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ABSTRACT  

In a recent clinical trial, the metabolite L-glutamine was shown to reduce painful crises in sickle 

cell disease (SCD) patients. To confirm this observation and identify other metabolites 

implicated in SCD clinical heterogeneity, we profiled 129 metabolites in the plasma of 705 SCD 

patients. We tested correlations between metabolite levels and six SCD-related complications 

(painful crises, cholecystectomy, retinopathy, leg ulcer, priapism, aseptic necrosis) or estimated 

glomerular filtration rate (eGFR), and used Mendelian randomization (MR) to assess causality. 

We found a causal relationship between L-glutamine levels and painful crises (N=1,278, odds 

ratio (OR) [95% confidence interval] = 0.68 [0.52 – 0.89], P=0.0048). In two smaller SCD 

cohorts (N=299 and 406), the protective effect of L-glutamine was observed (OR=0.82 [0.50-

1.34]), although the MR result was not significant (P=0.44). We identified 66 significant 

correlations between the levels of other metabolites and SCD-related complications or eGFR. 

We tested these correlations for causality using MR analyses and found no significant causal 

relationship. The baseline levels of quinolinic acid was associated with prospectively ascertained 

survival in SCD patients, and this effect was dependent on eGFR. Metabolomics provide a 

promising approach to prioritize small molecules that may serve as biomarkers or drug targets in 

SCD.  
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INTRODUCTION 

Sickle cell disease (SCD) is one of the most common Mendelian diseases in the world, affecting 

millions of patients living in Sub-Saharan Africa and the Indian sub-continent (1). In the United 

States, >100,000 individuals, mostly of African descent, live with SCD, and healthcare costs 

associated with SCD management and treatment are substantial (2). Although fundamentally a 

disease of the blood – caused by mutations in the b-globin gene HBB – SCD is characterized by 

systemic and debilitating complications, such as painful crises, stroke, pulmonary hypertension 

and kidney failure. Unfortunately, there are no robust prognostic biomarkers to predict who will 

develop which complications, and when. SCD treatment still relies primarily on chronic blood 

transfusions and hydroxyurea (HU), a drug that acts partly by raising the concentration of anti-

sickling fetal hemoglobin (HbF)(3).  

 

Progress in gene therapies and genome editing technologies now offer realistic hope of 

developing a cure for SCD (4). However, these complex clinical interventions are unlikely to 

benefit most SCD patients worldwide in the short term. Therefore, we need to continue searching 

for novel biomarkers and drug targets for SCD. Recently, the US Food and Drug Administration 

approved a second molecule, L-glutamine, to treat SCD. In a double-blind phase 3 clinical trial, 

L-glutamine was shown to reduce the number of painful crises over a 48-week period (5). The 

emergence of L-glutamine as a therapy was based on decades of work investigating the role of 

oxidative stress in SCD pathophysiology (6). Red blood cells (RBC) from SCD patients have 

high oxidative stress and a compromised ability to counteract free radicals due to a low ratio of 

the reduction-oxidation (redox) co-factor nicotinamide adenine dinucleotide (NAD) and its 

reduced form ([NADH]:[NAD++NADH])(7). L-glutamine is one of the most abundant amino 
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acids in the human body and in addition to its role in protein synthesis, is required to synthesize 

NAD. Treatment with L-glutamine increases the NAD redox ratio and reduces adhesion of sickle 

RBC to endothelial cells, a hallmark of vaso-occlusive painful crises (8, 9).  

 

Metabolites, like L-glutamine, are small molecules (e.g. amino acids, sugars, lipids) that result 

from the activities of endogenous enzymes (10). The development of high-throughput mass 

spectrometry-based methodologies makes it possible to profile 100-1000s of metabolites in 

human biospecimens. Such metabolomic studies have been used to identify metabolite signatures 

of diseases, but also to pinpoint specific metabolites that may have prognostic and/or therapeutic 

values (11, 12). Metabolite levels are variable between individuals (in disease, but also in health) 

and large genetic studies – termed metabolite genome-wide association studies (mGWAS) – 

have identified 1000s of genetic variants that control them. Besides providing an opportunity to 

characterize the biological pathways that control metabolite levels, these genetic discoveries 

become powerful instruments for Mendelian randomization (MR) studies. MR uses genetic 

variants to determine the effect of genetically modulated phenotypes on disease outcome (13). 

MR mimics randomized clinical trial as it harnesses the random allocation of parental alleles 

when they are passed on to their offspring. As a consequence, the alleles are independently 

distributed in the population and free from potential confounders (14, 15).  Previous MR studies 

have validated many drug targets for various human diseases (e.g. statins that lower LDL-

cholesterol levels to reduce coronary artery disease (CAD) risk), but have also been useful to rule 

out many biomarkers as potential causal factors (e.g. HDL-cholesterol or C-reactive protein for 

CAD)(16-18). 
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In SCD, only a limited number of studies have used metabolomic approaches to tackle clinical 

heterogeneity. Zhang et al. discovered increased adenosine levels in blood from SCD patients 

and transgenic mice: they showed that higher adenosine levels exacerbated sickling, hemolysis 

and organ damage (19). Additionally, the same group found that sphingosine-1-phosphate (S1P) 

and 2,3-bisphosphoglycerate (2,3-BPG) blood concentrations are elevated in SCD patients and 

mice, which results in the re-programming of the glycolysis program and enhanced disease 

severity (20, 21). Finally, Dargouth et al. profiled the metabolome of RBC from healthy 

individuals and SCD patients and identified several metabolites that highlight differences 

between the two groups in glycolysis, membrane turnover, and glutathione and nitric oxide 

metabolism(22). Although exciting, these pioneering metabolomic studies were performed in a 

limited number of SCD patients (N=14-30) and did not take advantage of MR methodology to 

address causality. 

 

To prioritize metabolites that may be important biomarkers or drug targets for SCD, we profiled 

129 known metabolites, including L-glutamine, in the plasma of 705 SCD patients. First, we 

used MR to test the causal relationship between L-glutamine and painful crises. Second, we 

tested the association between all measured metabolites and SCD-related complications and 

combined these results with previous mGWAS findings to perform MR studies. Finally, we 

tested if baseline plasma metabolite levels were associated with survival in our SCD cohorts. Our 

results highlight the value of combining genetic and metabolomic strategies to disentangle the 

complex pathophysiology of SCD.  
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SUBJECTS AND METHODS 

Study participants 

Sample collections and procedures were in accordance with the institutional and national ethical 

standards of the responsible committees and proper informed written consent was obtained. The 

Genetic Modifier (GEN-MOD), the Cooperative Study of Sickle Cell Disease (CSSCD), and the 

Duke University Outcome Modifying Genes (OMG) cohorts have been described elsewhere (23-

25). In particular for GEN-MOD, a dedicated research assistant validated all clinical information. 

Demographic and clinical information for each SCD cohort is available in Table 1. 

 

Metabolomics Profiling 

Plasma metabolites were profiled using two complimentary liquid chromatography tandem mass 

spectrometry (LC-MS) methods. Amino acids, amino acid metabolites, acylcarnitines, and other 

cationic polar metabolites were measured using a Nexera X2 U-HPLC (Shimadzu Corp.) 

coupled to a Q Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer (Thermo Fisher 

Scientific). Plasma samples (10 µl) were prepared via protein precipitation, with the addition of 9 

volumes of acetonitrile/methanol/formic acid (74.9:24.9:0.2; v/v/v) containing stable isotope-

labeled, quality control internal standards (valine-d8, Sigma-Aldrich; St. Louis, MO; and 

phenylalanine-d8, Cambridge Isotope Laboratories; Andover, MA). The samples were 

centrifuged (10 min, 9,000 x g, 4°C), and the supernatants were injected directly onto a 150 x 2 

mm, 3 µm Atlantis HILIC column (Waters). The column was eluted isocratically at a flow rate 

of 250 µL/min with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in 

water) for 0.5 minute followed by a linear gradient to 40% mobile phase B (acetonitrile with 

0.1% formic acid) over 10 minutes. MS analyses were carried out using electrospray ionization 
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in the positive ion mode using full scan analysis over 70-800 m/z at 70,000 resolution and 3 Hz 

data acquisition rate. Other MS settings were: sheath gas 40, sweep gas 2, spray voltage 3.5 kV, 

capillary temperature 350°C, S-lens RF 40, heater temperature 300°C, microscans 1, automatic 

gain control target 1e6, and maximum ion time 250 ms. Raw data were processed using 

TraceFinder software (Thermo Fisher Scientific; Waltham, MA) for supervised, targeted 

extraction of data from a subset of lipids and Progenesis QI (Nonlinear Dynamics; Newcastle 

upon Tyne, UK). Organic acids, sugars, purines, pyrimidines, and other anionic polar 

metabolites were measured using an ACQUITY UPLC (Waters Corp, Milford MA) coupled to a 

5500 QTRAP triple quadrupole mass spectrometer (AB SCIEX, Framingham MA). Plasma 

samples (30 µL) were extracted using 120 µL of 80% methanol containing 0.05 ng/µL inosine-

15N4, 0.05 ng/µL thymine-d4, and 0.1 ng/µL glycocholate-d4 as quality control internal 

standards (Cambridge Isotope Laboratories, Inc., Tewksbury MA). The samples were 

centrifuged (10 min, 9,000 x g, 4ºC) and the supernatants (10 µL) were injected directly onto a 

150 x 2.0 mm Luna NH2 column (Phenomenex, Torrance CA). The column was eluted at a flow 

rate of 400 µL/min with initial conditions of 10% mobile phase A (20 mM ammonium acetate 

and 20 mM ammonium hydroxide (Sigma-Aldrich) in water (VWR)) and 90% mobile phase B 

(10 mM ammonium hydroxide in 75:25 v/v acetonitrile/methanol (VWR)) followed by a 10 min 

linear gradient to 100% mobile phase A. The ion spray voltage was -4.5 kV, the source 

temperature was 500°C, and multiple reaction monitoring (MRM) settings for each metabolite 

were determined using authentic reference standards. Raw data were processed and visually 

reviewed using MultiQuant software (AB SCIEX, Framingham MA). 

  

Metabolomics pre-processing 
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We removed metabolites with >20% missing values. We imputed missing metabolite values 

using the k-nearest neighbors algorithm (26) as implemented in the R package impute. We log10-

transformed metabolite values, and applied batch effect correction based on metabolites’ dates of 

extraction, the types of ionization (negative and positive ionization), and whether they were 

obtained from targeted or untargeted approaches. Finally, we applied batch effect correction 

based on the year of profiling, since sample collection occurred within a 3 years span (2015- 

2017). We conducted all batch effect correction using combat (27). Using a linear model, we 

then derived residuals correcting for age, sex, SCD genotypes, and HU usage. Figure 1 

summarizes the design of our metabolomic experiment. Although we captured many unknown 

metabolites, which we used as part of the quality-control steps, this study focuses on the 129 

known metabolites that were available in both GEN-MOD and OMG. 

 

Pairwise association between metabolite levels and SCD complications or survival in GEN-

MOD and OMG 

To test the association between metabolite levels and SCD complications (painful crises, aseptic 

necrosis, cholecystectomy (gall bladder removal), retinopathy, priapism, leg ulcer, survival), 

estimated glomerular filtration rate (eGFR, calculated using the chronic kidney disease 

epidemiology collaboration (CKD-EPI) equation (28)) or to predict the risk of prospectively 

ascertained death (survival), we implemented a permutation procedure that considers the 

correlation between metabolite levels. We randomly permuted the phenotype of interest and 

computed 100,000 P-values (for each metabolite) in a linear or a logistic model. We then stored 

the smallest P-value out of the 100,000, and obtained the adjusted/permutated P-value (Pperm) by 

comparing the number of times the permutated P-values are smaller than the observed P-values:  
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𝑃#$%& = 	
(𝑏 + 1)
(𝑚 + 1) 

where b is the number of times Pperm is greater or equal than Pobs, and m the number of 

permutations. The procedure was implemented in the R statistical package. 

 

Genetic association study in the CSSCD 

DNA genotyping and genotype imputation in the CSSCD have been described in detail 

elsewhere (25). We restricted our analysis to markers with imputation quality r2 >0.3 and minor 

allele frequency (MAF) >1%. We removed the effect of sex and age on batch effect-corrected 

metabolites levels, and used inverse normal transformation to normalize the residuals. We used 

RvTests (v20171009)(29) to test the association between genotype dosage and the various traits. 

We performed genetic association testing with bilirubin, retinopathy, aseptic necrosis, leg ulcers, 

survival status, painful crises, cholecystectomy, and eGFR in the CSSCD. Logistic regression 

model correcting for age, sex, SCD genotypes, HU usage and the first 10 principal components 

was employed to evaluate association between genotypes and binary traits. We used linear 

regression to test genetic associations with inverse normal-transformed eGFR, correcting for 

SCD genotypes, HU usage and the first 10 principal components. 

 

Mendelian Randomization 

Instrument identification. Because of our reduced sample size, we selected instruments for MR 

analyses from large published mGWAS carried out in healthy individual of European ancestry. 

We identified metabolite-associated variants from the published meta-analysis of KORA and 

TwinsUK (N=6,056+1,768, 529 metabolites), as well as the whole-genome sequence metabolite 
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association study in TwinsUK (N=1,960, 644 metabolites)(30, 31). We focused on these 

publications because they are the two largest published mGWAS to date. We selected sub-

genome-wide significant mGWAS SNPs (P<1x10-5) in order to maximize the phenotypic 

variance explained, and tested two MR models. The first MR model included all sub-genome-

wide significant SNPs as valid instruments. For the second MR model, we removed pleiotropic 

SNPs from the first model if they were associated with other metabolites at a Bonferroni-

corrected P<0.05 threshold when considering the number of SNPs in model 1. Pleiotropic SNPs 

were identified by querying Phenoscanner (32). 

 

Instrument pruning. We employed PLINK1.9v5.2(33) to identify independent SNP within 5-Mb 

window and linkage disequilibrium (LD) r2 <0.01 in the CSSCD. This provided us with a list of 

pseudo-independent variants.  

 

Analysis. We used a two-sample MR approach to test the causal link between metabolites and 

SCD-related phenotypes. As described above, instruments and their effect sizes were selected 

from large European-ancestry mGWAS. We retrieved association results (effect sizes, standard 

errors) between instruments and SCD-related phenotypes from the large and clinically well-

characterized CSSCD. All MR analyses were performed in R version 3.5.1 with the 

TwoSampleMR package (v0.4.22)(34). We used a multiplicative random-effect inverse variance-

weighted (IVW) method in each MR analysis. For the analysis of L-glutamine and painful crises, 

we tested 2 models and defined statistical significance using a Bonferroni-corrected threshold of 

a£0.025. All other analyses were exploratory and statistical significance was set at nominal 

a£0.05. Additionally, we computed the weighted median (35), which selects the median MR 
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estimate as the causal estimate, and MR-Egger (36), which allows the intercept to vary freely and 

therefore estimates the amount of horizontal pleiotropy, for all the analyses. Moreover, we 

utilized MR-PRESSO (Pleiotropy Residual Sum and Outlier)(37) to estimate the presence of 

horizontal pleiotropic bias and to calculate causal estimate adjusted for outliers for all reported 

results. Finally, we assess the validity of our significant results by conducting additional tests for 

horizontal pleiotropy, including Cochran’s Q statistic, MR-Egger intercept test of deviation from 

the null, and I2 heterogeneity statistic (13). Results from all MR analyses are available online at: 

http://www.mhi-humangenetics.org/dataset/MR_Analysis_SCD_everything.html. 

 

Genetic risk scores (GRS) 

Using PLINK1.9v5.2 (33) , we calculated the genetic risk scores for L-glutamine and 3-

ureidopropionate in CSSCD, GEN-MOD and OMG. Effect size estimates from the two large 

mGWAS referenced in the MR analysis served as weights. Employing logistic regression, 

inverse-normal transformed GRS were associated to painful crisis adjusting for age, sex, the first 

10 principal components (PCs), and SCD genotypes whenever appropriate. Employing linear 

regression, inverse-normal transformed GRS were associated to eGFR adjusting for the first 10 

PCs and SCD genotypes whenever appropriate. Finally, in OMG and GEN-MOD, using linear 

regression, inverse-normal transformed GRS for L-glutamine and 3-ureidopropionate were 

associated to L-glutamine and 3-ureidopropionate metabolite levels, respectively. Both models 

were adjusted for age, sex, the first 10 PCs and SCD genotypes whenever appropriate.  
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RESULTS 

Plasma metabolites in SCD patients 

To identify metabolites that may be useful to predict or treat SCD complications, we  

measured plasma values of 129 known metabolites in 705 patients from the GEN-MOD and 

OMG cohorts (Figure 1 and Table 1). Although our metabolomic experiment was performed at 

the same center, it was run in three batches so we applied stringent quality-control and batch-

effect correction filters to avoid confounding (Methods and Supplementary Figure 1). The two 

main classes of metabolites that we measured were amino acids (33%) and lipids (30%), 

although we also captured carbohydrates, co-factors/vitamins, nucleotides, and energy-related 

metabolites (Supplementary Figure 2 and Supplementary Table 1). 

 

Mendelian randomization supports a causal link between L-glutamine and SCD painful 

crises 

L-glutamine therapy in SCD was previously shown to improve the NAD redox ratio, although 

this effect was not detected in a recent clinical trial (5, 38). Because we measured L-glutamine as 

part of our metabolomic experiment, we were interested to test association between its plasma 

levels and SCD-related complications or other clinically-relevant parameters. In GEN-MOD and 

OMG, we found no evidence of association between plasma L-glutamine levels and SCD 

complications, including painful crises (Table 2). However, L-glutamine levels were nominally 

associated with several hematological traits measured at baseline, including reduced hemoglobin 

concentration and RBC count (Table 2). For SCD complications, interpretation of these results is 

challenging because clinical events occurred before L-glutamine was measured, and this one-

time metabolomic measure may not reflect life-long endogenous exposure to L-glutamine. For 
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these reasons, we sought to further test the relationship between L-glutamine and SCD painful 

crises using MR. 

 

Instrument strength plays a critical role in the validity of MR analyses. Although we measured L-

glutamine levels in 705 SCD patients, we wanted to take advantage of existing and well-powered 

mGWAS for the selection of the best metabolite-associated SNPs to use as MR instruments (30, 

31). However, these mGWAS were carried out in Europeans, whereas SCD patients in our 

cohorts are of African-descent, raising the question whether we could use SNPs found in 

Europeans as MR instruments for phenotypes observed in African-ancestry SCD patients. To 

validate this strategy, we tested the well-known causal link between bilirubin levels in serum and 

gallstones leading to surgical removal of the gallbladder (cholecystectomy), a complication often 

observed in SCD patients (39). From a GWAS of serum bilirubin levels in 9,464 individuals of 

European-ancestry, we selected 10 SNPs as MR instruments (40). In the large and well-

characterized CSSCD (Table 1), we tested the association between these SNPs and bilirubin 

levels or cholecystectomy, and replicated the strong association between these phenotypes and 

the UGT1A1 locus (Supplementary Table 2). The two-sample inverse variance-weighted 

(IVW) MR analysis confirmed that high bilirubin levels causes gallbladder disease in SCD: a one 

standard deviation increase in genetically-controlled bilirubin levels was associated with a 6-fold 

increase in the risk of cholecystectomy in the CSSCD (odds ratio (OR) [95% confidence 

interval] = 6.0 [2.8-17.0], PIVW=1.9x10-6)(Supplementary Table 3).  

 

From the available mGWAS results (30, 31),  we identified 51 SNPs associated with plasma L-

glutamine levels at P<5x10-5 that were available in the CSSCD genetic dataset. Single variant 
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and polygenic trait score association results are available in Supplementary Table 4 (25). Using 

these 51 SNPs as instruments in a two-sample IVW MR analysis, we did not detect a causal 

association between L-glutamine and painful crises (Model 1: OR = 0.81 [0.63-1.00], 

PIVW=0.086)(Figure 2). When we excluded 24 pleiotropic SNPs (Methods) and repeated the 

analysis with the remaining 27 SNPs, the MR association with painful crises was significant: a 

one standard deviation increase in genetically-controlled L-glutamine levels was associated with 

a 32% reduction in the risk of painful crises in the CSSCD (Model 2: OR=0.68 [0.52-0.89], 

PIVW=0.0048)(Figure 2). MR analyses using the sensitivity tests MR-Egger and weighted-

median did not yield significant associations for Model 2, suggesting insufficient statistical 

power for these tests (13) or potential residual pleiotropy (Supplementary Table 5). We 

repeated the MR analysis in the GEN-MOD and OMG cohorts: although the direction of the 

effect of the GEN-MOD+OMG meta-analysis indicated a protective effect of L-glutamine on 

painful crises (OR=0.82 [0.54-1.34]), the result was not significant (PIVW=0.54), presumably due 

to limited power given the smaller sample size (Supplementary Table 5). In secondary MR 

analyses, we found no evidence of causal associations between L-glutamine SNPs and several 

other SCD complications (Supplementary Table 5).  

 

Potential causal link between 3-ureidopropionate and kidney function in SCD 

We tested 6 SCD-related complications as well as eGFR against the levels of the 129 known 

metabolites measured in GEN-MOD and OMG. In total, we found 65 metabolites with Pperm 

£0.05, including 61 metabolites associated with eGFR (Figure 3 and Supplementary Table 6). 

There was a strong association between eGFR and creatinine levels, which serves as an internal 

control given that we use this metabolite to calculate eGFR. Most of these metabolites have 
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never been linked to SCD, and may therefore represent potential novel biomarkers of disease 

severity. 

 

Using the same strategy as for L-glutamine, we derived MR instruments for 48 of the 66 

metabolites identified in the pairwise analyses with SCD phenotypes; there were no significant 

mGWAS variants for the remaining 18 metabolites. Across these 48 tests, we identified a single 

nominally significant association in our two-sample MR analyses involving eGFR and 3-

ureidoproprionate levels (see URL for all available MR results, including sensitivity tests). In a 

European mGWAS (31), we retrieved 22 SNPs associated with 3-ureidoproprionate levels, 

including 16 that were not pleiotropic (Supplementary Table 7). Our results indicate that a one 

standard deviation increase in genetically-controlled 3-ureidopropionate levels was associated 

with improved eGFR of 0.07 mL/min per 1.172 m2 (PIVW-model1=8.7x10-4; PIVW-model2=9.7x10-4) 

(Figure 4 and Supplementary Tables 8). The sensitivity analyses did not allow us to exclude 

the possibility of confounding due to pleiotropy (Figure 4 and Supplementary Tables 8). 

Furthermore, we could not replicate the MR result in GEN-MOD and OMG, indicating that 

larger SCD cohorts are needed to confirm the causal link between 3-ureidoproprionate and eGFR 

(Supplementary Table 7). 

 

Predicting survival status using baseline metabolite levels 

Given the clinical heterogeneity that characterizes this disease, being able to predict which SCD 

patients will follow a severe clinical course could be extremely useful. Thus, we decided to 

explore the prognostic value of plasma metabolites in SCD. As discussed above, the data 

currently available in GEN-MOD and OMG are largely retrospective. However, we could 
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prospectively ascertain SCD severity using a simple definition based on survival status during 

the follow-up period (Table 1 and Methods). We identified 10 metabolites that were nominally 

associated with survival status, but only quinolinic acid remained significant after permutations 

to account for the number of tests performed. For all 10 metabolites, increased levels were 

associated with increased risk of death, and for all but cytosine levels, the effect on survival was 

mediated by an association with eGFR. Quinolinic acid is a product of the kynurenine pathway, 

which also metabolizes the amino acid tryptophan. 
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DISCUSSION 

While the cause of SCD has been known for over a century, treatment options are limited and it 

is extremely difficult to predict which patients will have a more severe presentation of the 

disease. To continue to address these challenges, we performed the largest metabolomic study in 

SCD patients, measuring 129 known metabolites in 705 participants. Our effort was motivated 

by recent successes using this approach to find new prognostic biomarkers and potential drug 

targets for human diseases (41). By combining metabolite profiles with mGWAS results, we 

could use MR methods to test causality between metabolites and SCD-related complications. 

Although a few metabolites have previously been implicated in SCD clinical heterogeneity 

(adenosine, S1P, 2,3-BPG)(19-21), we did not measure them and could therefore not replicate 

their associations in our dataset. However, we identified a promising causal relationship between 

L-glutamine levels and painful crises, consistent with recent results from a phase 3 clinical 

trial(5).  

 

Our analyses also highlighted 3-ureidoproprionate, an intermediate in the metabolism of uracil, 

as a potential positive modulator of eGFR. Interpretation of this result is difficult because little is 

known about this metabolite and the result was not replicated in additional SCD patients. 

Mutations in the gene UPB1, which encodes the enzyme that transforms 3-ureidopropionate into 

beta-alanine, cause beta-ureidopropionase deficiency, a rare monogenic disease characterized by 

high plasma levels of 3-ureidoproprionate (42). Only a few patients with this disease have so far 

been described and they presented mostly with neurologic development issues. However, there is 

no report of abnormal glomerular filtration rate or other kidney defects in these patients. We 

propose that future MR replication in independent SCD cohorts and animal studies could be 
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extremely useful to investigate the possible role of 3-ureidoproprionate in regulating kidney 

functions, and in particular whether raising 3-ureidopropionate levels could improve glomerular 

filtration rate in SCD patients.  

 

Our study presents with a few limitations. First, our statistical power to detect heterogeneity (for 

instance due to horizontal pleiotropy in our MR analyses) and to replicate our main findings was 

limited because there are few large, well-characterized and genotyped SCD cohorts available. 

Second, we measured metabolite levels in plasma, but their levels in RBC could have provided 

complementary information (in particular for L-glutamine). Third, we used MR instruments 

derived from mGWAS performed in Europeans to test for causality in African-ancestry SCD 

patients. There have been many reports on the transferability (or lack thereof) of GWAS findings 

across ancestries (43). We used the well-known relationship between bilirubin levels and 

gallbladder disease to show that our approach can work. However, it is likely that having access 

to large mGWAS results in African-ancestry populations would provide better instruments, and 

may lead to the identification of additional causal link between metabolites and SCD phenotypes 

by MR.  

 

One characteristic of our study is that we measured metabolites in SCD cohorts that have mostly 

collected retrospective clinical data. One exception is information on the survival status of the 

participants. Using a simple linear model, we found a significant association between 

prospectively-ascertained survival status and baseline quinolinic acid levels. This association 

was mediated by eGFR, consistent with our previous observation that quinolinic acid levels 

correlate with rapid renal function decline in SCD patients (24). In the future, it will be 
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interesting and important to test whether metabolites predict other complications in prospective 

SCD cohorts. In conclusion, our results motivate future experiments to integrate metabolite 

profiles and other orthogonal omics datasets (e.g. genetics) to build better predictors of SCD-

related complications and overall severity.  

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2019. . https://doi.org/10.1101/872358doi: bioRxiv preprint 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2020. ; https://doi.org/10.1101/872358doi: bioRxiv preprint 

https://doi.org/10.1101/872358
https://doi.org/10.1101/872358


 21 

Author contributions 

A.E.A.-K., M.J.T and G.L. conceived this study. C.B.C. performed plasma metabolites profiling. 

Y.I. performed Mendelian randomization analyses. Y.I. and M.G.  performed genetic analyses 

and genetic risk association analyses. Y.I. performed statistical analyses. G.L. supervised this 

work. Y.I. and G.L. wrote the manuscript with input from all authors. 

 

Acknowledgments 

We thank all participants for their contribution to this project. We also thank Adil Harroud and 

Brent Richards for advices on the Mendelian randomization analyses. G.L. is funded by the 

Canadian Institutes of Health Research (CIHR, PJT #156248), the Doris Duke Charitable 

Foundation, and the Canada Research Chair program. GEN-MOD sample and data collection 

were supported by NIH grant HL-68922. A.A-K. M.J.T. and establishment and analysis of the 

OMG cohort has been funded by NHLBI (R01HL68959, HL79915, HL70769, HL87681). 

 

Disclosure 

None. 

 

URL 

All Mendelian randomization results are available at: http://www.mhi-

humangenetics.org/dataset/MR_Analysis_SCD_everything.html 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2019. . https://doi.org/10.1101/872358doi: bioRxiv preprint 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2020. ; https://doi.org/10.1101/872358doi: bioRxiv preprint 

https://doi.org/10.1101/872358
https://doi.org/10.1101/872358


 22 

Table 1. Demographics and clinical information. Sickle cell disease patients from three 

cohorts were included in this study. For the CSSCD, all data are prospective and we only 

considered patients with genome-wide genotyping data available. For GEN-MOD and OMG, all 

data were collected at baseline and are retrospective, except survival which is prospective. 

1Painful crises in GEN-MOD and OMG are defined as crises requiring hospitalization which was 

dichotomized (individuals with ³1 painful crises in the last 12 months are assigned as cases, 

while individuals with no painful crisis are assigned as controls). In the CSSCD, painful crises 

are defined as painful episodes requiring emergency room visits, and we dichotomized the data 

as no crisis (control) or at least one crisis (case) during the follow-up period. For all quantitative 

variable, we provide mean ± standard deviation. LDH, lactate dehydrogenase; RBC, red blood 

cell; MCH: mean corpuscular hemoglobin; MCV: mean corpuscular volume; eGFR, estimated 

glomerular filtration rate; NA, not available.  

 
Characteristic GEN-MOD OMG CSSCD 

Sex (male/female) 222/184 163/136 616/662 
Age (year) 31 ± 9 35 ± 14 14 ± 12 

b-globin genotypes (HbSS/ 
HbS b0-thal/ HbSS a-thal/ HbSC/ HbS b+) 

406/0/0/0/0 255/12/0/23/9 883/0/395/0/0 

Painful crises (cases/controls)1 150/180 161/128 194/907 
Leg ulcer (cases/controls) 30/300 79/214 185/970 

Cholecystectomy (cases/controls) 200/206 173/72 152/932 
Aseptic necrosis (cases/controls) 94/236 93/194 164/991 

Priapism (cases/controls) 41/116 55/236 96/460 
SCD retinopathy (cases/controls) 182/67 65/210 274/292 

SCD survival (cases/controls) 19/384 35/91 44/1235 
Bilirubin (mg/dL) 3.5± 2.1  2.9 ± 2.4 3.3 ±  2.2 
eGFR (mL/min 
per 1.172 m2) 

143.6± 22.8 126.0 ± 40.3 165.3 ± 47.0 

Hemoglobin (g/dL) 8.8 ± 1.3 8.2 ± 1.8 8.4 ± 1.3 
Hematocrit (%) 25.8 ± 4.5 25.3 ±  5.7 24.8 ± 4.03 

Lactate dehydrogenase (units/L) 400.4 ± 144.7 326.8 ± 240.2 451.6 ± 244.7 
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MCH (pg) 29.3 ± 4.1 32.0 ± 4.8 29.8 ± 3.1 
MCV (fL) 87.0 ± 10.2 92.2 ± 12.7 89.2 ± 8.5 

RBC count (x106 cells/µL) 3.0 ± 0.80 2.9 ± 0.80 2.8 ± 0.57 
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Table 2. Associations between L-glutamine plasma levels and sickle cell disease (SCD)-

related complications and other clinically relevant phenotypes. In participants from the GEN-

MOD and OMG cohorts, we tested the association between L-glutamine levels measured in 

plasma and SCD-related complications or clinically relevant blood-based biomarkers. 

Dichotomous phenotypes were analyzed using logistic regression while correcting for age, sex, 

hydroxyurea (HU) usage, SCD genotypes and cohort affiliation. Quantitative phenotypes were 

corrected for age, sex, HU usage, SCD genotypes and cohort affiliation. They were inverse 

normal-transformed before being tested for association using linear regression. Odds ratio and 

effect sizes (Beta) are given per standard deviation change in L-glutamine plasma levels. LDH, 

lactate dehydrogenase; RBC, red blood cell; MCV, mean corpuscular volume; MCH, mean 

corpuscular hemoglobin; eGFR, estimated glomerular filtration rate; LDH, lactate 

dehydrogenase; CI, confidence interval; SE, standard error. 

Complications N Odds ratio 95% CI P-value 
Painful crises 619 1.06 (0.90-1.24) 0.52 

Survival 529 1.01 (0.75-1.35) 0.79 
Aseptic necrosis 617 0.97 (0.97-1.16) 0.76 
Cholecystectomy 651 1.06 (0.90-1.25) 0.45 

Leg ulcer 623 1.09 (0.88-1.35) 0.44 
Priapism 448 1.11 (0.88-1.4) 0.39 

Retinopathy 524 0.99 (0.82-1.18) 0.88 
     

Renal Parameter N Beta SE P-value 
eGFR 702 -0.067 0.036 0.067 

     
Blood Parameter N Beta SE P-value 

Bilirubin 585 0.10 0.041 0.010 
Hematocrit 697 -0.08 0.035 0.019 
Hemoglobin 685 -0.098 0.035 0.0048 

LDH 579 0.078 0.039 0.044 
MCH 626 0.067 0.035 0.053    
MCV 697 0.07 0.032 0.03 
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RBC 698 -0.11 0.033 7.1x10-4 
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Table 3. Nominally significant associations between survival and plasma levels of 129 

metabolites in sickle cell disease (SCD). In participants from the GEN-MOD and OMG 

cohorts, we tested the association between metabolite levels measured in plasma and 

prospectively ascertained survival (529 SCD patients: 54 deaths). We analyzed the data using 

logistic regression while correcting for age, sex, hydroxyurea (HU) usage, SCD genotypes and 

cohort affiliation. Metabolite levels were inverse normal-transformed so that odds ratios are 

given per standard deviation change in plasma metabolite levels. Only quinolinic acid remains 

significant after permutations to account for the number of tests performed. OR, odds ratio; CI, 

confidence interval. 

Metabolite OR 95% CI P-value Permuted  
P-value 

Permuted P-value 
after adjusting for 

eGFR 

Quinolinic acid 1.76 (1.29 - 
2.41) 3.8 x 10-4 0.03 0.89 

Cytosine 1.60 (1.19 - 
2.15) 1.8 x 10-3 0.15 0.16 

Indoxyl sulfate 1.59 (1.17 - 
2.17) 3.1 x 10-3 0.24 1.0 

2-trans,4-cis-
Decadienoylcarnitine 1.53 (1.14 - 

2.05) 4.2 x 10-3 0.3 1.0 

Cytidine 1.52 (1.14 - 
2.04) 5.0 x 10-3 0.34 0.97 

Asymmetric 
dimethylarginine 1.53 (1.13 - 

2.07) 5.6 x 10-3 0.38 0.78 

L-Cystathionine 1.56 (1.13 - 
2.14) 6.6 x 10-3 0.42 1.0 

Alpha-Lactose 1.47 (1.1 - 
1.97) 9.2 x 10-3 0.53 1.0 

D-Glucuronic acid 1.5 (1.11 - 
2.05) 9.3 x 10-3 0.54 0.97 

Ureidopropionic acid 1.47 (1.1 - 
1.97) 1.0 x 10-2 0.56 1.0 
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Figure legends 

Figure 1. Study design of the metabolomic study in sickle cell disease (SCD) patients. 250 

GEN-MOD samples and 50 OMG samples were profiled in 2015, 250 OMG samples were 

profiled in 2016, and 156 GEN-MOD samples were profiled in 2017. Known/targeted and 

unknow/untargeted metabolites were measured using liquid-chromatography in tandem with 

mass spectrometry (LC-MS). Data preprocessing involved standard quality-control procedures, 

imputation of missing values, batch-effect correction and data scaling. Data analysis included 

association testing of known metabolites with SCD-related complications, Mendelian 

randomization, and SCD survival prediction using statistical modelling. n, number of patients 

included in the study; y, year during which metabolites were measured; m, number of 

targeted/untargeted metabolites measured in each year. 
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Figure 2. Mendelian randomization (MR) analysis of L-glutamine with sickle cell disease 

(SCD) painful crises. Forest plot of MR evaluating the causal relationship between L-glutamine 

levels and painful crises in SCD patients. Effect sizes and standard errors of 51 variants 

associated with L-glutamine were retrieved from large European mGWAS. Associations 

statistics between these 51 variants and SCD complications were calculated in the large 

prospective and well-characterized CSSCD. In model 1, we considered all 51 SNPs as 

instruments, whereas model 2 only included 27 variants not associated with other metabolites 

(Methods). The MR effect size estimates and 95% confidence intervals were calculated using 

the inverse variance-weighted (IVW) random effect method.  
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Figure 3. Known metabolites associated with SCD complications and estimated glomerular 

filtration rate (eGFR). We tested 129 metabolites against clinical complications by logistic 

regression (linear regression for quantitative eGFR). On the x-axis, we report odd ratios (effect 

sizes for eGFR) in metabolite standard deviation units, whereas the y-axis presents the observed 

analytical P-values. Red circles highlight metabolites with Pperm <0.05 calculated using 100,000 

permutations. In total, we found 2 metabolites for painful crises, 2 metabolite with 

cholecystectomy, and 61 metabolites for eGFR.  
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Figure 4. 3-ureidopropionate causally influences estimated glomerular filtration rate 

(eGFR) in sickle cell disease (SCD) patients. (A) Mendelian randomization (MR) plot 

comparing the effects of SNPs on 3-ureidopropionate in Europeans (x-axis) and eGFR in SCD 

patients (y-axis). The slope of each line corresponds to the MR effect for each method (inverse 

variance-weighted (IVW), MR-Egger or weighted median). Data are expressed as effect sizes 

with 95% confidence intervals. SNPs in red are pleiotropic. (B) Same as A, except that we 

removed pleiotropic variants.  
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