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Abstract

The exact mechanisms at  the root of pathologic anatomical covariances  are still  unknown. It is

nonetheless becoming clearer that the impact of brain diseases is more convincingly represented in

terms of  co-alterations rather than in terms of localization of alterations. According to this view,

neurological and psychiatric conditions might be seen as whole-brain patterns of modifications. In

this context, the physical distance between two co-altered areas may provide insightful information

about how pathology develops across the brain, assuming that long-range co-alterations might be

relevant  features  of  pathological  networks.  To  demonstrate  this  hypothesis,  we  calculated  the

probability  of  co-alteration  between  brain  areas  across  a  large  database  of  voxel-based

morphometry studies of psychiatric and neurological disorders, and we investigated the physical

(Euclidean)  distance  of  the  edges  of  the resulting  network.  Such analysis produced  a  series  of

observations relevant for the understanding of pathology, which range from unanticipated results to

the  recognition  of  regions  of  well-known  functional  and  clinical  relevance. For  instance,  it

emphasizes the importance of the anterior and dorsal prefrontal cortices in the distribution of the

disease-related alterations, as well as a specular asymmetry of gray matter decreases and increases

between the hemispheres. Also, the analyses of schizophrenia and Alzheimer’s disease show that

long-distance co-alterations are able to identify areas involved in pathology and symptomatology.

Moreover, the good concordance between the measure of the mean physical distance and that of

functional  degree  centrality  suggests  that  co-alterations  and connectivity  are  intimately  related.

These findings highlight  the importance of analyzing the physical  distance in pathology, as the

areas characterized by a long mean distance may be considered as hubs with a crucial role in the

systems of alterations induced by brain diseases.

Keywords:  physical  distance, VBM,  network  degeneration,  pathology  spread,  schizophrenia,

Alzheimer’s disease
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1. Introduction

Converging evidence is revealing that the impact of diseases on brain structure is better appreciated

not as the simple spatial distribution of lesions but as a system of interrelated alterations affecting

networks (Evans, 2013). This makes sense in neurodegenerative diseases, where misfolded proteins

frequently spread from one area to another in a prion-like fashion (Goedert et al., 2017; Guest et al.,

2011). This mechanism has been put forward to explain the development of anatomical alterations

observed in such diseases in terms of connectivity  pathways, along which pathological  proteins

(proteinopathy) or other toxic agents can propagate  (Mandelli et al., 2016; Manuello et al., 2018;

Saxena and Caroni, 2011; Seeley et al., 2009; Warren et al., 2013, 2012).  However, the network-

like account of co-alterations seems to provide insights also in clinical conditions that do not have a

neurodegenerative  origin,  such  as  schizophrenia,  autism,  obsessive-compulsive  disorder,

depression, and chronic pain  (Cauda et al., 2018a, 2017, 2014; Tatu et al., 2018; Wheeler et al.,

2017, 2015). Furthermore, transdiagnostic meta-analyses merging data of studies about psychiatric

and  neurologic  diseases  support  the  following  ideas:  i)  the  most  affected  areas  of  the  brain

correspond to the hubs of the functional and structural connectomes (Crossley et al., 2014), and ii)

the distribution and development of co-alterations are mainly explained by functional and structural

connectivity constraints (Cauda et al., 2018b). Therefore, the anatomical substrate of brain disorders

might be better accounted for by patters of co-alterations than by the simple localization of a series

of unrelated alterations.

A relevant feature of brain organization is the physical distance between interconnected areas. The

small-world networks of the human connectome are composed by several clusters of short-range

connectivity, linked together by long-range connections  (Watts et al., 1998; Sporns and Zwi, 2004;

Achard  et al., 2006). Within an evolutionary perspective, the brain evolved to match a trade-off

between  minimizing  wiring  cost  and  allowing  a  fast,  efficient  and  resilient  information  flow

(Bullmore and Sporns, 2012; Laughlin and Sejnowski, 2003). Nodes of long-range connectivity are

to be considered central hubs of the connectome, as they tend to be connected with many other

nodes, which makes them crucial in the interplay between segregation and integration that shapes

brain structure and function (Alexander-Bloch et al., 2013; Bullmore and Sporns, 2012; Liao et al.,

2013).  This  organization  is  likely  to  be  associated  with  the  distribution  patterns  of

neuropathological alterations, as brain hubs with high centrality are also the regions more likely to

be affected by pathology (Crossley et al., 2014). Interestingly, both functional (Alexander-Bloch et

al.,  2013) and  anatomical  covariance  (Bassett  et  al.,  2008) networks  (Bassett  et  al.,  2008) of

diseases  such as  schizophrenia,  have been associated  with altered  values  of physical  distance.  

Higher-order associative brain regions, which are more prone to be targeted by diseases (Crossley et
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al., 2014), are characterized by a long physical distance and a high centrality (Sepulcre et al., 2010).

So, if connectivity influences the development of pathology (Cauda et al., 2018b; He et al., 2007;

Mandelli et al., 2016; Seeley et al., 2009; Zhou et al., 2012), the spatial distribution of the physical

distance of co-alterations might provide an insightful indication of how pathology is distributed

across  the  brain.  It  would  be  also  interesting  to  compare  such information  with  a  measure  of

centrality from a normative connectome, so as to test if there is a correlation between abnormal

distance  and  connectivity.  This  would  help  clarify  the  relationship  between  co-alteration  and

connectivity, as well as understand better the complex systems of alterations in action on the brain. 

In the present study we assessed the mean physical distance of co-alterations and its relationship

with functional degree centrality (DC) in a meta-analytic, transdiagnostic way, so as to identify the

cerebral  areas  that  are  more  involved in  long-range systems of  pathological  modifications.  We

obtained from the BrainMap database both voxel-based morphometry (VBM) and activation data to

be used in a meta-analytic technique based on the Patel’s κ (Cauda et al., 2018a; Mancuso et al.,

2019; Patel et al., 2006).  This transdiagnostic approach was motivated by the assumption that the

mechanisms underlying the phenomenon of co-alteration seem to be related  to normative brain

connectivity  (Buckholtz  and  Meyer-Lindenberg,  2012;  Cauda  et  al.,  2018b).  We  therefore

constructed networks of pathologic co-alterations of gray matter (GM) decreases or increases and

calculated the mean physical (Euclidean) distance for each brain region. Then we compared the

map of physical distance with a map of meta-analytic degree centrality of co-activations, so as to

see whether or not the most connected areas of the functional healthy brain are also those with the

longest co-alterations. Moreover, we investigated the transdiagnostic variability of each voxel and

network, which allowed to assess the convergence of the most important pathologies in respect to

their  distance  of  co-alteration.  Finally,  taking  schizophrenia  and  Alzheimer’s  disease  as

representative examples of a single-pathology approach for psychiatric and neurologic diseases, we

observed their maps of mean physical distance of co-alterations. This investigation showed that the

anatomical  distribution  of  the  mean  physical  distance  can  provide  an  insightful  index  of  the

pathologic spread of single diseases.

2. Materials and methods

2.1 Collection of data

In the present study the Cochrane Collaboration definition of meta-analysis (Green et al., 2008) was

adopted  and  the  selection  of  articles  was  conducted  referring  to  the  “PRISMA  statement”

international  guidelines  (Liberati  et  al.,  2009;  Moher  et  al.,  2009). Neuroimaging  experiments
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eligible for the analysis were retrieved from BrainMap (http://brainmap.org/) (Fox et al., 2005; Fox

and Lancaster, 2002; Laird et al., 2005; Vanasse et al., 2018). BrainMap is an open access online

database constituted by over 15000 neuroimaging experiments and 120000 locations in stereotaxic

brain space. The database has two sections for VBM and functional data sets.

The VBM BrainMap section was queried (November 2017) with the following algorithms:

1)  [Experiments  Context  is  Disease]  AND  [Experiment  Contrast  is  Gray  Matter]  AND

[Experiments Observed Changes is Controls>Patients]; 

2)  [Experiments  Context  is  Disease]  AND  [Experiment  Contrast  is  Gray  Matter]  AND

[Experiments Observed Changes is Patients>Controls]. 

The first step consisted in the codification of the VBM data set following the ICD-10 classification

(World Health Organisation, 1992). Subsequently, full-text articles were analyzed in order to verify

that they conformed with the following criteria:  a) being an original  work published in a peer-

reviewed  English  language  journal;  b)  performing  a  whole  brain  VBM  analysis  technique;  c)

including a matched comparison between a pathological group and a group of healthy subjects; d)

reporting GM decrease/increase changes in the pathological sample; e) adopting a specified VBM

analysis; f) referring to a specific stereotaxic space (e.g. Montreal Neurological Institute space or

Talairach/Tournoux atlas) as regards GM increase/decrease changes. On the basis of these criteria

we deemed eligible  912 experiments  for GM decreases  and 350 for GM increases.  Descriptive

information  of  interest  was  extracted  from each  full-text  article  fulfilling  the  abovementioned

criteria. As a further specification, all the experiments not coded with F (i.e. mental, behavioral and

neurodevelopmental disorders) or G (i.e. diseases of the nervous system) labels were excluded from

the  analysis.  Moreover,  studies  related  to  codes  that  could not  be considered  as  primary  brain

disorders (i.e. F10: Alcohol related disorders; F15: Other stimulant related disorders; F28: Other

psychotic  disorder  not  due  to  a  substance  or  known  physiological  condition;  F91:  Conduct

disorders; G11: Hereditary ataxia;  G43: Migraine; G44: Other headache syndromes; G47: Sleep

disorders; G50: Disorders of trigeminal nerve; and G71: Primary disorders of muscles) were also

excluded. Articles including less than 8 subjects were excluded as well.   This lower bound was

chosen in accordance with the work of Scarpazza and colleagues  (Scarpazza et al., 2015), whose

work demonstrated that VBM experiments based on an equivalent sample should not be biased by

an increased false positive rate. At the end of the selection procedure, 642 remaining experiments

for the GM decreases (for 15820 subjects and 7704 foci) and 204 remaining experiments for the
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GM increases (for 4966 subjects and 2244 foci) were included in the analyses. We also calculated

two single-disease co-alteration networks using only on the data of schizophrenia and Alzheimer’s

disease (see Supplementary Fig. 1 and Supplementary Table 3 and 4).

Finally, a systematic search was conducted through the entire functional data set of BrainMap with

the following query:

[Experiments Context is Normal Mapping] AND [Experiments Activation is Activations Only]

AND [Subjects Diagnosis is Normals].

This search produced 2376 articles, for a total of 13148 experiments, 112 paradigm classes and

68152 subjects (see Supplementary Fig. 1 and Supplementary Table 6).  Finally, we converted all

locations reported in MNI into Talairach space using the Lancaster’s icbm2tal transform (Lancaster

et al., 2007).

2.2 Modeled alteration maps

To  obtain  the  alteration  maps  from the  BrainMap  foci,  we  adopted  the  anatomical  likelihood

estimation (ALE) framework  (Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012) to produce a

modeled alteration (MA) map for each experiment.  To build the MA maps, every focus of each

experiment is taken as the central point of a 3-dimensional Gaussian distribution of probability:

p (d )=
1

σ3√ (2π )
3
e
d 2

2σ 2

In this formula d represents the Euclidean distance between the voxels and each considered focus,

while e indicates the spatial uncertainty. The standard deviation is obtained through the full-width

half-maximum (FWHM), which is defined as follows:

σ=
FWHM

√8 ln 2

2.3 Co-alteration matrix calculation

The brain was partitioned on the basis of an anatomical atlas derived from  the Talairach Daemon

atlas with a resolution of 2 mm  (Lancaster et al., 2000); a co-alteration matrix resulted from all the
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possible  couples  of  brain  areas.  In  the  resulting  ExN  matrix,  each  of  E  row  stands  for  an

experiment, while each of N column reports a node; in the present study the matrix included 642

experiments (VBM contrasts) x 1105 nodes for the decrease condition, and 204 experiments x 1105

nodes for the increase condition. For each experiment, a given brain region was considered to be

altered if the experiment MA map showed 20% or more of significant voxels within the region. The

choice of this threshold is arbitrary, but it has already been proven that it do not affect the results

significantly  (Mancuso  et  al.,  2019).  The  use  of  Patel’s κ  index  allowed  us  to  obtain  the  co-

alteration strength between the nodes  (Patel et al., 2006); then, a probability distribution of joint

alteration occurrences for every couple of nodes was created following a Bernoulli model of data

generation. In other words, given two VOIs (a and b), we can determine all their conjoint states of

alteration as follows: i) a and b are both altered; ii) a is altered and b is not; iii) b is altered and a is

not; iv)  neither  a nor  b are  altered.  Thus,  frequencies  of  these  four  cases  recurring  in  all  the

experiments could be described by the following probability formulas:

ϑ1=P (a=1 , b=1 )

ϑ2=P (a=1 , b=0 )

ϑ3=P (a=0 ,b=1 )

ϑ 4=P (a=0 , b=0 )

These probabilities stand for the conjoint state frequencies of a couple of VOIs (a and b) in the four

possible combinations. Table 1 contains the marginal probabilities.  Obtaining these probabilities

allowed us to use the Patel’s κ index to create the correlation matrix including each couple of brain

areas.  Patel’s  κ informs about the likelihood that two VOIs (a and  b) are co-altered,  namely,  it

expresses the probability that a and b are altered independently of each other. Patel’s κ is defined as

follows:

κ=
(ϑ1−E )

D (max (ϑ 1)−E )+ (1−D )

where

E=(ϑ1+ϑ 2) (ϑ 1+ϑ3 )
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D={
ϑ 1−E

2 (max (ϑ1 )−E )
+0.5 ,if ϑ1≥ E

0.5−
ϑ1−E

2 (E−min (ϑ 1) )
, otherwise

max (ϑ 1 )=min ⁡(ϑ 1+ϑ2 ,ϑ 1+ϑ3 )

min (ϑ1 )=max ⁡(0,2ϑ 1+ϑ 2+ϑ3−1 )

The numerator  of the fraction is  the difference between the likelihood that  a and  b are altered

together and their expected joint alteration in a condition of independence, and the denominator is a

weighted  normalizing  constant.  Min (ϑ1 ) represents  the  maximum value  of  conjoint  probability

p (a ,b ), given p (a ) and p (b ), whereas max (ϑ 1 ) represents the minimum value of p (a ,b ), given p (a )

and  p (b ). Patel’s  κ index returns values ranging from –1 and 1. A value of |κ| that is close to 1

characterizes a high co-alteration. The statistical significance of Patel’s κ is assessed by means of a

simulation of a generative model of data based on the Monte Carlo’s algorithm. Specifically, the

algorithm computes an estimate of p (κ|z) by sampling a Dirichlet distribution and determining the

proportion of the samples in which  κ>e, where  e is the threshold of statistical significance. The

resulting  co-alteration  matrix  returns  values  that  are  proportional  to  the  statistical  relationship

between the patterns of brain areas’ alterations taken into account.

2.4 Functional connectivity matrix

The meta-analytic connectivity was obtained applying the same method for the construction of the

co-alteration matrix (i.e. Patel’s κ index calculated on each couple of brain areas) to the BrainMap

functional database of activations of healthy subjects.

2.5 Measurement of the mean distance and calculation of the meta-analytic degree centrality 

For each significant statistical association between two regions a and b in the co-alteration (or co-

activation) matrix, we calculated the respective physical distance as the Euclidean distance between

the centroids of  a and  b in the Talairach Daemon atlas. Then, for each node, the distance of its

connections was averaged to obtain its mean physical distance, and such value was assigned to the

whole region to obtain a map.
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To calculate the degree centrality (DC) of co-activation on the functional data we employed the

Brain Connectivity Toolbox algorithms (Rubinov and Sporns, 2010). Specifically, DC was defined

as the number of edges incident to a node.

2.6 Comparison between maps

In order to evaluate the similarity between the distance of the co-alteration map and the functional

DC map, the correlation between these maps was calculated. To establish the involvement of each

brain  area  to  the  correlation  between  the  two  maps  we  applied  the  voxels’  contribution  to

correlation  (VCC)  technique  (Mancuso  et  al.,  2019).  This  leave-one-out procedure  recursively

computes the correlation between each couple of maps, subtracting a voxel at every run (the same

voxel for both the maps). To create a map showing the contribution of each voxel to the correlation,

the difference between the correlation value calculated in the whole maps and the correlation value

obtained after the exclusion of each couple of voxels is associated to the singular voxel. Therefore,

it is possible to visualize the extent to which the correlation value decreases or increases depending

on the subtraction of each couple of corresponding voxels from the calculation. The normalized

version  of  this  map  (transformed  in  order  to  range  from  –1  to  1)  represents the  stability  of

correlation and describes the contribution of each voxel to the correlation. This procedure allows to

characterize voxels as positive or negative. The former contribute positively to the correlation, as

their removal decreases the correlation value; the latter contribute negatively to the correlation, as

their removal increases the correlation value.

2.7 Leave-one-pathology-out

The leave-one-pathology-out is  a validation  technique used to  evaluate  both the variability  and

generalizability of measurements. The procedure for the calculation of the mean physical distance

described above was performed several times, each run excluding a different pathology. For all the

outcomes resulting from each measurement  the voxel-wise standard deviation was calculated to

verify the degree of variability and consistency of the different measurements with regard to each

pathology.

3. Results

3.1 Maps of the mean physical distance

The map of the mean physical distance of co-alterations related to GM decreases show higher peaks

in  the  dorsal  and  anterior  regions  of  the  left  prefrontal  cortex  (PFC),  and the  bilateral  medial

temporal  lobe  (MTL).  Left  posterior  insula,  left  postcentral  gyrus,  right  precentral  gyrus  and
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clusters in the bilateral temporal and occipital lobes are also involved. The map of GM increases is

characterized by more extreme values compared to that of GM decreases, thus, despite the low

magnitude of many voxels, certain areas reach higher values than those observed in the other map.

Those areas are the bilateral pre- and postcentral gyri, the right anterior PFC, an inferior cluster in

the bilateral occipital cortex, and the left medial cuneus (Fig. 1).

INSERT FIGURE 1 HERE

The sensorimotor network, the default mode network (DMN), the salience network (SN), the dorsal

attention network (DAN), and the thalamus and basal  ganglia  are the systems where both GM

increases and GM decreases show long distance co-alterations. GM decreases show longer distance

co-alterations than the GM increases in the auditory network and the cerebellum (Fig. 2).

INSERT FIGURE 2 HERE

3.2 Comparison with the map of functional degree centrality

The  functional  meta-analytic  DC map  reveals  the  presence  of  normative  hubs  in  the  bilateral

superior temporal cortex, bilateral occipital cortex, right temporoparietal junction and right inferior

prefrontal gyrus. The systems that present the longer distance co-alterations are the sensorimotor

network, the SN and the auditory network. The correlations between the functional DC map and the

maps of GM decreases  and increases  are  r=0.73 and  r=0.57,  respectively.  The VCC analysis

reports  a high concordance between the functional  degree map and both the GM increases and

decreases mean distance co-alteration maps in most of the voxels, except for those belonging to the

right PFC and the left middle frontal gyrus (MFG) in the GM decreases map, and those belonging to

the left PFC, right MFG, and bilateral temporal cortices in the GM increases map (Fig. 2).

3.3 Leave-one-pathology-out analysis

The  regions  with  the  highest  variability  across  diseases  are  the  bilateral  (but  especially  right)

inferior  frontal  gyrus  (IFG),  the  bilateral  insula,  the  bilateral  temporal  lobe  and  the  bilateral

occipital lobe for the map of GM decreases; the right pre- and postcentral gyri, the left MFG, the

left angular gyrus and the right occipital lobe for the map of the GM increases (Fig. 3). The two

maps  involve  different  systems,  especially  the  sensorimotor  network,  the  DMN,  the  SN,  the
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auditory network and the thalamus and basal ganglia for the GM decreases, and the sensorimotor

network and V1 for the GM increases (Fig. 3).

INSERT FIGURE 3 HERE

Extracting a pathology from our database produced changes that could be unevenly distributed

between the networks. For instance,  the removal  of Parkinson’s disease from the GM decrease

dataset produced changes with the widest spatial variability, but when studies about this pathology

were removed from the GM increase database the produced changes were mostly homogeneous. On

the  contrary,  amyotrophic  lateral  sclerosis,  Alzheimer’s  disease  and  schizophrenia  were  the

disorders  whose  removal  produced  the  most  similar  impact  regarding  the  spatial  variance  of

changes on both the maps of GM increases and decreases (Fig. 3). These differences cannot be

explained solely by the number of experiments of each pathology in the database, as disorders well

represented  as  schizophrenia  and Alzheimer’s  disease had a  minor  impact  on the  results  when

removed  compared  to  other  less  represented  disorders  (see  Supplementary  Tables  1,  2  and 5).

Although  analytic  comparisons  between  disorders  cannot  be  made,  because  of  the  uneven

distribution  of  experiments,  these findings can be considered as  an indication  of how different

pathologies are characterized by various patterns of co-alteration distances.

INSERT FIGURES 4 AND 5 HERE

3.4 Schizophrenia and Alzheimer’s disease

With regard to the map of GM decreases of schizophrenia (Fig. 4), the left auditory cortex shows

the longest mean distance co-alterations (and, albeit less strongly, the right auditory cortex is also

involved). Small clusters can be found in the right superior temporal sulcus (STS). The bilateral

insula is widely involved, as well as the left IFG (especially in its posterior portion), the bilateral

anterior cingulate cortex (ACC), the MTL (especially the left one), and the bilateral caudate. The

map of GM increases shows long distance co-alterations mainly in the left putamen.

With  regard  to  the  map  of  GM  decreases  of  Alzheimer’s  disease  (Fig.  5),  long  distance  co-

alterations characterize the caudate (especially the left one), the MTL (especially the left one), the

bilateral IFG pars orbitalis, the left orbital cortex, certain clusters in the bilateral anterior insula, and

a cluster in the STS. In turn, the map of GM increases shows long distance co-alterations just in the

bilateral MTL (especially the left one).
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4. Discussion

4.1 Spatial distribution of the mean distance of co-alterations

This study investigates, for the first time, the spatial  distribution of the physical distance of co-

alterations, highlighting that this type of measurement is able to provide insightful indications about

the  distribution  patterns  of  GM  alterations  related  to  brain  diseases. Findings  show  a  spatial

distribution of the mean physical distance of transdiagnostic co-alterations that can vary between

areas in interesting and meaningful ways. For instance, GM decreases exhibit longer distance co-

alterations in the left hemisphere compared to the right one (Fig. 1). Intriguingly, this suggests an

asymmetry in the pathological involvement of the left and right hemispheres, as the former appears

to show more global patterns of co-alterations, while the latter appears to be characterized by more

local covariances. The left dorsal and anterior PFC tend to co-alter with distant areas. In addition,

the lateral parts of PFC show low transdiagnostic variance (Fig. 3), which means that they present

long-range co-alterations related to GM decreases in a wide range of pathologies. This is consistent

with the low mean distance variability exhibited by the DAN (Fig. 3), as well as with the clinical

observation of executive functions deficits in many diseases (Goodkind et al., 2015; McTeague et

al., 2016). On the contrary, the left medial anterior PFC, and especially a part of left medial dorsal

PFC, display high variance, thus suggesting that the medial PFC may be involved in long-range co-

alterations in several disorders.

The  MTL shows  long-range  co-alterations  related  to  GM decreases.  Given  its  involvement  in

memory and learning,  it  is likely for it  to be co-altered with many other associative areas in a

variety of diseases, causing symptoms of memory loss, for instance in neurodegenerative conditions

such as Alzheimer’s disease, or symptoms of inappropriate memory and limbic responses that are

frequently  observed  in  the  ruminations  characterizing  depression  (Sheline  et  al.,  2009).

Significantly, the MTL is part of the DMN  (Andrews-Hanna et al., 2010; Buckner et al., 2008),

which is one of the most involved brain networks in long-range GM decreases (Fig. 3).  

It is interesting to observe that the map of the mean physical distance of co-alterations related to the

GM increases shows higher  values in  the right  hemisphere than in the left,  in  spite  of the left

prevalence of the map related to the GM decreases. This difference is particularly noted in the

dorsal and anterior lateral  PFC, which is a region of significant longer co-alterations in the left

hemisphere of the GM decreases’ map, while in the GM increases’ map this region presents longer

co-alterations  in  the  right  hemisphere  (Fig.  1).  Such  an  asymmetry  between  the  maps  of  GM

increases and of GM decreases might be due to an effect of compensation (Cauda et al., 2014). In

other  words,  while  the  left  PFC  is  pathologically  involved  in  a  network  of  long-distance  co-

alterations of GM decreases the right PFC could compensate the disruption of its left homologue by
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being involved in a network of long-range increases. However, it cannot be excluded that both GM

increases and GM decreases are primary effects of the disease itself. Future studies are needed in

order  to  corroborate  these  findings  and  to  explain  the  mechanism  underlying  this  interesting

asymmetry.

Other areas of long-distance co-alterations related to the map of GM increases are the pre- and

postcentral gyri, particularly within the right hemisphere. Indeed, the sensorimotor network is one

of the most involved systems in the map of GM increases (Fig. 3). However, these regions are also

characterized by high transdiagnostic variance (Fig. 2). Overall, the sensorimotor network exhibits

long-distance  co-alterations  related  to  the  map  of  GM  increases,  but  its  involvement  is  not

consistent across diseases; in turn, the anterior and dorsal lateral PFC are characterized by a greater

transdiagnostically involvement in both the maps of GM decreases (in the right hemisphere) and of

GM increases (in the left hemisphere).

4.2  The  map  of  physical  distance  of  co-alterations  resembles  that  of  functional  degree

centrality

The investigation of the relationship between centrality and distance) provides evidence of a good

convergence between the map of co-activation DC and those of physical distance of co-alteration,

especially with the one related to the GM decreases. This strongly suggests that brain functional

hubs are also the regions whose mean distance of co-alteration is longer. Save for the PFC, most of

the cortical areas contribute positively to the correlation between functional DC and co-alteration

distance. It should be observed that the frontal voxels in the dorsal and anterior PFC displaying low

convergence are not characterized by long transdiagnostic distance. On the contrary, the dorsal and

anterior PFC show high convergence between co-activation centrality and co-alteration distance in

the left hemisphere for the GM decreases, as well as in the right hemisphere for the GM increases,

where long-distance co-alterations are found. In general, regions of long-distance co-alteration, such

as the pre- and postcentral gyri and the insula, exhibit high consistency with the map of functional

centrality  (Fig.  2).  Of  note,  pre-  and  postcentral  gyri  are  found  to  be  hubs  of  long-distance

connectivity  when short-rage connections  are subtracted from the connectome  (Esfahlani  et  al.,

2019).

One of the fundamental issues in the study of co-alterations is to understand the mechanism that is

responsible for morphological co-variations of specific sets of areas in relation to a pathological

process. Our analyses provide evidence of an interesting association between the distance of co-

alterations  and the  functional  DC. As brain  hubs are  supposed to  be preferentially  targeted  by

pathological  alterations  (Buckner  et  al.,  2009;  Crossley et  al.,  2014; de Haan et  al.,  2012),  the
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finding of a convergence between functional DC distribution and long-distance co-alteration areas

suggests that brain regions which are more likely to be affected by diseases are also more likely to

be  co-altered  with  distant  areas.  A  possible  explanation  might  be  that  such  regions  are  more

susceptible  to  metabolic  stress  in  virtue  of  their  numerous  connections  and  intense  work  of

integration of different information (Crossley et al., 2014). Although capable of explaining the high

rate  of damage undergone by hubs, this  model  alone fails  to explain our findings: it  would be

unclear  why  areas  of  high  metabolic  stress  should  be  co-altered  with  other  distant  regions.

Conversely,  the  transneuronal  spread  hypothesis  (Zhou  et  al.,  2012),  which  accounts  for  the

pathologic progression with the diffusion of toxic agents such as misfolded proteins, seems to be

more up to the task.

The idea  that  misfolded proteins  are  responsible  for  the  pathological  spread has  found several

supporting evidence in studies about neurodegenerative diseases (Ahmed et al., 2016; Goedert et

al., 2017; Guest et al., 2011; Iturria-Medina et al., 2014; Raj et al., 2012; Seeley et al., 2009; Warren

et  al.,  2013,  2012;  Zhou  et  al.,  2012),  but  has  also  been  putatively  extended  to  psychiatric

conditions. In fact, insoluble aggregates of disrupted-in-schizophrenia 1 (DISC1) were associated to

sporadic  cases  of  schizophrenia,  bipolar  disorder  and  depression  (Korth,  2012;  Leliveld  et  al.,

2008). In addition, in vitro studies have demonstrated that aggregates of DISC1 are able to transfer

between cells via tunnelling nanotubes  (Zhu et al., 2017). These aggregates can selectively affect

dopaminergic brain functioning at pre-synaptic and post-synaptic level (Dahoun et al., 2017; Tropea

et al., 2018), and, as they are related to oxidative stress (Trossbach et al., 2016), the transneuronal

spread  hypothesis  is  not  incompatible  with  the  metabolic  stress  model.  On  the  contrary,  both

pathological mechanisms might be necessary for a hub to be damaged (Saxena and Caroni, 2011).

According to this view, brain hubs are more vulnerable to deterioration, and in turn they can spread

the alterations to the connected areas. Furthermore, given their high degree of connectivity and their

role of integration of different clusters, hubs are generally linked to many distant regions, and this

makes them ideal for spreading pathological alterations along several long-range connections.

It has also been suggested that alterations could propagate by means of a trophic factor release

failure (Fornito et al., 2015). In other words, the areas connected to the damaged region might suffer

morphological GM decreases because they cease to receive trophic factors from them (Chao, 2003),

or might reduce activity because of the lack of inputs, which could disrupt their activity-dependent

trophic factors synthesis and release (Blöchl and Thoenen, 1995; Gall and Isackson, 1989; Kohara

et al., 2001), thus leading to a cascade of anatomical decreases. A disruption of the balance of the

trophic mechanism, in form of an enhanced trophic release or a lack of growth-inhibitory signals

(Perlson et al., 2010), may also account for the generations of networks of GM increases. Of course,
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the effect of morphometric increase might be of iatrogenic nature (Hafeman et al., 2012; Navari and

Dazzan, 2009); however, this general explanation is not able to take into account the similarity

between hubs of long-distance increase to that of FC. Thus, we suggest that a mixture of metabolic

stress,  toxic  spread,  trophic  factor  release  disruption  and  shared  vulnerability  to  genetic  and

environmental factors influence the distribution of both decrease and increase co-alteration along

connectivity  pathways  (Cauda et  al.,  2019). Therefore,  brain hubs might  be not only extremely

vulnerable to disorders but also substantially responsible for the long-range spread of morphological

changes. 

4.3 Analyses of schizophrenia and Alzheimer’s disease

With regard to schizophrenia (Fig. 4), areas with long-distance co-alterations of GM decreases have

auditory  and  linguistic  roles;  a  finding  that  is  in  accordance  with  the  auditory  hallucinations

affecting a portion of these patients (García-Martí et al., 2008; Modinos et al., 2009; Neckelmann et

al., 2006; Plaze et al., 2006). Also the caudate and the MTL exhibit long-distance co-alterations, as

well as the SN, which is in line with the involvement of this network in the disease (Cauda et al.,

2018a;  Kapur,  2003;  Liddle  et  al.,  2016;  Manoliu  et  al.,  2014;  Palaniyappan  et  al.,  2013;

Palaniyappan  and Liddle,  2012;  Uddin,  2015;  White  et  al.,  2010).  Long  co-alterations  of  GM

increases are found especially in the left putamen, which is coherent with a study that found an

increased putamen characterized by leftward asymmetry in schizophrenic patients  (Okada et al.,

2016).

With regard to Alzheimer’s disease (Fig. 5), long-distance co-alterations of GM increases and GM

decreases  are  found especially  in  the  left  hippocampal  formation,  which  is  consistent  with  the

assumption that the hippocampus may be the pathological epicentre, as well as with the observation

that the left hemisphere is more affected than the right one  (Braak et al., 1993; Buckner, 2005;

Janke et al., 2001; Loewenstein et al., 1989; Manuello et al., 2018; Pievani et al., 2011; Thompson

et al., 2007, 2003, 2001). Other regions with long-distance co-alterations of GM decreases are the

caudate and the insula, with a major involvement in the left hemisphere. The finding that the left

MTL is involved in long-distance co-alterations both of GM increases and of GM decreases in

intriguing, and might be putatively explained by the effect of compensation, as if this region could

be engaged in a system of increases that try to counteract to the damages induced by the disease.

Although small posteromedial cortical clusters can be appreciated in the map of GM decreases (Fig.

5), the absence of large significant neocortical clusters might be due to the modest sensitivity of

VBM to changes in the cortical  ribbon compared to those in the hippocampal region  (Diaz-De-

Grenu et  al.,  2014).  As we have  seen,  the  measurement  of  the  mean physical  distance  of  co-
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alterations can identify clinically relevant areas, as they are associated with typical symptoms of

brain  disorders,  and  even  the  epicenters  of  pathological  diffusion.  In  this  regard,  it  should  be

emphasized  that  our  analysis  is  considerably  different  from  other  volumetric  studies:  our

methodology  does  not  evaluate  the  size and number  of  alterations,  but  only if  an alteration  is

associated with nearby or distant modifications. The two measures, therefore, do not necessarily

converge, and the fact that our findings are in line with those provided by the scientific literature is

a strong indication that the mean physical distance of co-alterations is an insightful instrument for

detecting pathological features of diseases.

4.5 Limitations

A possible limitation of our analyses is that VOIs were defined on the basis of an anatomical atlas;

therefore, they may fail to account for more fine-grained distinctions in heterogeneous regions. This

choice  aimed to achieve  a  higher  statistical  power,  as a  voxel-wise technique  may leave  some

voxels uncovered by a sufficient number of samples. It could be argued that in a parcellation the

size of the ROIs determines the minimum spatial resolution for the detection of a hub, but the use of

a parcellation with small volumes would have reduced the statistical power in under-represented

brain regions. We therefore chose to use an atlas that previously proved itself to fit the functional

connectivity better than artifactual parcellations  (Mancuso et al., 2019). Still, choosing a different

anatomical atlas might have produced slightly divergent results.

Another limitation concerns the practical unfeasibility to derive from the BrainMap repository data

about  the  medication  status  of  the  large  database  of  patients  that  entered  this  meta-analysis.

Moreover, our search did not differentiate between gender and age. Therefore, analyses were unable

to evaluate the effects of such variables on measuring the mean physical distance of co-alterations.

Given the effect  of some psychotropic drug of GM volume  (Hafeman et al.,  2012; Navari  and

Dazzan, 2009), and that age and sex have been recently reported to be associated with asymmetries

in cortical thickness (Guadalupe et al., 2017; Kong et al., 2018), it could be worth investigating how

the symmetry of the maps of mean physical distance of co-alterations related to GM increases and

GM decreases can differ with respect to these variables.

Finally, we calculated the distance between two areas considering the length of the straight line

connecting their centroids, but due to curvilinear anatomical constraints the real axonal path linking

them is supposed to be probably longer. Moreover, the structural connection between two regions

could be indirect, so that the topological distance too could have been useful to provide information

about their proximity. However, we were mostly interested in observing whether or not areas are

co-altered with far away regions (e.g. if a frontal area is co-altered only with the frontal cortex or
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even with regions of different lobes). From this perspective, the accurate estimation of the length of

the path connecting two regions is not particularly important, though it could be valuable for the

transneuronal spread hypothesis.

 

6. Conclusion

This study provides the maps of the regions characterized by long mean physical distance of co-

alterations  related  to  both  GM decreases  and  GM increases.  Our  approach  has  produced  four

important findings for the understanding of brain diseases. First, when the brain is affected by a

pathological process, the anterior and dorsal PFC tend to be involved in a network of long-distance

co-alterations, and thus they are to be considered as key hubs of pathology. Second, areas of the left

hemisphere seem to be prevalently co-altered in GM decreases, while areas of the right hemisphere

appear to be more co-altered in GM increases. This suggests that the two sides of the brain are

differently affected by pathological processes. Third, on the basis of the analyses of schizophrenia

and  Alzheimer’s  disease,  we  have  found  that  the  measurement  of  the  mean  physical  distance

between co-alterations is able identify the areas that are clinically relevant for the diseases. Lastly,

hubs of long-distance co-alteration are similar to those of functional connectivity DC, suggesting a

relation  between  co-alteration  and  normative  connectivity.  The  mean  physical  distance  of  co-

alteration, therefore, proves itself to be a useful index capable of providing new insights into the

distribution patterns of morphological alterations caused by brain disorders.
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TABLES

VOI b

VOI a
Altered Unaltered

Altered ϑ1 ϑ3 ϑ1+ϑ 3
Unaltered ϑ2 ϑ 4 ϑ2+ϑ 4

ϑ1+ϑ 2 ϑ3+ϑ 4 1

Table 1

LEGENDS OF TABLES

Table 1: Marginal probabilities between altered and unaltered regions.

LEGENDS OF FIGURES

Figure 1. Parametric mapping of the mean distance of co-alterations, divided for decreases and

increases. Higher values indicate increasing mean distance.

Figure 2. Comparison between maps of mean distance and the functional degree centrality.  Top

left panel: surface mapping of the functional  meta-analytic  degree centrality  (functional  MDC)

obtained with co-activations.  Higher  values  indicate  higher  degree centrality.  Top right panel:

radar chart comparing the average values of mean distance of decreases, increases and of functional

meta-analytic degree centrality for each of the following networks: visual networks 1, 2 and 3 (V1,

V2 and V3), orbitofrontal cortex (OFC), cerebellum, dorsal attentional network (DAN), thalamus

and basal ganglia, auditory network, premotor network, salience network, default mode network

(DMN), ventral attentional network (VAN), and sensorimotor network. Bottom panel: parametric

mapping of the voxels’ contribution to correlation analysis between the functional meta-analytic

degree centrality map and the mean distance co-alteration maps of decreases and increases. Positive

values indicate areas of concordance between the maps, negative values indicate discordance.

Figure 3. Top panel: surface mapping of the transdiagnostic variance of the mean distance maps of

decreases and increases. Higher values indicate higher variance, that is, the voxels whose value in

the mean distance map is more variable across pathologies. Bottom left panel: spatial variability of

the changes introduced removing each pathology from the database. Higher values represent the
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pathologies whose changes were more uneven across resting state networks. Bottom right panel:

values  of  variance  of  the  mean  distance  of  decreases  and  increases  divided  by  resting  state

networks:  isual networks 1,  2 and 3 (V1, V2 and V3),  orbitofrontal  cortex (OFC), cerebellum,

dorsal attentional network (DAN), thalamus and basal ganglia, auditory network, premotor network,

salience  network,  default  mode  network  (DMN),  ventral  attentional  network  (VAN),  and

sensorimotor network.

Figure 4. Parametric mapping of the mean distance of co-alterations in schizophrenia, divided for

decreases and increases. Higher values indicate increasing mean distance.

Figure  5. Parametric  mapping  of  the  mean  distance  of  co-alterations  in  Alzheimer’s  disease,

divided for decreases and increases. Higher values indicate increasing mean distance.
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