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ABSTRACT 

While polygenic risk scores (PRSs) have been shown to ​identify a small number of individuals               

with increased clinical risk for several common diseases​, non-genetic factors that change during             

a lifetime, such as lifestyle, employment, diet, and pollution, have a larger role in clinical               

prediction. We analyzed data from ​459,613 participants of the UK Biobank ​to investigate the              

independent and combined roles of demographics (e.g., sex and age), 96 environmental            

exposures, and common genetic variants in atrial fibrillation, coronary artery disease,           

inflammatory bowel disease, and type 2 diabetes. We develop an additive modelling approach to              

estimate and validate a poly-exposure score (PXS) that goes beyond consideration of a handful              

of factors such as smoking and pollution. PXS is able to identify groups with high prevalence of                 

the four common disease ​comparable to, if not better, than the PRS. Type 2 diabetes has the                 

largest discrepancy in PXS and PRS performance, ​defined as the maximum area under the              

receiver-operator curve (AUC) (PXS AUC of 0.828 [0.821-0.836], PRS AUC of 0.711            

[0.702-0.720]). Most importantly, we show that ​PXS identifies individuals that have low genetic             

risk but high overall risk for disease. ​While PRS is useful for screening genetically exceptional               

individuals in a time-invariant way, ​broader consideration of multiple non-genetic and           

modifiable factors is required to fully translate risk scores to the bedside for precision medicine ​.               

All results and the PXS calculator can be found in our web application             

http://apps.chiragjpgroup.org/pxs/​.  
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INTRODUCTION 

Recent advances in sequencing technologies have led to an explosion of genome-wide            

association studies (GWASs) that have identified thousands of genetic loci associated with            

complex traits and diseases in humans​1​. At the same time, it has become widely accepted that                

human traits and diseases are also heavily influenced by environmental or non-genetic factors.             

However, studies of non-genetic exposure factors often only consider a single or handful of              

factors at a time ​1​. Further still, most research is siloed, examining either genetics, demographics              

(e.g., age and sex), or exposure variables associated with disease. The relative predictive power              

of basic demographic and non-genetic variables alone (and together) is mostly unknown. With a              

few exceptions​2​, rarely have investigations considered multiple non-genetic and genetic factors           

simultaneously, possibly due to the lack of data resources which have both genetic information              

and a large set of environmental exposure variables.  

 

While genome-wide polygenic risk scores (PRS) have been shown to identify individuals with             

significantly increased clinical risk for several common diseases​3,4​, a comparable study on            

combined multiple exposure/non-genetic and demographic factors does not exist. For example,           

Park et al. report an “environmental risk score” for serum lipid ​(total cholesterol, high-density              

lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides), but          

only pollutants are considered in the score​5​. On the other hand, “lifestyle” scores to measure               

modifiable factors can be used (e.g. Khera et al.​6​), but it is a challenge to analytically define                 

“lifestyle”​7​. ​Furthermore, it is unclear if the combined poly-exposure additive effect can            

outperform any single exposure alone or genetic variants for predicting risk of common diseases.  
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Thus, we term the “poly-exposure score” (PXS) and the “poly-demographic score” (PDS). Using             

self-reported and hospital admission information from 459,613 total participants of the UK            

Biobank, we developed PXSs and PDSs that combines up to 96 independent exposure and 42               

demographic variables for atrial fibrillation (AF), coronary artery disease (CAD), inflammatory           

bowel disease (IBD), and type 2 diabetes (T2D). We demonstrate the ability of both PXS and                

PDS to ​identify groups with high prevalence ​of disease and highlight the importance to consider               

both genetic and non-genetic factors in genetics research and potentially clinical care. 
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RESULTS 

Poly-exposure score captures more information than any environmental exposure alone  

In summary, we conducted an eXposure-Wide Association Study (XWAS) with 96 exposure            

variables in the training set of 104,623 individuals (Figure 1, Methods) ​7–9​. These exposure             

variables include indicators of alcohol, air pollution, noise pollution, dietary factors, dietary            

nutrients, early life factors, education levels, employment status, household information, physical           

activity, sleeping habits, smoking, and area-level indicators of a geography/tract, including           

Townsend index (See Supplementary Table 1 for the entire list). We refer to the entire array of                 

potential environmental or non-genetic factors as ‘exposures’.  

 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?2cJb7C
https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


 

Figure 1: Study design. ​White participants with complete demographic data (n=459,613) were            
randomly divided into training, validation, and testing sets (cohorts A, B and C). A) For each of                 
the four diseases, the initial univariate XWAS analysis and fitted demographic model were             
conducted in cohort A. B) Exposure variable selection was conducted in the cohort B. C) Testing                
the performance of all three scores was conducted in cohort C. (PDS: poly-demographic score,              
PRS: polygenic risk score, PXS: poly-exposure score.) 
 

Depending on the amount of missing information, each XWAS regression analysis had a             

different sample size, with a mean of 102,911 individuals ( ​se ​=232 individuals) (Supplementary            

Table 1). There were 37 significantly associated exposure variables with AF, 49 with CAD, 19               

with IBD, and 74 with T2D (Figure 2A). In AF, CAD, and T2D, “Major dietary changes in the                  

last 5 years: Yes, because of illness”, “Usual walking pace: Slow”, and “Time spend watching               

TV” were among the most significantly associated responses and were positively associated with             

the diseases. In IBD, “Major dietary changes in the last 5 years: Yes, because of illness”, “Never                 

eat dairy products”, “Getting up in the morning: not very easy” were the top most significant                

positively associated responses.  
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Figure 2: EXposure Wide Association Study (XWAS) and variable selection of each            
disease. ​A) eXposure-wide Association Study findings. Each exposure variable was regressed to            
each disease in group A with sex, age, and PC1-40 as covariates. The y-axis is the negative log                  
of the ​p​-value after FDR adjustment. The top most significant responses are labeled, with the               
direction of correlation in reference to the baseline response (Supplementary Table 1) in             
parenthesis. B) For each disease, we conducted variable selection on the significant exposure             
variables from XWAS in cohort B. The XWAS coefficients from cohort A are represented by a                
triangle, while the new weighted beta coefficients from the stepwise regression in cohort B are               
represented by a circle. Variables eliminated from selection are more transparent compared to             
those that were not. EXposure variables are colored by category and are ordered in the same way                 
in both A and B. 
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We executed the variable selection step in group B (Figure 1). Depending on the disease,               

validation sample sizes ranged from 32,862 (T2D) to 76,966 (IBD) (Table 1). After selection, the               

number of significant exposures independently associated with each disease dropped to eight for             

AF and CAD (8.33%), three for IBD (3.12%), and 14 for T2D (14.58%) (Methods, Figure 2B,                

Supplementary Tables 2-5). The direction of effect was mostly consistent in the responses that              

were retained (78.95%, 84.21%, 81.82%, and 86% of responses for AF, CAD, IBD, and T2D,               

respectively). Variables retained for the diseases included indicators such as alcohol           

consumption, diet, early life factors (e.g. comparative body size at age 10), household income              

(e.g.​, average total household income before tax​), physical activity, air pollution, sleep, and             

smoking activity. In the final logistic regression model with the selected variables, at least one               

response from each category was associated ( ​p ​<0.05) with the disease. In our testing set (group               

C), the PXS, which encompasses non-genetic factors/exposures independently associated with          

disease, had a higher performance ( ​defined as the maximum area under the receiver-operator             

curve [AUC]), than that of any single exposure variable (Figure 3). Compared to the average               

AUC of individual exposures, the AUC of PXS for AF, CAD, IBD, and T2D increased by 4.6%,                 

20.7%, 13.2%, and 22.0%, respectively (Figure 3).  

 

Table 1: Disease prevalence. ​The number of individuals with complete exposure responses in             
validation and testing sets for each of the four diseases. (AF: atrial fibrillation, CAD: coronary               
artery disease, IBD: inflammatory bowel disease, T2D: type 2 diabetes.) 
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Figure 3: Combined effect of exposures is greater than any exposure alone. The blue               
horizontal line represents the AUC of PXS in the testing set with PXS, sex, and age as                 
independent variables in group C. Each point is the AUC of an individual eXposure adjusted by                
age and sex. The eXposure variables are colored by category and are ordered in the same way in                  
Figure 2. 
 

Additive non-genetic/eXposure factors play a more important role than genetics in disease            

prediction. 

We compared the matched case-control area under the ROC curve (AUC) for PDS, PXS plus               

PDS, PRS plus PDS, and combined scores (PDS+PRS+PXS) in cohort C (Table 1, Figure 4,               

Supplementary Table 7). In all diseases except for IBD, PXS prformed better than PRS. T2D had                

the largest discrepancy in performance (PDS AUC of 0.673 [0.663-0.683], PRS AUC of 0.711              
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[0.702-0.720], PXS AUC of 0.828 [0.821-0.836]). A “combined” score of the sum of PDS, PXS,               

and PRS performed better than any score alone (AUC of 0.834 [0.827-0.841] in T2D).  

 

Figure 4: AUC of each score. Error bars represent the 95% confidence interval for each disease                
model. (PDS: poly-demographic score, PRS: polygenic risk score, PXS: poly-exposure score,           
AF: atrial fibrillation, CAD: coronary artery disease, IBD: inflammatory bowel disease, T2D:            
type 2 diabetes.) 
 

Next, we compared the ability of exceptional tails of each score to identify individuals at               

substantially greater odds of disease (as in Khera et al.​3​). We found that the top one percent of                  

PXS had much higher prevalence and odds of disease than PDS or PRS in all four diseases                 

(Supplementary Figure 1, Table 2) . In all diseases except for IBD, the median of the PDS was                  

greater than PXS in the cases compared to controls (Supplementary Figure 2). Taking T2D as an                

example, we found that individuals in the top one percent of PXS had a greater than 15 fold                  

greater odds of T2D relative to the remaining population, whereas individuals in the top one               

percent of PRS had a 3 fold greater odds relative to the remaining population (Table 2). The top                  

percentile of PXS also had a much higher prevalence of T2D (53.27%) compared to PRS               

(15.24%) (Figure 5). We also found that the median percentile of PDS and PXS was greater than                 

PRS in T2D cases versus controls (73%, 89%, and 67%, respectively) (Figure 5).  
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Figure 5: Relationship between PDS, PRS, PXS and Type 2 Diabetes. ​A) We binned              
participants in group C by their PDS (orange), PRS (green), or PXS (blue) percentiles, and we                
estimated the prevalence of T2D within each bin. B) Prevalence of disease versus PDS, PRS, and                
PXS. C) Distribution of PDS, PRS, and PXS in T2D cases and controls. For each boxplot, the                 
middle horizontal line represents the median, and the top and bottom of each box represent the                
25th and 75th percentiles. Dots represents outliers. The median PDS, PRS, and PXS percentile              
scores were 73, 67, and 89, respectively, while the median PDS, PRS, and PXS percentile scores                
for individuals without T2D were 49, 50, and 48, respectively. (PDS: poly-demographic score,             
PRS: polygenic risk score, PXS: poly-exposure score, T2D: type 2 diabetes.) 
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Table 2: Odds ratios (ORs) of disease for the top percentile of the PRS, PXS, and PDS. ​ORs                  
of the top percentiles compared to the remaining population in group C for each disease (e.g., the                 
last row represents OR for the top 0.5% of the population versus the remaining 99.5% of the                 
population). ( ​AF: atrial fibrillation, CAD: coronary artery disease, IBD: inflammatory bowel           
disease, T2D: type 2 diabetes.) 
 

PXS identifies individuals with high disease odds ratio but low PRS. 

Next, we measured the correlation between PXS and PRS in each disease to estimate the amount                

of independent information provided by each and aggregate “gene-exposure correlation”. The           

correlations between PXS and PRS were modest (Pearson correlation coefficient less than 0.1),             

but significantly non-zero, for each of the diseases except for IBD (Table 3). We investigated               

whether individuals with a high PXS would also have a high PRS. For each percentile of PXS,                 

we calculated the average PRS percentile for individuals in that bin, and vice versa. Taking type                

2 diabetes as an example, we found that the average PXS percentile of individuals in the top PXS                  

percentiles were higher than that of the lowest percentiles (Figure 6). However, the average PRS               

percentile in the top percentiles of PXS were modest (an average PRS percentile of 59.27 in top                 

1% of PXS). Individuals in the top one percentile of PXS have a T2D odds ratio of 15.54                  

compared to the rest of the population (Table 2), but their risk for disease is masked if only PRS                   
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is considered. The general results were upheld in AF and CAD as well (Supplementary Figure               

3). 

 

Table 3: Correlation between PRS and PXS. ​(PCC: Pearson correlation coefficient, AF: atrial             
fibrillation, CAD: coronary artery disease, IBD: inflammatory bowel disease, T2D: type 2            
diabetes.) 
 

 

Figure 6: PXS identifies individuals with high odds for individuals with genetically low risk              
for T2D. ​A) The average PRS percentile of individuals in each PXS percentile. B) The average                
PXS percentile of individuals in each PRS percentile. Error bars represent the standard error of               
the data. (T2D: type 2 diabetes, PXS: poly-exposure score, PRS: polygenic risk score) 
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DISCUSSION 

Common diseases are well recognized to be due to a combination of genetic and environmental               

exposure factors. However, while thousands of genetic loci have been identified to be associated              

with complex diseases, nothing comparable has been executed for environmental exposures.           

Furthermore, researchers combine thousands of genetic markers through a polygenic risk score            

(PRS) using methods that accounts for linkage between SNPs ​10​, but studies on exposures remain,              

for the most part, focused on a small set of exposures at a time without much consideration for                  

dense correlation between exposures. 

 

In our study, we term the poly-exposure score (PXS), which encompasses information from             

many exposures simultaneously. Analogous to PRS, which are estimated from GWAS summary            

statistics​10​, PXSs can be derived from multivariate XWAS summary statistics. PXSs are simple             

to estimate and translate for clinical care, and much of the non-genetic exposure information is               

less invasive to collect than genetic information. To demonstrate the simplicity of the PXS score,               

we have created an interactive resource ( ​http://apps.chiragjpgroup.org/pxs/ ​) to calculate PXS for           

each of the diseases.  

 

Further still, our investigation serves as a reminder of the premium importance of demographic              

factors, such as age and sex, in risk prediction. While most risk models or associative approaches                

include demographic variables, new models are often presented without a comparison of simpler             

“baseline” models (e.g. Khera et al.​3​), which may mislead their consumers and pose a challenge               

for replication. 
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The results of our study have many implications. First, we show that PXSs are able to predict                 

disease outcome better than any single exposure alone (Figure 3), but PDS, or age and sex,                

describe most of disease risk. Taken together, this ​supports the paradigm that the exposome,              

which refers to the totality of environmental (non-genetic) exposures, play a large role in              

diseases​11,12​. Rather than studying the relationship between individual exposure variables with a            

disease, we should investigate the effects of “poly-exposures” through PXSs.  

 

We also demonstrate that PXS performs as well as, if not better than, PRS in identifying                

individuals with the highest odds for diseases. ​For example, in type 2 diabetes, individuals in the                

top one percent of PXS had an odds ratio of 15.5 (versus the rest of the population), whereas                  

individuals in the top one percent of PRS had an odds ratio of 3.03 (Table 2). Furthermore, we                  

found that type 2 diabetes occurs with a staggering prevalence of 53.27% in the top percentile of                 

PXS, compared to prevalences of 15.24% and 14.31% in the top percentile of PRS and PDS,                

respectively (Figure 5). In T2D, the median PDS, PRS, and PXS percentile scores were 73, 67,                 

and 89, respectively, while the median PDS, PRS, and PXS percentile scores for individuals              

without T2D were 49, 50, and 48, respectively, in individuals without T2D.  

 

Most importantly, our results suggest that the PXS can capture crucial information missed by              

PRS. While PXS and PRS are significantly correlated with each other, individuals with a high               

PXS may not have a high PRS, and vice versa (Figure 6). PXS is able to identify individuals with                   

high disease odds ratio but low PRS. Taken together, ​our results indicate that while PRS is useful                 
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for screening individuals with high genetic risk, for most individuals PRS conveys only a              

fraction of the story in total disease risk.  

 

Through our XWAS analysis, we were also able to replicate several documented epidemiological             

associations between diseases and exposures. ​In type 2 diabetes (T2D), observational studies            

have implicated “lifestyle” exposures, which include behaviors such as ​physical inactivity ​13 and            

smoking​14​, to be associated with T2D. Further, environmental exposures such as air pollutants ​15             

have also been positively associated with T2D; however, their associations are weaker (smaller             

effect sizes) than smoking or physical activity. In our analysis, the relationship between T2D and               

higher air pollution (PM10) and physical inactivity (“Time spent watching TV”, “Frequency of             

stair climbing in the past 4 weeks”, etc.) were confirmed. We also confirmed previous results               

that showed positive associations of smoking with AF ​16 (“Past smoking history”), T2D ​14 (“Ever             

smoked”), and CAD ​17 (“Past tobacco smoking”). The relationship between smoking and IBD is             

complex​18​, but our results suggest a positive association between IBD and history of smoking              

(“Past smoking history”). We also uncovered, to the best of our knowledge, novel associations              

between exposures and each of the diseases. Notably, the response “No” for the variable              

“Maternal smoking around birth” was significantly and negatively associated with AF, CAD, and             

T2D in reference to the response “Yes” (Supplementary Table 1). 

 

Using time-dependent and self-reported non-genetic factors and exposures to predict diseases has            

several limitations. In many cases, multiple exposure variables in the UK Biobank are correlated              

and/or measure similar responses. For example, there are several variables in the UK Biobank              
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that measure alcohol consumption, including “Alcohol drinker status”, “Alcohol intake versus 10            

years previously” and “Alcohol intake versus 10 years previously”. Theoretically, the forward            

stepwise regression should eliminate variables that contain correlated or redundant information.           

Only variables that are independently associated with the disease are retained. In the case of T2D                

alone, both “Ever smoked” and “Past smoking history” were both retained, but the responses              

coded non-redundant information, i.e. “Ever smoked: No” and “Past smoking history: Never            

smoked” were reference groups.  

 

Relatedly, the most significant challenge in observational exposure studies is the deduction of             

direction of causality or potential confounding variables . For example, it is possible that the               

significant associations of the response “Major dietary changes in the last 5 years: Yes, because               

of illness” with all four diseases is explained by the onset of each disease or possibly another                 

illness (comorbidity). Further, it is hypothesized that confounding and model misspecification           

occurs at higher rate in non-genetic vs. genetic studies​19​. Third, while easy to measure, some of                

the exposures considered included self-reported variables, such as diet, which may be prone to              

measurement error and recall bias​20​. If these errors occur at random across all variables              

considered in the PXS, the association sizes and PXSs will be diluted. If, on the other hand,                 

individuals in the cases versus controls report their intakes differently, the PXSs will also be               

directionally biased. It is less clear how PXS will be affected if the types of the errors are                  

different (both random and differential with respect to the exposure or disease) across the              

variable inputs. Further analysis using methods like Mendelian randomization may address           
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confounding and reverse causality at biobank scale​21 for individual indicators, but these issues             

will need to be evaluated for groups of exposure factors as well. 

 

We only considered exposure variables if they contained less than 10% missing data. Increasing              

data completeness of variables, or imputing exposure information, would be valuable to            

eventually employ machine learning techniques for modeling. We included the responses “Do            

not know” and “None of the above” for categorical responses in our exposure study, as we                

believed these responses may code additional information and that the removal of individuals             

who did not know an answer would bias our findings. However, we found that many of these                 

responses were not significant in either XWAS or post-stepwise variable selection. Still, we             

included all responses of an exposure variable for PXS derivation if at least one of the responses                 

of the variable was significant in order to provide an accurate reference group for each               

categorical responses. 

 

An inherent challenge to environment/non-genetic and genetic studies is that they are often             

examined in isolation. For example, genetic and exposure factors may be correlated, a             

phenomenon known as “gene-environment correlation”. To this end, we found that PXS and             

PRS had a modest but significant correlation with each other in all diseases except IBD (Table                

2). It is hypothesized that the gene-environment interaction plays a large role in complex              

diseases​22​, but its effect on phenotypic variation is widely debated ​23,24​. ​Further analysis is needed              

to elucidate the relationship between environment, genetics, and their interactions​22,25,26​.  
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Because the UKB consists of primarily individuals with European ancestry, we limited our              

analysis to only white participants. It is difficult to extrapolate these results to other ethnic               

populations; Martin et al. showed that polygenic risk scores derived from Eurpoean GWASs             

were biased when applied to more diverse populations ​27​. Furthermore, exposure disparities, such            

as socioeconomic status​28​, education attainment ​28​, pollution​29​, and smoking​30​, are correlated with           

ethnicity. Therefore, there is a clear need for more diverse populations in both genetic ​31 and               

environmental exposure studies. A few notable studies exist or will be available in the future,               

such as the Malaysian Cohort Study​32​, All of Us Project​33 and Kadoorie Biobank​34​. To capture               

the comprehensive variation of environment and genetics in diseases -- and to test the utility of                

precision medicine -- investigations in other populations will be instrumental.  
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METHODS 

Study Governance  

The UK Biobank (UKB) is a biobank of UK participants to examine the role of genetics and                 

environmental exposures in human health. The UKB resource comprises of 502,655 participates            

between 40-69 years of age at the time of recruitment between 2006 and 2010. Participants               

attended one of 22 assessment centers across England, Scotland, and Wales, where they             

completed touchscreen and nurse-led questionnaires, had physical measurements taken, and          

provided biological samples. The study collected extensive data from questionnaires, interviews,           

health records, physical measures, biological samples, and imaging. UKB also collected           

information on individual background and lifestyle, cognitive and physical assessments,          

sociodemographic factors and medical history. UK Biobank has ethical approval from the NHS             

National Research Ethics Service. All participants provided informed consent. 

Quality Control of Data 

We divided the white participants with complete demographic data (sex, age, PCs 1-40) were              

into groups A, B and C (N=459,613) (Figure 1, Table 1). These included individuals who self                

reported ethnicities of “British”, “Irish” and “Any other white background”. Group A (training)             

had 104,624 individuals, group B (validation) had 104,588 individuals, and group C (testing) had              

250,401 individuals to begin with. For each of the four diseases, we conducted the initial               

univariate XWAS analysis and calculation of poly-demographic score coefficients in cohort A.            

We conducted exposure variable selection and coefficient adjustment of poly-exposure score           

with stepwise regression in cohort B and validated all three scores in cohort C.  
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We classified exposure variables as indicators of physiological state, environmental exposure           

and self-reported behavior. These were variables in the categories ‘Reception’, ‘Employment’,           

‘Sociodemographics’, ‘Lifestyle and environment’, ‘Estimated nutrients yesterday’, ‘Early life         

factors’, ‘Typical diet yesterday’, ‘Meal type yesterday’, ‘Spreads/sauces/cooking oils         

yesterday’, ‘Alcoholic beverages yesterday’, ‘Hot/cold beverages yesterday’, ‘Cereal yesterday’,         

‘Milk/eggs/cheese yesterday’, ‘Bread/pasta/rice yesterday’, ‘Soup/snacks/pastries yesterday’,      

‘Meat/fish yesterday’, ‘Milk/eggs/cheese yesterday’, ‘Vegetarian alternatives yesterday’,       

‘Fruit/vegetables yesterday’, ‘Residential air pollution’, ‘Residential noise pollution’. There were          

206 unique variables in total. From these, we considered only the variables that had data for                

>90% of the participants as potential correlates (referred to as ‘factors’). There were 96 variables               

that remained.  

 

We considered categorical responses of “Prefer not to answer” and continuous responses of             

-10,-3, and -1 missing data, which were removed from regression analysis at each stage of the                

exposure analysis. The number of individuals that remained for validation and testing can be              

found in Table 1.  

 

Phenotype ascertainment 

UKB contains self reported data during an interview with a trained nurse as well as ​International                

Classification of Diseases (ICD-9 and ICD-10) diagnostic codes and Office of Population            

Censuses and Surveys (OPCS-4) surgery codes recorded across all episodes of hospital visit.             

Many codes represent the same overarching disease. For example, ICD-9 code 4274 codes of              
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atrial fibrillation flutter, while ICD-10 I48.1 code for persistent atrial fibrillation and I48.2 code              

of chronic atrial fibrillation. Therefore, we based our grouping system to that found in Khera et                

al.​3 of combined multiple self reported data, ICD9/10, OPCS-4 codes for each of the              

ascertainment of each disease. 

 

Atrial fibrillation (AF) ascertainment was based on either self reported atrial fibrillation, ICD-9             

427.3, ICD-10 I48.X, or OPCS-4 K57.1, K62.1, K62.2, K62.3, K62.4. Coronary artery disease             

(CAD) ascertainment was based on either self reported heart attack/myocardial infarction, ICD-9            

410.9, 411.9, or 412.9, ICD-10 I21.X, I23.1, I23.2, I23.3, I23.6, I23.8, I24.1, I25.2, or OPCS-4               

K40.X, K41.X, K45.X, K49.X, K50.2, or K75.X. Inflammable bowel disease (IBD)           

ascertainment was based on either self reported inflammatory bowel disease, ICD-9 555.X or             

ICD-10 K51.X. Type 2 diabetes (T2D) ascertainment was based on either self reported type 2               

diabetes or ICD-10 E11.X.  

 

In total, there were 22,846 individuals with atrial fibrillation, 25,909 individuals with coronary             

artery disease (CAD), 4,575 individuals with inflammatory bowel disease (IBD), and 30,108            

individuals with type 2 diabetes (T2D).  

 

Poly-Demographic Score  

We considered sex, age, and first 40 genetic principal components (PCs) to be demographic              

variables. Genetic PCs were included since they provide information on geographical location            

and ancestral background​35​. For each of the four diseases, we calculated the coefficient of each               
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demographic factor against the phenotype indicator in group A in 42 separate logistic             

regressions. 

 

We used the coefficients from logistic regression as an estimate of the direction of effect of the                 

dependent variables. For example, a negative coefficient would indicate a negative correlation            

between the variable and the disease. 

 

We calculated the PDS of individuals in group C in the following way:  

PDS ​i​= D ​ji j∑
42

j=1
β  

Where PDS of the individual i is equal to the weighted sum of the individual’s 42 demographic                 

information. ​D ​ji ​is the incident of demographic variable ​j for individual ​i ​. ​and j is the             β    

coefficient of variable ​j​ from the logistic regression.  

 

Executing a X-Wide Association Study (XWAS) and estimation of the poly-exposure score  

Analogous to PRS, PXS can be calculated using summary statistics from exposure wide             

association study (XWAS) ​8​. For each of the four diseases separately, we first conducted XWAS              

in group A. We associated each of 96 non-genetically measured environmental exposure,            

physiological state, and self-reported behavioral factors with the disease while adjusting for age,             

sex and first 40 principal components. Specifically, we modelled each of the factors as an               

independent variable, and disease (case/control) as the dependent variable while adjusting for            

covariates in 96 separate logistic regression models. To maximize sample size, individuals with             

missing data for each factor was removed for prior to running its regression model. We used the                 
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Benjamini-Hochberg False Discovery Rate (FDR) ​36 and deemed an FDR adjusted ​p​-value of <             

0.05 as significant. Variables that had at least one significant response were retained.  

 

To minimize statistical interaction of the exposure variables, we used a modified forward             

forward stepwise regression method to select for independent variables. ​Forward selection is a             

method in which variables are iteratively added into a multivariate model based on a criterion to                

find the subset of variables in the dataset that results in the best performing model (as ascertained                 

by R​2​) . We conducted forward selection on the variables from the XWAS that passed FDR                

adjusted ​p​-value ​<0.05 in group B samples with individuals with missing data removed. More              

specifically, we begin with a logistic model of the disease with the most significantly associated               

exposure variable and age, sex and PC 1:40 as covariates. We then progressively added variables               

that pass the threshold to the multivariate model. The coefficients of categorical variables             

represent the difference in effect of each class to the reference class. These coefficients were               

retained for the PXS calculation. 

 

PXS was calculated in group C in a similar fashion as PDS:  

PXS ​i​= X ​mi m∑
k

m=1
β  

Where PXS of individual ​i is the weighted sum of the individual’s exposures. m is the             β    

coefficients from the stepwise multivariate logistic regression model. ​X​mi ​is the incident of             

exposure variable ​m for individual ​i​. Individuals with missing data in any of the remaining               

exposure variables were removed from group C. 
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Calculating the polygenic risk score for UK Biobank participants using weights from            

Khera et al. 

We calculated polygenic risk scores (PRS) for UKB participants with weights published by             

Khera et al​3​. In short, Khera et al. estimated weights summary statistics from recent GWAS               

studies in participants of European ancestry. They generated candidate scores for a subset of the               

UK Biobank participants using the LDPred algorithm ​10​, and selected the best score based on              

maximum AUC in a logistic regression model with disease as the outcome and the score, age,                

sex, PC1:40 as covariates. 

 

With the aforementioned weights, we calculated the PRS of individuals in group C using the               

built in allelic scoring procedure of PLINK (--score)​37​. PLINK takes the sum of the number of                

each reference allele multiplied by the weighted coefficient of the allele across all alleles.  

 

Estimating disease odds ratio (OR) and area under the curve (AUC) in the UK Biobank               

testing dataset  

For each disease, we calculated the area under the curve (AUC) in a logistic regression model                

with either PDS, PDS+PXS, PDS+PRS, or PDS+PXS+PRS. Since demographic variables are           

typically considered as covariates in genetic and environmental exposure studies, we included            

PDS in PRS versus PXS comparison. To account for the disease and control sample size               

imbalance, we averaged 100 AUC’s (bootstrapped 1000 iterations) calculated in sampled           

populations of group C where the number of disease controls matched cases. Odds ratios for each                
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score were derived by comparing the top 20%, 10%, 5%, 1% and 0.05% of the distribution with                 

the remaining individuals in a logistic regression with sex, age, and PC1:40 as covariates.  

 

We placed individuals into 100 bins by their PDS, PXS or PRS percentiles for each disease.                

Within each bin, we then calculated the prevalence of disease cases. We estimated the average               

PRS and PXS percentiles within each PXS and PRS bin, respectively. We also estimated the               

Pearson correlation coefficient and p​-value between PRS and PXS in each disease to measure              

gross PRS and PXS correlation.  

 

We fit all logistic regression models with the ‘glm’ function in R. AUCs and the 95% confidence                 

intervals were calculated using the ‘auc’ function in the pROC package ​38 of R. We used the                

“p.adjust” function of the base stats R package ​39 for Benjamini-Hochberg False Discovery Rate             

(FDR) adjustment for multiple tests.  

 

Web Resources 

Code repository: ​https://github.com/yixuanh/poly-exposure-score 

PXS calculator: ​http://apps.chiragjpgroup.org/pxs/ 

 

REFERENCES 

1. Ioannidis, J. P. A., Loy, E. Y., Poulton, R. & Chia, K. S. Researching genetic versus 

nongenetic determinants of disease: a comparison and proposed unification. ​Sci. Transl. Med. 

1​, 7ps8 (2009). 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?RamryD
https://www.zotero.org/google-docs/?yy82de
https://github.com/yixuanh/poly-exposure-score
http://apps.chiragjpgroup.org/pxs/
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


 

2. Meigs, J. B. ​et al.​ Genotype Score in Addition to Common Risk Factors for Prediction of 

Type 2 Diabetes. ​N. Engl. J. Med. ​359​, 2208–2219 (2008). 

3. Khera, A. V. ​et al.​ Genome-wide polygenic scores for common diseases identify individuals 

with risk equivalent to monogenic mutations. ​Nat. Genet. ​50​, 1219–1224 (2018). 

4. Khera, A. V. ​et al.​ Polygenic Prediction of Weight and Obesity Trajectories from Birth to 

Adulthood. ​Cell ​177​, 587-596.e9 (2019). 

5. Park, S. K., Tao, Y., Meeker, J. D., Harlow, S. D. & Mukherjee, B. Environmental Risk Score 

as a New Tool to Examine Multi-Pollutants in Epidemiologic Research: An Example from the 

NHANES Study Using Serum Lipid Levels. ​PLOS ONE ​9​, e98632 (2014). 

6. Khera, A. V. ​et al.​ Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. ​N. 

Engl. J. Med. ​375​, 2349–2358 (2016). 

7. Patel, C. J. & Ioannidis, J. P. A. Studying the Elusive Environment in Large Scale. ​JAMA ​311​, 

2173–2174 (2014). 

8. Patel, C. J., Bhattacharya, J. & Butte, A. J. An Environment-Wide Association Study (EWAS) 

on Type 2 Diabetes Mellitus. ​PLOS ONE ​5​, e10746 (2010). 

9. Patel, C. J., Cullen, M. R., Ioannidis, J. P. & Butte, A. J. Systematic evaluation of 

environmental factors: persistent pollutants and nutrients correlated with serum lipid levels. 

Int. J. Epidemiol. ​41​, 828–843 (2012). 

10. Vilhjálmsson, B. J. ​et al. ​ Modeling Linkage Disequilibrium Increases Accuracy of Polygenic 

Risk Scores. ​Am. J. Hum. Genet. ​97​, 576–592 (2015). 

11. Cui, Y. ​et al. ​ The Exposome: Embracing the Complexity for Discovery in Environmental 

Health. ​Environ. Health Perspect. ​124​, A137–A140 (2016). 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


 

12. Vrijheid, M. The exposome: a new paradigm to study the impact of environment on health. 

Thorax ​69​, 876–878 (2014). 

13. Aune, D., Norat, T., Leitzmann, M., Tonstad, S. & Vatten, L. J. Physical activity and the risk 

of type 2 diabetes: a systematic review and dose–response meta-analysis. ​Eur. J. Epidemiol. 

30​, 529–542 (2015). 

14. Pan, A., Wang, Y., Talaei, M., Hu, F. B. & Wu, T. Relation of active, passive, and quitting 

smoking with incident type 2 diabetes: a systematic review and meta-analysis. ​Lancet 

Diabetes Endocrinol. ​3​, 958–967 (2015). 

15. Balti, E. V., Echouffo-Tcheugui, J. B., Yako, Y. Y. & Kengne, A. P. Air pollution and risk of 

type 2 diabetes mellitus: A systematic review and meta-analysis. ​Diabetes Res. Clin. Pract. 

106​, 161–172 (2014). 

16. Heeringa, J., Kors, J. A., Hofman, A., van Rooij, F. J. A. & Witteman, J. C. M. Cigarette 

smoking and risk of atrial fibrillation: The Rotterdam Study. ​Am. Heart J. ​156​, 1163–1169 

(2008). 

17. Hajar, R. Risk Factors for Coronary Artery Disease: Historical Perspectives. ​Heart Views 

Off. J. Gulf Heart Assoc. ​18​, 109–114 (2017). 

18. Birrenbach, T. & Böcker, U. Inflammatory Bowel Disease and SmokingA Review of 

Epidemiology, Pathophysiology, and Therapeutic Implications. ​Inflamm. Bowel Dis. ​10​, 

848–859 (2004). 

19. Manrai, A. K., Ioannidis, J. P. A. & Patel, C. J. Signals Among Signals: Prioritizing 

Nongenetic Associations in Massive Data Sets. ​Am. J. Epidemiol. ​188​, 846–850 (2019). 

20. Ioannidis, J. P. A. The Challenge of Reforming Nutritional Epidemiologic Research. ​JAMA 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


 

320​, 969–970 (2018). 

21. Davey Smith, G. & Ebrahim, S. What can mendelian randomisation tell us about modifiable 

behavioural and environmental exposures? ​BMJ ​330​, 1076–1079 (2005). 

22. Wang, H. ​et al. ​ Genotype-by-environment interactions inferred from genetic effects on 

phenotypic variability in the UK Biobank. ​Sci. Adv. ​5​, eaaw3538 (2019). 

23. Aschard, H. ​et al.​ Challenges and opportunities in genome-wide environmental interaction 

(GWEI) studies. ​Hum. Genet. ​131​, 1591–1613 (2012). 

24. Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and Theory Point to Mainly Additive 

Genetic Variance for Complex Traits. ​PLOS Genet. ​4​, e1000008 (2008). 

25. Kraft Peter & Hunter David. Integrating epidemiology and genetic association: the challenge 

of gene–environment interaction. ​Philos. Trans. R. Soc. B Biol. Sci. ​360​, 1609–1616 (2005). 

26. A linear mixed-model approach to study multivariate gene–environment interactions | Nature 

Genetics. https://www.nature.com/articles/s41588-018-0271-0. 

27. Martin, A. R. ​et al. ​ Human Demographic History Impacts Genetic Risk Prediction across 

Diverse Populations. ​Am. J. Hum. Genet. ​100​, 635–649 (2017). 

28. Braveman, P. A., Cubbin, C., Egerter, S., Williams, D. R. & Pamuk, E. Socioeconomic 

disparities in health in the United States: what the patterns tell us. ​Am. J. Public Health ​100 

Suppl 1​, S186-196 (2010). 

29. Sexton, K. ​et al. ​ Air Pollution Health Risks: Do Class and Race Matter? ​Toxicol. Ind. Health 

9​, 843–878 (1993). 

30. National Center for Health Statistics. National Health Interview Survey. (2015). 

31. Martin, A. R. ​et al. ​ Clinical use of current polygenic risk scores may exacerbate health 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


 

disparities. ​Nat. Genet. ​51​, 584–591 (2019). 

32. Jamal, R. ​et al. ​ Cohort Profile: The Malaysian Cohort (TMC) project: a prospective study of 

non-communicable diseases in a multi-ethnic population. ​Int. J. Epidemiol. ​44​, 423–431 

(2015). 

33. The “All of Us” Research Program. ​N. Engl. J. Med. ​381​, 668–676 (2019). 

34. Chen, Z. ​et al. ​ China Kadoorie Biobank of 0.5 million people: survey methods, baseline 

characteristics and long-term follow-up. ​Int. J. Epidemiol. ​40​, 1652–1666 (2011). 

35. McVean, G. A Genealogical Interpretation of Principal Components Analysis. ​PLoS Genet. 

5​, (2009). 

36. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. ​J. R. Stat. Soc. Ser. B Methodol. ​57​, 289–300 (1995). 

37. Chang, C. C. ​et al. ​ Second-generation PLINK: rising to the challenge of larger and richer 

datasets. ​GigaScience ​4​, 7 (2015). 

38. Robin, X. ​et al. ​ pROC: an open-source package for R and S+ to analyze and compare ROC 

curves. ​BMC Bioinformatics ​12​, 77 (2011). 

39. R Core Team. ​R. C. Team R: A language and environment for statistical computing ​. (R 

Foundation for Statistical Computing, 2017). 

  

ACKNOWLEDGEMENTS  

Our analysis was conducted using the UK Biobank resource via application number 22881. We 

would like to thank all the volunteers who participated in this project. This work was supported 

by the Bioinformatics and Integrative Genomics training grant from the National Institutes of 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://www.zotero.org/google-docs/?fhNbPG
https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


 

Health NHGRI under award number T32HG002295, the National Institutes of Health NIEHS 

under award numbers R00ES23504 and R21ES205052,  NIAID under award numbers 

R01AI12725003, the UK Biobank Early-Career Researcher Award (to Y.H.), and the National 

Science Foundation under award number 1636870. 

 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833632doi: bioRxiv preprint 

https://doi.org/10.1101/833632
http://creativecommons.org/licenses/by/4.0/

