D
a

u
r

H
a

n

H
e

z
h

e
n

J
a

p
a

n
e

s
e

L
a

h
u

M
ia

o

M
o

n
g

o
la

N
a

x
i

O
ro

q
e

n

S
h

e

T
u

T
u

jia

X
ib

o

Y
a

k
u

t Y
i

C
o

lo
m

b
ia

n

K
a

ri
ti
a

n
a

M
a
y
a

P
im

a

S
u

ru
i

M
e

la
n

e
s
ia

n

P
a

p
u

a
n

B
a

n
tu

K
e

n
y
a

B
a

n
tu

S
o

u
th

A
fr

ic
a

B
ia

k
a

P
y
g

m
y

M
a

n
d

e
n

k
a

M
b
u

ti
P

y
g

m
y

S
a

n

Y
o

ru
b

a

Figure S16: The distribution of genetic BMI score across all 52 HGDP populations. Grey bars represent
the 95% confidence interval for the genetic BMI score of an individual randomly chosen from that
population under Hardy-Weinberg assumptions
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Figure S17: The distribution of genetic T2D risk score across all 52 HGDP populations. Grey bars
represent the 95% confidence interval for the genetic T2D risk score of an individual randomly chosen
from that population under Hardy-Weinberg assumptions
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Figure S18: The distribution of genetic CD risk score across all 52 HGDP populations. Grey bars
represent the 95% confidence interval for the genetic CD risk score of an individual randomly chosen
from that population under Hardy-Weinberg assumptions
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Figure S19: The distribution of genetic UC risk score across all 52 HGDP populations. Grey bars
represent the 95% confidence interval for the genetic UC risk score of an individual randomly chosen
from that population under Hardy-Weinberg assumptions
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Population Genetic Height Score Male Height (cm) Female Height (cm) Sex Averaged Height (cm)
BantuKenya -0.95 167.30 156.00 161.65

BantuSouthAfrica -0.87 166.10 156.00 161.05
Basque -0.58 170.00 157.30 163.65

BiakaPygmy -0.95 152.70 145.00 148.85
Druze -0.63 165.60 152.20 158.90
French -0.31 169.60 160.40 165.00

Han -0.79 167.10 156.00 161.55
Italian -0.57 174.00 162.00 168.00
Maya -0.61 156.80 142.80 149.80

MbutiPygmy -1.08 144.19 137.35 140.77
Melanesian -0.60 162.10 150.40 156.25

Mongola -0.72 164.83 151.33 158.08
Orcadian -0.38 173.90 160.90 167.40
Papuan -0.59 155.97 149.41 152.69

Pima -0.84 171.00 157.00 164.00
Russian -0.46 171.80 159.80 165.80

San -0.98 157.70 146.60 152.15
Yoruba -0.85 167.50 155.00 161.25

Table S1: Genetic height scores as compared to true heights for populations with a suitably close match
in the dataset of Gustafsson and Lindenfors (2004). See Figure S11 for a plot of genetic height score
against sex averaged height.
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Population Genetic Skin
Pigmentation Score

Genetic Skin Pigment
Score w/ KITLG+OCA2

Biasutti JablonskiChaplin

Adygei -0.09 0.12 12
Balochi 0.14 0.36 12

BantuKenya 1.21 1.74 0 32.40
Basque -0.20 0.02 15 65.70
Bedouin 0.07 0.37 10

BiakaPygmy 1.22 1.81 0
Brahui 0.06 0.29 12

Burusho 0.15 0.32 12
Cambodian 1.04 1.22 6 54.00
Colombian 1.02 1.24 9 43.05

Dai 1.04 1.27 12
Daur 1.05 1.30 15
Druze -0.10 0.14 10 53.00
French -0.13 0.12 22 63.14

Han 1.05 1.19 15
Hazara 0.45 0.69 12
Hezhen 0.99 1.20 15
Italian -0.24 0.05 15

Japanese 1.02 1.09 15 55.42
Kalash 0.12 0.33 12

Karitiana 1.05 1.16 9 47.70
Lahu 1.01 1.16 12 59.17

Makrani 0.22 0.45 12
Mandenka 1.19 1.78 2 34.10

Maya 0.99 1.21 9
MbutiPygmy 1.20 1.77 0
Melanesian 0.96 1.31 0

Miao 1.04 1.22 15
Mongola 1.06 1.20 15
Mozabite 0.11 0.42 6 58.05

Naxi 0.88 1.01 12
Orcadian -0.17 0.09 22 66.10
Oroqen 1.07 1.23 15

Palestinian -0.05 0.21 10 53.00
Papuan 0.91 1.06 5 41.00
Pathan 0.15 0.38 12 52.30
Pima 0.99 1.18 6

Russian -0.18 0.09 15 53.45
San 0.81 1.42 0 43.75

Sardinian -0.15 0.09 15
She 1.13 1.36 15

Sindhi 0.27 0.51 9
Surui 1.08 1.22 9

Tu 0.98 1.15 15
Tujia 1.12 1.28 15

Tuscan -0.29 0.07 15
Uygur 0.57 0.84 15
Xibo 1.01 1.17 15

Yakut 0.94 1.20 15
Yi 0.99 1.19 15

Yoruba 1.16 1.76 0 27.40

Table S2: Genetic skin pigmentation score as compared to values from Biasutti (Parra et al., 2004; Lao
et al., 2007) and Jablonski and Chaplin (2000). We also calculate a genetic skin pigmentation score
including previously reported associations at KITLG and OCA2 for comparisson. See also Figures S12
and S13.
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Observed Expected Variance Z p
Europe -0.52 -0.56 0.0030 0.58 0.563573

Middle East -0.61 -0.64 0.0025 0.50 0.620092
Central Asia -0.57 -0.54 0.0025 -0.65 0.514631

East Asia -0.69 -0.69 0.0068 0.01 0.990422
Americas -0.71 -0.61 0.0234 -0.62 0.532068
Oceania -0.59 -0.65 0.0312 0.31 0.757571
Africa -0.95 -0.64 0.0238 -2.00 0.045035

Table S3: Conditional analysis at the regional level for the height dataset
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Observed Expected Variance Z p
Adygei -0.46 -0.52 0.0058 0.81 0.420047
Balochi -0.61 -0.59 0.0039 -0.34 0.732533

BantuKenya -0.95 -0.88 0.0074 -0.89 0.370989
BantuSouthAfrica -0.87 -0.93 0.0087 0.57 0.565944

Basque -0.58 -0.49 0.0058 -1.14 0.253001
Bedouin -0.67 -0.60 0.0040 -1.16 0.245140

BiakaPygmy -0.95 -0.92 0.0089 -0.24 0.813609
Brahui -0.66 -0.59 0.0041 -1.02 0.306021

Burusho -0.65 -0.54 0.0049 -1.56 0.119344
Cambodian -0.65 -0.72 0.0075 0.81 0.419708
Colombian -0.73 -0.68 0.0149 -0.37 0.712734

Dai -0.70 -0.72 0.0074 0.27 0.788165
Daur -0.77 -0.71 0.0068 -0.73 0.466617
Druze -0.63 -0.57 0.0039 -1.03 0.303758
French -0.31 -0.55 0.0032 4.19 0.000028

Han -0.79 -0.70 0.0018 -2.16 0.030910
Hazara -0.61 -0.62 0.0040 0.09 0.932089
Hezhen -0.63 -0.70 0.0070 0.79 0.431967
Italian -0.57 -0.53 0.0067 -0.45 0.653982

Japanese -0.78 -0.72 0.0036 -0.99 0.320879
Kalash -0.31 -0.52 0.0110 1.92 0.054613

Karitiana -0.78 -0.65 0.0205 -0.87 0.383564
Lahu -0.85 -0.70 0.0113 -1.46 0.144720

Makrani -0.65 -0.60 0.0038 -0.75 0.454499
Mandenka -0.99 -0.88 0.0058 -1.45 0.146046

Maya -0.61 -0.70 0.0070 1.05 0.295347
MbutiPygmy -1.08 -0.95 0.0152 -1.12 0.262901
Melanesian -0.60 -0.63 0.0199 0.24 0.810697

Miao -0.65 -0.72 0.0065 0.84 0.398726
Mongola -0.72 -0.69 0.0057 -0.43 0.664301
Mozabite -0.66 -0.65 0.0071 -0.06 0.952256

Naxi -0.52 -0.68 0.0088 1.67 0.095674
Orcadian -0.38 -0.48 0.0069 1.20 0.228890
Oroqen -0.66 -0.73 0.0075 0.85 0.397609

Palestinian -0.50 -0.65 0.0031 2.82 0.004789
Papuan -0.59 -0.59 0.0235 0.02 0.984319
Pathan -0.45 -0.57 0.0042 1.86 0.063140
Pima -0.84 -0.67 0.0152 -1.42 0.156243

Russian -0.46 -0.47 0.0048 0.13 0.893316
San -0.98 -0.95 0.0278 -0.16 0.873515

Sardinian -0.79 -0.51 0.0053 -3.88 0.000105
She -0.63 -0.72 0.0073 1.03 0.303926

Sindhi -0.62 -0.57 0.0039 -0.69 0.487958
Surui -0.58 -0.70 0.0253 0.78 0.433809

Tu -0.65 -0.69 0.0062 0.48 0.630360
Tujia -0.69 -0.72 0.0062 0.37 0.712043

Tuscan -0.63 -0.52 0.0113 -1.00 0.318431
Uygur -0.57 -0.59 0.0074 0.19 0.847180
Xibo -0.73 -0.70 0.0068 -0.30 0.760787

Yakut -0.70 -0.66 0.0059 -0.49 0.626665
Yi -0.57 -0.71 0.0068 1.72 0.084613

Yoruba -0.85 -0.96 0.0048 1.59 0.111605

Table S4: Conditional analysis at the individual population level for the height dataset
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Observed Expected Variance Z p
Europe -0.18 -0.03 0.0030 -2.75 0.005935

Middle East 0.01 0.01 0.0030 -0.14 0.889313
Central Asia 0.23 0.25 0.0027 -0.24 0.813941

East Asia 1.02 0.82 0.0086 2.15 0.031684
Americas 1.03 0.68 0.0333 1.91 0.056218
Oceania 0.93 0.80 0.0392 0.68 0.493996
Africa 1.13 0.63 0.0506 2.21 0.027041

Table S5: Conditional analysis at the regional level for the skin pigmentation dataset
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Observed Exptected Variance Z p
Adygei -0.09 -0.04 0.0062 -0.64 0.525090
Balochi 0.14 0.13 0.0046 0.20 0.838807

BantuKenya 1.21 1.08 0.0128 1.16 0.247685
BantuSouthAfrica 1.13 1.17 0.0144 -0.32 0.746846

Basque -0.20 -0.17 0.0063 -0.38 0.704915
Bedouin 0.07 -0.05 0.0049 1.74 0.081934

BiakaPygmy 1.22 1.11 0.0143 0.93 0.350280
Brahui 0.06 0.13 0.0050 -0.98 0.326220

Burusho 0.15 0.26 0.0057 -1.53 0.125199
Cambodian 1.04 0.92 0.0096 1.16 0.244370
Colombian 1.02 1.10 0.0188 -0.59 0.553594

Dai 1.04 1.04 0.0100 0.04 0.965427
Daur 1.05 0.99 0.0091 0.61 0.543435
Druze -0.10 -0.09 0.0045 -0.20 0.844204
French -0.13 -0.20 0.0039 1.22 0.222146

Han 1.05 1.06 0.0026 -0.33 0.744919
Hazara 0.45 0.49 0.0052 -0.64 0.519429
Hezhen 0.99 1.05 0.0100 -0.64 0.519743
Italian -0.24 -0.12 0.0082 -1.26 0.207688

Japanese 1.02 1.06 0.0048 -0.54 0.586193
Kalash 0.12 0.09 0.0134 0.21 0.833512

Karitiana 1.05 1.07 0.0254 -0.10 0.919046
Lahu 1.02 1.03 0.0143 -0.09 0.924466

Makrani 0.22 0.14 0.0049 1.17 0.240751
Mandenka 1.19 1.12 0.0102 0.64 0.525346

Maya 0.99 0.85 0.0088 1.43 0.151325
MbutiPygmy 1.20 1.12 0.0252 0.50 0.616103
Melanesian 0.96 0.87 0.0284 0.51 0.611448

Miao 1.04 1.06 0.0087 -0.25 0.803925
Mongola 1.06 0.96 0.0079 1.17 0.240282
Mozabite 0.11 0.19 0.0096 -0.81 0.416292

Naxi 0.88 1.02 0.0112 -1.32 0.185939
Orcadian -0.17 -0.12 0.0078 -0.60 0.548105
Oroqen 1.07 1.02 0.0098 0.49 0.626438

Palestinian -0.05 0.02 0.0036 -1.16 0.247433
Papuan 0.91 0.89 0.0326 0.10 0.919411
Pathan 0.15 0.16 0.0048 -0.11 0.911081
Pima 0.99 0.97 0.0200 0.10 0.923266

Russian -0.18 -0.05 0.0053 -1.89 0.058819
San 0.81 1.07 0.0405 -1.31 0.191477

Sardinian -0.15 -0.20 0.0062 0.55 0.583092
She 1.13 1.04 0.0095 0.94 0.345316

Sindhi 0.27 0.22 0.0052 0.67 0.501326
Surui 1.08 0.99 0.0365 0.45 0.652715

Tu 0.98 0.99 0.0086 -0.12 0.905437
Tujia 1.12 1.07 0.0083 0.54 0.585802

Tuscan -0.29 -0.13 0.0128 -1.36 0.174556
Uygur 0.57 0.50 0.0085 0.73 0.465493
Xibo 1.01 0.96 0.0086 0.56 0.577734

Yakut 0.94 0.86 0.0078 0.88 0.377402
Yi 0.99 1.02 0.0087 -0.32 0.745359

Yoruba 1.16 1.23 0.0086 -0.66 0.508211

Table S6: Conditional analysis at the individual population level for the skin pigmentation dataset
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Observed Expected Variance Z p
Europe -2.10 -2.10 0.0092 -0.02 0.986166

Middle East -2.14 -2.17 0.0080 0.41 0.683249
Central Asia -2.19 -2.24 0.0077 0.63 0.528510

East Asia -2.62 -2.24 0.0224 -2.53 0.011480
Americas -2.29 -2.35 0.0788 0.21 0.832973
Oceania -2.36 -2.51 0.1036 0.48 0.632885
Africa -2.47 -2.37 0.0826 -0.33 0.742233

Table S7: Condtional analysis at the regional level for the BMI dataset
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Observed Expected Variance Z p
Adygei -2.25 -2.09 0.0193 -1.13 0.259383
Balochi -2.28 -2.26 0.0124 -0.12 0.906459

BantuKenya -2.34 -2.45 0.0252 0.71 0.475069
BantuSouthAfrica -2.49 -2.43 0.0297 -0.35 0.724172

Basque -2.29 -2.07 0.0182 -1.59 0.110893
Bedouin -2.19 -2.11 0.0128 -0.68 0.493665

BiakaPygmy -2.47 -2.47 0.0290 -0.05 0.959030
Brahui -2.29 -2.22 0.0143 -0.55 0.582714

Burusho -2.34 -2.18 0.0147 -1.33 0.183764
Cambodian -2.77 -2.73 0.0247 -0.27 0.788781
Colombian -1.77 -2.44 0.0498 2.98 0.002842

Dai -2.82 -2.73 0.0248 -0.60 0.545319
Daur -2.49 -2.51 0.0237 0.11 0.913165
Druze -2.09 -2.15 0.0128 0.58 0.561551
French -2.07 -2.09 0.0104 0.20 0.844786

Han -2.65 -2.65 0.0061 0.06 0.951026
Hazara -2.20 -2.32 0.0124 1.04 0.300183
Hezhen -2.68 -2.47 0.0241 -1.39 0.165463
Italian -2.24 -2.09 0.0220 -1.06 0.287855

Japanese -2.43 -2.59 0.0118 1.49 0.137107
Kalash -1.75 -2.19 0.0364 2.28 0.022595

Karitiana -2.43 -2.37 0.0680 -0.25 0.801202
Lahu -3.04 -2.68 0.0378 -1.86 0.063279

Makrani -2.37 -2.21 0.0122 -1.46 0.143943
Mandenka -2.36 -2.44 0.0193 0.61 0.540442

Maya -2.36 -2.20 0.0224 -1.12 0.264309
MbutiPygmy -2.50 -2.49 0.0536 -0.07 0.947811
Melanesian -2.25 -2.44 0.0676 0.74 0.459264

Miao -2.75 -2.69 0.0218 -0.40 0.689780
Mongola -2.69 -2.43 0.0192 -1.92 0.054866
Mozabite -2.23 -2.15 0.0247 -0.49 0.625131

Naxi -2.44 -2.70 0.0288 1.56 0.119884
Orcadian -2.12 -2.07 0.0215 -0.37 0.709254
Oroqen -2.31 -2.50 0.0241 1.18 0.237730

Palestinian -2.04 -2.16 0.0097 1.13 0.258466
Papuan -2.46 -2.37 0.0791 -0.33 0.743669
Pathan -2.14 -2.21 0.0135 0.64 0.523054
Pima -2.54 -2.30 0.0489 -1.10 0.271635

Russian -1.84 -2.13 0.0151 2.37 0.017852
San -2.65 -2.47 0.0894 -0.62 0.535534

Sardinian -2.10 -2.12 0.0166 0.11 0.910561
She -2.94 -2.70 0.0245 -1.54 0.123110

Sindhi -2.22 -2.25 0.0135 0.33 0.741178
Surui -2.33 -2.26 0.0834 -0.24 0.808288

Tu -2.64 -2.57 0.0206 -0.52 0.604447
Tujia -2.61 -2.63 0.0201 0.16 0.875686

Tuscan -1.93 -2.13 0.0355 1.10 0.273049
Uygur -2.11 -2.34 0.0228 1.54 0.124610
Xibo -2.20 -2.50 0.0212 2.07 0.038059

Yakut -2.27 -2.32 0.0192 0.40 0.690521
Yi -2.84 -2.59 0.0219 -1.73 0.082850

Yoruba -2.46 -2.38 0.0170 -0.61 0.541470

Table S8: Conditional analysis at the individual population level for the BMI dataset
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Observed Expected Variance Z p
Europe 0.72 1.00 0.0097 -2.79 0.005315

Middle East 1.02 0.81 0.0079 2.37 0.017671
Central Asia 0.92 0.88 0.0078 0.53 0.598600

East Asia 0.81 0.98 0.0216 -1.16 0.244114
Americas 0.85 0.79 0.0773 0.21 0.831384
Oceania 1.00 0.96 0.1013 0.11 0.912009
Africa 1.08 1.11 0.0813 -0.10 0.918661

Table S9: Conditional analysis at the regional level for the T2D dataset.
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Observed Expected Variance Z p
Adygei 0.84 0.88 0.0185 -0.30 0.763788
Balochi 0.81 0.93 0.0126 -1.02 0.306287

BantuKenya 1.21 1.05 0.0262 1.00 0.318499
BantuSouthAfrica 1.04 1.09 0.0300 -0.28 0.780539

Basque 0.76 0.72 0.0190 0.28 0.777993
Bedouin 0.94 0.99 0.0131 -0.39 0.694506

BiakaPygmy 0.94 1.09 0.0299 -0.82 0.409850
Brahui 0.89 0.92 0.0135 -0.27 0.784720

Burusho 0.91 0.93 0.0163 -0.16 0.875229
Cambodian 0.89 0.86 0.0254 0.22 0.829257
Colombian 1.03 0.88 0.0499 0.68 0.499559

Dai 0.89 0.82 0.0245 0.42 0.678026
Daur 0.72 0.79 0.0227 -0.49 0.627610
Druze 1.02 0.90 0.0130 1.06 0.291242
French 0.66 0.79 0.0110 -1.24 0.213762

Han 0.78 0.83 0.0063 -0.68 0.494587
Hazara 0.89 0.86 0.0134 0.25 0.799840
Hezhen 0.98 0.77 0.0256 1.37 0.172155
Italian 0.72 0.79 0.0223 -0.51 0.610084

Japanese 0.74 0.81 0.0124 -0.66 0.509728
Kalash 0.87 0.94 0.0380 -0.31 0.753570

Karitiana 0.66 0.87 0.0681 -0.81 0.419843
Lahu 0.81 0.83 0.0383 -0.11 0.909731

Makrani 0.76 0.94 0.0125 -1.66 0.097230
Mandenka 1.00 1.11 0.0203 -0.80 0.425733

Maya 0.98 0.90 0.0230 0.51 0.609012
MbutiPygmy 1.04 1.03 0.0518 0.04 0.971663
Melanesian 1.15 0.83 0.0695 1.24 0.215185

Miao 0.95 0.80 0.0225 0.99 0.322573
Mongola 0.74 0.79 0.0197 -0.42 0.676445
Mozabite 1.07 0.91 0.0239 1.08 0.279820

Naxi 0.94 0.80 0.0284 0.79 0.431243
Orcadian 0.80 0.73 0.0219 0.45 0.655908
Oroqen 0.82 0.79 0.0239 0.24 0.812587

Palestinian 1.05 0.89 0.0101 1.60 0.110698
Papuan 0.84 1.16 0.0802 -1.13 0.260430
Pathan 1.09 0.89 0.0138 1.74 0.081439
Pima 1.25 0.88 0.0543 1.57 0.116103

Russian 0.70 0.76 0.0158 -0.52 0.601197
San 1.21 0.98 0.0869 0.79 0.432263

Sardinian 0.69 0.82 0.0174 -0.99 0.322545
She 0.68 0.81 0.0246 -0.83 0.408294

Sindhi 1.10 0.92 0.0133 1.59 0.112277
Surui 0.36 0.95 0.0870 -2.01 0.044245

Tu 0.80 0.78 0.0216 0.15 0.877641
Tujia 0.88 0.81 0.0200 0.46 0.642326

Tuscan 0.63 0.85 0.0362 -1.11 0.265107
Uygur 0.99 0.84 0.0236 1.00 0.318441
Xibo 0.76 0.80 0.0223 -0.30 0.765435

Yakut 0.67 0.83 0.0208 -1.12 0.263127
Yi 0.75 0.83 0.0221 -0.56 0.573343

Yoruba 1.13 1.08 0.0168 0.33 0.740815

Table S10: Conditional analysis at the individual population level for the T2D dataset.
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Observed Expected Variance Z p
Europe 0.58 0.75 0.0188 -1.22 0.220764

Middle East 0.59 0.62 0.0166 -0.30 0.763396
Central Asia 0.82 0.55 0.0151 2.21 0.027100

East Asia 0.53 0.94 0.0459 -1.90 0.056975
Americas 0.71 0.67 0.1529 0.09 0.925298
Oceania 0.34 0.59 0.1959 -0.55 0.581088
Africa 0.20 0.52 0.1535 -0.83 0.409211

Table S11: Conditional analysis at the regional level for the CD dataset.
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Observed Expected Variance Z p
Adygei 0.52 0.69 0.0378 -0.89 0.370810
Balochi 0.83 0.79 0.0236 0.22 0.823291

BantuKenya -0.09 0.20 0.0485 -1.31 0.191212
BantuSouthAfrica 0.08 0.21 0.0566 -0.56 0.575256

Basque 0.73 0.57 0.0381 0.80 0.423331
Bedouin 0.63 0.62 0.0254 0.05 0.963091

BiakaPygmy 0.15 0.28 0.0574 -0.54 0.587432
Brahui 0.96 0.80 0.0273 0.97 0.332305

Burusho 0.63 0.74 0.0315 -0.61 0.538809
Cambodian 0.34 0.51 0.0500 -0.72 0.470030
Colombian 0.61 0.76 0.0986 -0.46 0.647213

Dai 0.49 0.46 0.0475 0.14 0.892361
Daur 0.53 0.63 0.0457 -0.47 0.637409
Druze 0.55 0.68 0.0254 -0.79 0.430724
French 0.37 0.67 0.0219 -2.04 0.041575

Han 0.53 0.52 0.0123 0.05 0.957247
Hazara 0.82 0.68 0.0266 0.84 0.401314
Hezhen 0.61 0.58 0.0494 0.16 0.870215
Italian 0.33 0.65 0.0436 -1.51 0.132112

Japanese 0.44 0.59 0.0239 -0.94 0.349319
Kalash 0.50 0.76 0.0726 -0.97 0.332454

Karitiana 0.59 0.77 0.1389 -0.50 0.615762
Lahu 0.71 0.42 0.0765 1.02 0.305499

Makrani 0.83 0.77 0.0247 0.34 0.734710
Mandenka 0.18 0.11 0.0374 0.39 0.696885

Maya 0.78 0.64 0.0442 0.67 0.505123
MbutiPygmy 0.37 0.19 0.1039 0.56 0.572635
Melanesian 0.55 0.39 0.1321 0.44 0.656722

Miao 0.30 0.50 0.0450 -0.95 0.341732
Mongola 0.94 0.59 0.0392 1.73 0.082971
Mozabite 0.47 0.55 0.0468 -0.36 0.719113

Naxi 0.36 0.48 0.0548 -0.48 0.627989
Orcadian 0.51 0.62 0.0459 -0.51 0.609310
Oroqen 0.53 0.62 0.0500 -0.43 0.664401

Palestinian 0.69 0.60 0.0197 0.60 0.546529
Papuan 0.13 0.50 0.1611 -0.91 0.364157
Pathan 0.68 0.82 0.0275 -0.79 0.426714
Pima 0.63 0.73 0.0996 -0.33 0.743225

Russian 0.73 0.56 0.0319 0.96 0.338325
San 0.51 0.19 0.1691 0.79 0.431902

Sardinian 0.79 0.52 0.0342 1.44 0.150713
She 0.68 0.49 0.0498 0.86 0.391621

Sindhi 0.96 0.72 0.0254 1.47 0.142144
Surui 0.95 0.72 0.1718 0.54 0.586772

Tu 0.30 0.53 0.0432 -1.12 0.263329
Tujia 0.28 0.54 0.0411 -1.27 0.204893

Tuscan 0.68 0.62 0.0724 0.23 0.817115
Uygur 1.21 0.66 0.0466 2.57 0.010253
Xibo 1.02 0.59 0.0458 2.01 0.044766

Yakut 0.59 0.68 0.0401 -0.43 0.664595
Yi 0.41 0.53 0.0413 -0.56 0.577533

Yoruba 0.17 0.10 0.0329 0.39 0.695121

Table S12: Conditional analysis at the individual population level for the CD dataset.

66

this version posted November 7, 2013. ; https://doi.org/10.1101/000026doi: bioRxiv preprint 

https://doi.org/10.1101/000026


Observed Expected Variance Z p
Europe 0.30 0.55 0.0144 -2.08 0.037863

Middle East 0.43 0.40 0.0127 0.23 0.817361
Central Asia 0.67 0.47 0.0123 1.74 0.081000

East Asia 0.51 0.91 0.0343 -2.12 0.033839
Americas 0.43 0.58 0.1149 -0.43 0.667025
Oceania 0.95 0.55 0.1560 1.03 0.305336
Africa 0.33 0.55 0.1229 -0.62 0.532409

Table S13: Conditional analysis at the regional level for the UC dataset.
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Observed Expected Variance Z p
Adygei 0.40 0.52 0.0287 -0.75 0.454405
Balochi 0.77 0.65 0.0192 0.80 0.425065

BantuKenya 0.17 0.26 0.0381 -0.44 0.658187
BantuSouthAfrica 0.10 0.31 0.0459 -1.00 0.315538

Basque 0.28 0.36 0.0281 -0.44 0.658278
Bedouin 0.51 0.43 0.0203 0.58 0.561443

BiakaPygmy 0.33 0.37 0.0435 -0.19 0.850748
Brahui 0.69 0.70 0.0212 -0.04 0.966201

Burusho 0.68 0.61 0.0246 0.46 0.644084
Cambodian 0.55 0.47 0.0400 0.37 0.711734
Colombian 0.35 0.50 0.0769 -0.56 0.573665

Dai 0.50 0.46 0.0380 0.24 0.813796
Daur 0.45 0.59 0.0377 -0.69 0.492558
Druze 0.43 0.47 0.0196 -0.31 0.756796
French 0.29 0.38 0.0166 -0.63 0.527907

Han 0.32 0.53 0.0096 -2.13 0.033117
Hazara 0.74 0.56 0.0210 1.26 0.207136
Hezhen 0.75 0.47 0.0372 1.44 0.150826
Italian 0.21 0.36 0.0347 -0.79 0.431323

Japanese 0.45 0.51 0.0192 -0.46 0.642099
Kalash 0.26 0.62 0.0563 -1.52 0.127606

Karitiana 0.39 0.41 0.1076 -0.06 0.953921
Lahu 0.63 0.44 0.0600 0.77 0.441513

Makrani 0.72 0.64 0.0194 0.57 0.566336
Mandenka 0.18 0.25 0.0296 -0.37 0.714488

Maya 0.52 0.43 0.0360 0.46 0.646610
MbutiPygmy 0.62 0.40 0.0816 0.78 0.437484
Melanesian 1.14 0.68 0.1018 1.44 0.150504

Miao 0.35 0.49 0.0351 -0.73 0.465745
Mongola 0.69 0.51 0.0305 1.01 0.314222
Mozabite 0.20 0.39 0.0368 -0.98 0.329376

Naxi 0.44 0.51 0.0445 -0.30 0.762696
Orcadian -0.00 0.39 0.0351 -2.12 0.034016
Oroqen 0.57 0.56 0.0373 0.06 0.950027

Palestinian 0.56 0.46 0.0148 0.84 0.399894
Papuan 0.76 0.96 0.1195 -0.55 0.579229
Pathan 0.37 0.68 0.0204 -2.15 0.031576
Pima 0.49 0.50 0.0803 -0.04 0.971033

Russian 0.61 0.31 0.0235 1.94 0.052946
San 0.70 0.40 0.1256 0.85 0.393139

Sardinian 0.42 0.29 0.0282 0.76 0.449837
She 0.52 0.46 0.0400 0.31 0.753611

Sindhi 0.86 0.59 0.0199 1.93 0.053454
Surui 0.42 0.53 0.1337 -0.29 0.770331

Tu 0.38 0.48 0.0328 -0.56 0.574730
Tujia 0.51 0.43 0.0324 0.46 0.649040

Tuscan 0.16 0.45 0.0582 -1.17 0.240321
Uygur 0.91 0.53 0.0358 2.00 0.045954
Xibo 0.68 0.49 0.0343 0.99 0.323788

Yakut 0.49 0.62 0.0319 -0.74 0.461639
Yi 0.46 0.47 0.0335 -0.05 0.957944

Yoruba 0.23 0.17 0.0250 0.37 0.708225

Table S14: Conditional analysis at the individual population level for the UC dataset
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Table S15: Corresponding β statistics for all analyses presented in 2.

Phenotype SUMPC1 SUMPC2 WINPC1 WINPC2 Latitude
Height -0.22 (0.11) 0.003 (0.93) -0.12 (0.37) 0.38 (0.008) 0.12 (0.34)

Skin Pigmentation 0.31(0.025) 0.07 (0.62) 0.27 (0.061) −0.11 (0.38) −0.36 (0.009)
Body Mass Index −0.22 (0.15) 0.04 (0.74) −0.17 (0.29) 0.24 (0.11) 0.21 (0.21)
Type 2 Diabetes 0.10 (0.36) 0.10 (0.42) 0.14 (0.25) −0.07 (0.56) −0.20 (0.093)
Crohn’s Disease 0.25 (0.066) −0.30 (0.033) 0.01 (0.86) −0.28 (0.053) 0.08 (0.61)
Ulcerative Colitis 0.17 (0.22) −0.29 (0.046) 0.06 (0.61) −0.21 (0.15) −0.11(0.40)

Table S16: Corresponding ρ statistics for all analyses presented in 2.

Phenotype SUMPC1 SUMPC2 WINPC1 WINPC2 Latitude
Height -0.15 (0.24) −0.006 (0.89) -0.13 (0.31) 0.32 (0.025) 0.10 (0.42)

Skin Pigmentation 0.28(0.045) 0.008 (0.98) 0.24 (0.097) −0.11 (0.40) −0.25 (0.087)
Body Mass Index −0.24 (0.12) 0.07 (0.57) −0.11 (0.57) 0.25 (0.097) 0.14 (0.47)
Type 2 Diabetes 0.12 (0.30) 0.11 (0.34) 0.09 (0.39) −0.07 (0.56) −0.21 (0.08)
Crohn’s Disease 0.21 (0.12) −0.29 (0.039) 0.01 (0.86) −0.22 (0.12) 0.08 (0.63)
Ulcerative Colitis 0.19 (0.17) −0.23 (0.12) 0.18 (0.65) −0.15 (0.30) −0.17(0.20)
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