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Abstract: Tuberculosis (TB) is the leading cause of death due to a single infectious disease. 

Knowing when a person was infected with Mycobacterium tuberculosis (M.tb) is critical as 

recent infection is the strongest clinical risk factor for progression to TB disease in 

immunocompetent individuals. However, time since M.tb infection is challenging to determine in 

routine clinical practice. To define a biomarker for recent TB exposure, we determined whether 

gene expression patterns in blood RNA correlated with time since M.tb infection or exposure. 

First, we found RNA signatures that accurately discriminated early and late time periods after 

experimental infection in mice and cynomolgus macaques. Next, we found a 6-gene blood RNA 

signature that identified recently exposed individuals in two independent human cohorts, 

including adult household contacts of TB cases and adolescents who recently acquired M.tb 
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infection. Our work supports the need for future longitudinal studies of recent TB contacts to 

determine whether biomarkers of recent infection can provide prognostic information of TB 

disease risk in individuals and help map recent transmission in communities. 

 

Main Text: 

Introduction 

Tuberculosis (TB) is the leading killer due to a single infectious disease, causing over 1 million 

deaths per year (1). Despite renewed efforts to combat the TB epidemic, the current decline in 

TB incidence of 1.5% per year has fallen far short of the needed 4-5% annual decline to meet the 

2020 goals for the World Health Organization’s (WHO) End TB Strategy (2). While 

approximately ¼ (1.7 billion) of the world’s population has been infected with its causative agent 

Mycobacterium tuberculosis (M.tb), only 5 to 10% of infected individuals will develop active TB 

disease during their lifespan, with the remainder controlling the infection in a state known as 

latent TB infection (LTBI) (3, 4). Recent global workshops have reemphasized targeting 

transmission of TB as critical to accelerating efforts to reduce the burden of TB disease 

throughout the world (5, 6). Two critical areas for understanding and preventing TB transmission 

are knowing where and when transmission occurs, and preventing infected individuals from 

progressing to active TB disease and thereafter transmitting the bacteria via the airborne route (7, 

8). 

Historically, successful control of TB in nations has followed from a reduction in transmission to 

very low levels (7, 9). Studies of close contacts, and in particular household contacts, of active 

TB cases are a critical tool for identifying new active TB cases from recent transmission and 
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targeting therapy for preventing both subsequent disease and transmission. However, in high 

incidence countries where most of the burden of disease resides, more than 80% of TB 

transmission occurs outside of the home (10, 11). Genotyping M.tb isolates from active TB cases 

coupled with comparative genomic analysis has permitted population-level identification of 

hotspots of localized transmission, but these data are mostly available retrospectively and thus do 

not allow real-time monitoring of TB transmission in a community, particularly in areas of high 

incidence (12). It thus remains unknown whether with current methods TB transmission can be 

appreciably disrupted in high incidence settings. This is in contrast to low incidence settings 

where both contact studies and targeting specific higher incidence communities have been 

effective (13). 

Recent infection is the single strongest clinical risk factor for developing active TB disease in 

immunocompetent persons, who comprise the vast majority of LTBI and active TB cases (14–

19). However, time since exposure or infection is very difficult to ascertain in the clinical setting, 

and its estimate is often unreliable (20). Moreover, there are no known validated biomarkers of 

recent exposure or infection beyond conversion on a tuberculin skin test (TST) or IFN- release 

assay (IGRA), which requires longitudinal sampling. At the same time, treating all LTBI+ 

individuals in areas of high TB incidence to prevent the development of active TB is not feasible 

and would entail unnecessary risk to the vast majority of LTBI+ individuals who will never 

develop disease. Prospective gene expression-based (RNA) signatures of risk of developing 

active TB disease have been recently identified for LTBI+ adolescents and adult healthy 

household contacts (HHCs) (21, 22). While the positive predictive value of these RNA 

signatures of risk of active TB is higher than TST/IGRAs, they are still significantly less than 

ideal: to prevent one case of active TB, ~37-64 LTBI+ people not at risk need to be treated (vs. 
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~85 for TST/IGRA) (21–23). It is currently unknown whether these RNA signatures correlate 

with time since infection. Importantly, their positive predictive value for TB progression and the 

number needed to treat could be dramatically improved if combined with accurate knowledge of 

time since infection in the same individual. 

Building on this prior work, we assess RNA expression as a potential biomarker of recent 

exposure or infection with M.tb. Using our murine data and recently published studies in 

cynomolgus macaques and humans (21, 22, 24, 25), we show for the first time that RNA 

expression predicts recent infection/exposure in all three species. Moreover, in both macaques 

and humans, these RNA signatures of recent infection/exposure are independent of the recently 

identified signatures of individual prospective TB disease risk. However, in LTBI+ adolescents 

and adult HHCs, our RNA signature of recent infection was unable to provide prognostic 

information of TB disease risk, possibly because of its likely duration of only a few months. Our 

work supports the need for future longitudinal studies of recent TB contacts to identify 

biomarkers of recent infection that have sufficient duration to provide prognostic information of 

TB disease risk in individuals and to help map recent transmission in communities. 

Results 

Blood genome-wide RNA expression accurately discriminates early vs. late M.tb infection 

time periods in C57BL/6 mice 

While several published studies have made genome-scale measurements of the in vivo host 

response to M.tb at several time points in mice (26–28), none have addressed the question of 

whether these parameters can predict infection time point. To determine whether it is possible to 

predict time since M.tb infection in mice via a blood RNA signature, we measured genome-wide 

RNA expression in whole blood in C57BL/6 mice following low dose aerosol M.tb infection. 
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Mouse cohorts were sacrificed every month post-infection for 5 months (n = 4 per time point) 

along with age-matched uninfected mice (n = 1-2 per time point). While M.tb colony forming 

units were not measured, it is well characterized that in this mouse strain lung bacterial burden 

increases exponentially from the day of M.tb infection until the peak of the adaptive immune 

response in the lungs at 1 month post-infection, thereafter remaining stable for approximately 

300 days (29–31). Thus, lung CFUs do not predict time since infection in this model after one 

month post-infection. 

Principle component analysis (PCA) of our whole dataset revealed that the blood transcriptional 

state of M.tb infection during the first five months was distinct from that of uninfected mice, with 

uninfected and infected mice being entirely separable along the 1st principle component (21.8% 

of data variance; Figure 1A). When we performed PCA on only M.tb infected mice, we found 

that early (30-60 days) and late (90-150 days) time periods were transcriptionally distinct, being 

separable along the 1st and 2nd principle components (18.8% and 16.5% of data variance, 

respectively; Figure 1B). Only 1 mouse from the 60 day time point clustered with the late time 

period along the 2nd principle component. 

To find a predictive RNA signature of time since M.tb infection, we used the Random Forest 

Classifier algorithm, without hyperparameter tuning due to low sample size, to predict early (30-

60 days) vs. late (90-150 days) infection time period. Using out-of-bag predictions 

(approximately 3-fold cross-validation) to obtain an unbiased estimate of predictive 

performance, we found that we could predict early vs. late infection time period with 0.99 area 

under the curve (AUC) (95% CI: 0.96 – 1.00, P = 1.6 x 10-5; 87.5% sensitivity, 91.7% specificity 

for early infection; Figure 1C). To assess whether each month post-infection could be predicted 

accurately, we performed Random Forest Regression with 3-fold cross-validation and confirmed 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2019. ; https://doi.org/10.1101/830794doi: bioRxiv preprint 

https://doi.org/10.1101/830794
http://creativecommons.org/licenses/by/4.0/


that days 30 and 60 were predicted to be earlier time points than days 90-150 (Figure 1D). Days 

90-150 were not resolved. Although low group size precludes confident quantification of the 

degree to which days 30 and 60 can be separated, 3 out of 4 mice within both early time points 

were predicted in the correct order. Probes used in these models as well as their feature 

importance for the regression model are shown in Table S1. Taken together, these data indicate 

that we can broadly discriminate early and late M.tb infection in this cohort of C57BL/6 mice 

based on the whole blood transcriptomic response, and it may even be possible to discriminate 

between the first two months of infection.  

Blood RNA signature discriminates early vs. late M.tb infection time periods in cynomolgus 

macaques 

While inbred mice are a suitable model for studying molecular components of the immune 

response to M.tb, they do not replicate the variable clinical outcomes of M.tb infection in 

humans. Cynomolgus macaques, an outbred non-human primate model for TB, do exhibit 

heterogeneity in clinical outcomes, with approximately half of macaques progressing to 

symptomatic active TB disease that can be verified radiologically and bacteriologically within 

the first 6 months of infection, and the remainder controlling the infection in a latent state (32, 

33). The lung pathology of M.tb infection in cynomolgus macaques also better replicates several 

features of human lung pathology than mice (33). 

To determine whether our findings in the murine model translated to the more human-like 

cynomolgus macaque model of M.tb infection, we mined publically available data from a 

longitudinal study of M.tb infection in macaques (24). In that study, cynomolgus macaques were 

infected with a low dose of M.tb in the lung, and their blood was sampled at 11 time points post-

infection and 2 time points pre-infection for genome-wide RNA expression analysis. 
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Importantly, while the study’s authors provided a broad, unsupervised analysis of their data 

according to time periods of infection, they did not assess our hypothesis that blood genome-

wide RNA expression predicts time period or time point post-infection (24). To test our 

hypothesis and allow comparison with our mouse data and recently available human data, we 

restricted our analysis to 8 time points from 20 days through 180 days (6 months) post-infection. 

To permit comparison of different computational models and allow a final unbiased estimate of 

predictive performance, we randomly divided the 38 macaques from this study into a training set 

and a test set, keeping the ratio of macaques with latent and active TB balanced in both groups 

(Figure S1).  

Using 9-fold cross-validation on the training set, we found that Regularized Logistic Regression, 

a linear method, was not inferior to several nonlinear classification methods in predicting early 

(20-56 days) vs. late (90-180 days) infection time period (Figure S2). We thus chose Regularized 

Logistic Regression to find a predictive RNA signature of time since M.tb infection in 

cynomolgus macaques. We found that this model predicted early (20-56 days) vs. late (90-180 

days) infection time period with an AUC of 0.78 in the training set (95% CI: 0.72-0.85, P = 5.6 x 

10-13; 9-fold cross-validation; Figure 2A), and an AUC of 0.81 in the test set (95% CI: 0.71-0.91, 

P = 1.6 x 10-7; Figure 2A). 

Importantly, our model was trained and tested on macaques irrespective of their present or future 

TB disease status. If our model partially predicted disease status rather than only time period 

post-infection, the proportion of samples from macaques with active disease would differ 

between predicted and actual early time period samples. However, we found that there was no 

change in the proportion of samples from macaques with active disease in the predicted early 

time periods relative to the actual early time periods, in both the training and test sets (P = 1.0, P 
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= 1.0 respectively; Figure 2B). This was also true focusing on late time period predictions (P = 

1.0 training, P = 1.0 test; data not shown). 

Next, to assess whether each month post-infection could be predicted in cynomolgus macaques, 

we performed Regularized Linear Regression with 9-fold cross-validation on the training set and 

confirmed that days 20-56 were predicted as earlier time points than days 90-180, in both the 

training set and in the test set (Figure 2C-D). As in our murine model analysis days 90-180 were 

not resolved. Quantitatively, the median absolute error (MAE) of the model was 38.5 days 

(Pearson’s r = 0.48, P = 1.6x10-13) on the training set and 35.7 days (r = 0.54, P = 1.1x10-7) on 

the test set. Probes selected and used by the final trained regression model to predict in the test 

set are shown in Table S2. To assess whether we could predict specific time point of infection 

within the first 3 months, as suggested by our murine data, we trained a model on only time 

points from 20-90 days (Figure 2E-F). The MAE of this model was 15.8 days on the training set 

and 14.3 days on the test set (r = 0.52, P = 1.9x10-10 and r = 0.46, P = 4.7x10-4, respectively). 

Taken together, these data indicate that we can broadly discriminate early and late M.tb infection 

in this cohort of cynomolgus macaques based on the whole blood transcriptomic response, and 

that we can moderately discriminate between the first two months of infection. These predictions 

do not depend on disease status, and the accuracy of the predictions is quantitatively lower in 

cynomolgus macaques than in C57BL/6 mice, as reflected by the AUC analyses. 

Blood RNA expression of 250 genes predicts time since active TB exposure in humans. 

To determine whether our findings in mice and cynomolgus macaques could translate to humans, 

several points are important to consider. While a recent study in the United States and Canada 

showed that recent contacts of active TB cases are at highest risk of TB disease in the first 1-3 

months after the diagnosis of the TB index case, studies in other countries and other time periods 
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show that the highest risk is in the first 1-2 years, with most cases accruing more than 2-3 

months after a documented exposure (14, 17, 34–37). A recent vaccine study in rhesus macaques 

showed that BCG-induced immunity to M.tb delays IGRA conversion in a repeated limiting-dose 

M.tb challenge model (38). Therefore, the natural course of infection or reinfection and RNA 

correlates of recent infection in humans could be the same or delayed relative to our analysis in 

models of infection in M.tb-naïve animals. This could depend on local transmission burden and 

the likelihood of pre-existing immunity to M.tb, whether from BCG or a prior M.tb exposure 

(39). 

Whereas the day of infection is known in animal models, the precise time of exposure resulting 

in infection is difficult to determine in humans, even in careful clinical studies. One surrogate for 

time of infection in humans is time of IGRA or TST conversion in people who were known to be 

IGRA/TST negative previously. This would synchronize a human study cohort to the time of an 

initial systemic T cell response to M.tb. To test this hypothesis we accessed public data from 

South African adolescents who acquired latent M.tb infection during longitudinal blood sampling 

every 6 months (25). We found that Regularized Logistic Regression was unable to predict the 

first time point of known IGRA conversion from 6 months post-first known IGRA conversion 

(0.54 AUC, 95% CI: 0.27-0.82, P = 0.64 on test set; Figure 3A). Notably, the biological event of 

actual IGRA conversion in this cohort could have occurred anytime between the first time point 

of IGRA positivity and the preceding 6 months. Given our findings in mice and macaques that 

the RNA signature of time since M.tb infection occurs within a brief window of 2-3 months, we 

interpret these findings to mean that sampling blood every 6 months in humans is unlikely to 

constitute a cohort where actual time of IGRA conversion is synchronized sufficiently to 

discover an RNA signature of time since IGRA conversion. 
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Another study design that could identify RNA correlates of recent infection in humans is a 

household contact study wherein healthy contacts of active TB cases are enrolled within a certain 

time from the date of diagnosis of the active TB case and sampled longitudinally. Important 

limitations of this design that could reduce the power to detect RNA correlates of recent 

infection are that the precise time of infection is not known and individuals who are IGRA+ at 

enrollment may have been infected either from the present exposure or in the more distant past. 

Cognizant of these limitations, we accessed publically available data from the Grand Challenges 

6-74 (GC6-74) study of healthy household contacts (HHCs) of patients with active pulmonary 

TB (22). HHCs in this cohort were enrolled within 2 months of the diagnosis of the active TB 

index case and had blood samples drawn at baseline, 6 months and/or 18 months post-enrollment 

(22). Because our mouse and macaque analysis suggests that blood transcriptional changes are 

most prominent in an early 3 month window post-infection, we focused our first analysis on the 

baseline and 6 month time points. This included data from Gambian and Ethiopian cohorts but 

excluded data from the South African cohort because 6 month time points were not available for 

South Africa (22). We used the same training/test split as the authors in the Gambian cohort but 

randomly split the Ethiopian cohort 50/50 between our training and test sets. Importantly, with 

this training/test split and our data pre-processing, we could predict risk of TB with 0.72 AUC 

(95% CI: 0.60-0.83, P = 1.6 x 10-4; data not shown) in the training set by 10-fold cross-validation 

and 0.70 AUC (95% CI: 0.53-0.88, P = 0.0071; data not shown) in the test set using Regularized 

Logistic Regression. From the GC6-74 and the Adolescent Cohort Study (ACS) we used the 

RISK4 genes (BLK, CD1C, GAS6 and SEPT4), the post-hoc selected C1QC, TRAV27, 

ANKRD22, OSBPL10 genes and the 16 correlate of risk (COR) predictive genes together for this 

analysis (21, 22). When we used these same genes to train a model to predict time since TB 
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exposure, we obtained no predictive performance, whether the model was trained with these 

gene sets separately or together (P > 0.05 for all test set predictions; Figure 3B). This suggests 

that genes selected for optimal prediction of prospective TB risk do not change across these two 

time points post-exposure. 

To find a predictive RNA signature of time since TB exposure in these data, and as the study 

authors performed for TB risk prediction, we used the Wilcoxon test on the training set to select 

transcripts that differed in expression between baseline and 6 month time points (22). Using 

Regularized Logistic Regression we found that these genes predicted baseline vs. 6 month time 

points with 0.90 AUC (95% CI: 0.84-0.96, P = 1.9x10-13; 10-fold cross-validation; Figure 3C) in 

the training set and 0.69 AUC (95% CI: 0.56-0.81, P = 0.0039; Figure 3C) in the test set. We 

further used the final genes selected by the model (250 genes, Table S3) on the training set to 

train a model to predict risk of TB. As expected, these genes exhibited no direct predictive 

performance for risk of TB on the training or test sets (P = 0.85, P = 0.07, respectively; Figure 

3D). In summary, our findings with the household contact study design in humans parallel the 

results in macaques in that we can predict broad time period post-exposure via the whole blood 

transcriptomic response. Moreover, this transcriptomic signature of time period post-exposure to 

an active TB case is independent of the transcriptomic signature of risk of TB recently identified 

in the GC6-74 and ACS studies (21, 22). 

Time since TB exposure in humans is associated with alteration in CD4+ T cell proportion 

and immune activation pathways.  

Cell-type deconvolution algorithms have recently been used with genome-wide RNA expression 

data to help identify changes in immune cell proportions in the blood that are associated with TB 

disease, prospective TB disease risk and treatment success (25, 40). To identify immune cell 
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populations that are associated with time since TB exposure in the GC6-74 study, we used the 

leukocyte expression signature matrix ‘immunoStates’ and linear regression to infer leukocyte 

proportions for each subject’s sample (40). We found that the proportion of CD4+ α/β T cells 

was increased at 6 months vs. baseline time point in the Gambian and Ethiopian cohorts (P = 

0.0079; linear mixed model; Figure 4A), but was not significantly changed at 18 months (P = 

0.20 vs. baseline; linear mixed model, included South African cohort; Figure 4B). We saw no 

significant differences in NK cell proportion over time in the Gambian and Ethiopian cohorts 

(Figure 4C-D). Likewise, no other cell types estimated by the ‘immunoStates’ signature matrix 

showed significant differences over time in these cohorts (P > 0.05, linear mixed model, data not 

shown). This result with CD4+ α/β T cells and NK cells is consistent with the conclusion that the 

RNA signature of time since TB exposure is independent from the RNA signature of prospective 

TB risk, since both T cells and NK cells are known to decrease in circulation in active TB 

disease (25, 41). 

Our RNA signature of baseline vs. 6 month time points post-exposure included 250 genes 

selected by Regularized Logistic Regression (Table S3). We utilized Ingenuity Pathway Analysis 

(IPA) to identify pathways associated with these genes. The majority of enriched canonical 

pathways (-log(p-value)>2) were associated with immune cell signaling, including B cells (B cell 

receptor and PI3K signaling), T cells (T cell receptor, PKC, regulation of IL-2 expression, 4-

1BB and CD28 signaling), cytokines (IL-6, IL-15, IL-12, TNF, IL-8, IL-10 and IL-17A), innate 

immune cells (dendritic cell maturation and LPS-stimulated MAPK signaling) and humoral 

immunity (Fc Epsilon RI Signaling) (Figure 4E, Table S4). Other enriched canonical pathways 

were related to cellular injury and toxicity (apoptosis), metabolism, nervous system signaling, 

PPAR signaling, cell cycle regulation and intracellular & second messenger signaling (Table S4). 
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Considering the overall direction of change in the immune pathways between 6 month vs. 

baseline time points, the upregulation of several pro-inflammatory signaling pathways (IL-6, IL-

8, FLT3 signaling, PI3K signaling in B Lymphocytes and Dendritic Cell maturation) and 

decrease in anti-inflammatory signaling (PPAR signaling) suggests that an increase in peripheral 

blood immune activation occurs at the 6 month time point after exposure (Figure 4E). 

To compare transcriptional modules altered in humans to those altered in mice and macaques, we 

used the recently defined disco score to identify concordantly and discordantly altered modules 

between these species (42). Several modules related to T cells, NK cells and monocytes were 

enriched (adjusted P < 0.05) in each pairwise comparison between two species (human vs. 

mouse, human vs. monkey, and monkey vs. mouse) (Figure 4F). Several B cell-related modules 

were uniquely concordantly regulated between macaques and mice (Figure 4F). 

Application of reduced 6-gene expression signature of time since active TB exposure to 

adolescent M.tb infection acquisition cohort confirms its identification of recent infection in 

humans. 

Implementation of our newly discovered RNA signature of time since active TB exposure using 

qRT-PCR would require a more parsimonious gene set than the 250 genes heretofore described. 

To find a reduced gene signature we ran a forward search using the MetaIntegrator R package 

(43). This method identified 6 genes, RP11-552F3.12, PYURF, TRIM7, TUBGCP4, ZNF608 and 

BEAN1, that recapitulated the performance of the 250 gene signature on baseline vs. 6 month 

time point discrimination with 0.86 AUC (95% CI: 0.80-0.93, P = 1.7x10-11; Figure 5A) in our 

GC6-74 training set and 0.68 AUC (95% CI: 0.55-0.81, P = 0.0055; Figure 5A) in the test set. 

Independent validation of this signature requires a cohort wherein recent M.tb infection is 

documented and time points are available to test whether the signature allows discrimination 
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between recent and more remote infection. While the cohort of South African adolescents who 

acquired latent M.tb infection did not permit discovery of an RNA signature of recent M.tb 

infection, we reasoned that the whole cohort would be powered for validation of our signature 

discovered in the GC6-74 household contact study design (25). Three genes, TRIM7, ZNF608, 

TUBGCP4, from our 6-gene signature were represented by detected probes in the microarray 

used in this study. These 3 genes discriminated the first time point of known IGRA conversion 

from all pre-conversion time points (6 months and 12 months prior to known conversion) with 

0.72 AUC (95% CI: 0.58-0.87, P = 0.0030; Figure 5B). These 3 genes likewise discriminated the 

first time point of known IGRA conversion from all sampled time points (6, 12 months prior to 

conversion and 6, 12 months after known conversion) with 0.68 AUC (95% CI: 0.56-0.81, P = 

0.0039; Figure 5B). Figure S3 shows the trajectory of the 3 gene score over time, being highest 

at the first time point of known IGRA conversion.  

Given that time since active TB exposure is the single strongest clinical risk factor for 

developing TB disease in immunocompetent persons, the finding that time since exposure and 

risk of TB, as predicted by the blood transcriptomic response, are independent in the GC6-74 

study of healthy household contacts suggests that these signatures could be combined to possibly 

better predict risk of TB when the time of exposure is unknown (17, 19, 20). While the GC6-74 

study was not powered for this particular secondary analysis, we assessed whether the highest 6-

gene score during longitudinal sampling allowed discrimination of subjects who did or did not 

progress to active TB disease during study follow-up. The highest 6-gene score did not 

discriminate progressors from non-progressors in the test set, whether the subjects were from 

South Africa (AUC 0.51, 95% CI: 0.40-0.63, P = 0.60; Figure 5C) or from Gambia or Ethiopia 

(AUC 0.63, 95% CI: 0.46-0.80, P = 0.095; Figure 5C). The same result was observed in the ACS 
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cohort of IGRA+ adolescents with unknown exposure history (AUC 0.55, 95% CI: 0.43-0.66, P 

= 0.78; Figure 5C). 

We additionally tested whether the 6-gene signature discriminated early from late time periods 

post-infection as defined in our analysis of animal models of M.tb infection. The 5 genes 

represented by detected probes of homologous genes in the mouse microarray data discriminated 

the early (30-60 days) vs. late (90-150 days) infection time period with 0.80 AUC (95% CI: 0.60 

– 1.00, P = 0.012; Figure 5D). Only 1 gene was represented by a detected probe in the macaque 

microarray data, and it alone did not discriminate the early vs. late infection time period (0.52 

AUC, 95% CI: 0.45 – 0.58, P = 0.70; Figure 5D). Of note, this study utilized a human 

microarray platform for the macaque samples, which may have contributed to reduced 

measurability of the macaque homologues to these human genes (24). 

 

Discussion 

Early clinical studies in the pre-antibiotic era in the relatively isolated Faroe Islands shed light on 

the clinical features of primary infection with M.tb in humans, which often include fever, 

elevated erythrocyte sedimentation rate, X-ray abnormalities and, less often, erythema nodosum 

(34, 44). With time of exposure to an active TB case pinpointed within a two week period, and 

sometimes to a single day, Poulsen determined that these clinical features accompany TST 

conversion within 6 weeks of exposure (14, 34, 44). While these clinical features of initial M.tb 

infection are transient and not specific to M.tb infection, a method to determine that a person is 

currently in the first 1-2 years post initial infection would have great prognostic value for near-

future TB disease and could allow real-time geospatial mapping of recent TB transmission in 

communities (14, 15, 17, 34–37). In our proof of concept analysis, we sought to determine 
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whether it is possible to develop an RNA-based blood test to detect recent exposure or infection 

with M.tb. For TB disease risk prediction, we hypothesized that such a test could complement the 

recently developed RNA signatures of TB disease risk that are based on detecting incipient 

tuberculosis, which is the asymptomatic phase of early TB disease during which pathology 

progresses gradually before full-blown clinical TB (21, 22, 45, 46). 

Using our mouse data and published macaque data, we have demonstrated a highly accurate 

RNA signature of recent infection with M.tb (1-2 vs. 3-5/6 months post-infection). Using the 

GC6-74 cohort of HHCs of patients with active pulmonary TB, we discovered 250-gene and 6-

gene human RNA signatures of recent exposure (0-2 vs. 6-8 months post-diagnosis of index 

case) that validated within a held-out test set (22). Using an independent cohort of adolescents 

who acquired M.tb infection during 6-month longitudinal sampling, we demonstrated that the 6-

gene signature could discriminate the first known time point of IGRA conversion from pre-

conversion time points and from 6-12 months later with modest accuracy (0.68 AUC) (25). 

However, this 6-gene signature was unable to provide prognostic information of TB risk in the 

GC6-74 cohort or the ACS cohort. The incomplete time point sampling of most individuals, and 

6-month sampling likely reduced the power to find an association between our 6-gene signature 

score and TB risk in these two studies. Nevertheless, we believe the sampling constraints and 

target populations of these studies, adults who are HHCs and adolescents with LTBI of unknown 

exposure history, both in highly endemic areas, are mostly in line with what may be feasible for 

applying transcriptional signatures of TB risk for targeted treatment to reduce TB incidence (46). 

Given that early blood transcriptional changes occurred within a short 3 month window in our 

mouse and macaque analyses, and the human data analyzed are not inconsistent with this brief 
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timeline, we believe that blood RNA signatures for recent M.tb infection are too brief in duration 

to yield a useful biomarker to improve prediction of TB risk for targeted preventive therapy. 

A recent genetic study of early progression to TB disease (within 18 months) demonstrated that 

the genetic architecture of early progression and later reactivation disease are different (47). 

Because the vast majority of TB disease burden can be accounted for epidemiologically by 

recent infection (past 1-2 years), we hypothesize that, on average, the genetic and environmental 

factors influencing progression of disease have resolved by 2 years post initial infection in 

humans (3, 14). Therefore, we hypothesize that a biological correlate of recent infection that has 

the longest duration during that time when the outcome of early disease progression has not been 

resolved would have the highest chance of being useful as a complement to tests for incipient TB 

in predicting TB risk. Indeed, our estimated cell type and pathway analyses suggest that both 

cellular and molecular signatures of immune activation associated with recent exposure and 

could be interrogated by other modalities such as epigenetics. Immune cell differences between 

recently acquired and remotely acquired infection have been reported by others in single cohorts 

without longitudinal sampling (20, 48). The high enrichment of B cell signaling in our signature 

is interesting, and a recent case control study in a single cohort showed that several IgG and IgA 

antibodies to M.tb antigens strongly discriminated (AUC > 0.90) active TB contacts who 

converted on TST from non-converters both at first known conversion and 3 months prior (49). 

Using dense sampling (> 1/month) for 3 years in an individual, DNA methylation was recently 

shown to have more prolonged dynamics in human blood in response to chronic disease states 

than RNA expression, and thus represents an epigenetic modality to be considered (50).  

Our analyses and these considerations suggest that sampling IGRA-, untreated HHCs every 

month (or more frequently) for one to two years, starting as soon as possible after the diagnosis 
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of their respective index case and determining IGRA conversion events, would allow for the 

discovery of biosignatures of recent M.tb infection that could be useful for helping predict TB 

disease risk. Follow-up in such a cohort for TB progression would allow better assessment of 

how signatures of recent infection and signatures of incipient TB could be combined to improve 

TB risk prediction. The addition of chest X-rays with deep machine learning analysis could be 

useful to discover heretofore unknown, specific radiogenomic features of recent infection or 

incipient TB (51, 52). After IGRA conversion, staggered sampling at different times could 

reduce the study’s burden on individual subjects and allow more precise estimation of the 

duration of any biomarker. Most follow-up in such a study would have to be performed on those 

who refuse preventive treatment, as treatment would need to be offered because recent infection 

is precisely documented. Another potential benefit of such a study is that validated biomarkers 

that associate strongly with TST/IGRA conversion but precede conversion, such as currently 

unvalidated IgG and IgA markers, could be used to identify M.tb infection before TST/IGRA 

conversion and thus reduce the burden of follow-up of recent contacts in TB control programs 

and potentially help reduce LTBI treatment time (49). 

If deployed in population screening efforts, a test for recent M.tb infection could also allow real-

time geospatial mapping of recent TB transmission in communities. This could greatly help the 

application of current control methods to reduce TB transmission and disease in high incidence 

settings. While it is possible that our current 6-gene signature of recent M.tb infection could be 

evaluated in the future for this purpose, we think it would be more prudent to first find 

biomarkers of recent M.tb infection that have a longer duration and are useful for individual TB 

risk prediction. However, biomarkers of varying duration could be jointly useful for the 

application of mapping recent transmission. 
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Our results in mice, macaques and humans, together with recent literature, suggest that future 

longitudinal studies of HHCs may be successful at identifying more accurate biomarkers of time 

since M.tb infection in humans. Our study represents one of only a handful of studies since 

Poulsen’s early work showing that there are biological events in the early human response to 

M.tb infection that can be reproducibly measured (34).  Future biomarker studies may enable the 

study of early events of infection in humans both routinely and ethically and permit the 

identification of immunological or other biological events that determine whether an exposed 

person will develop TB disease or control the infection (5, 53–55). This could greatly aid vaccine 

development for TB as no correlates of protection for TB are yet known (56). We also expect 

that more accurate biomarkers of time since M.tb infection will be excellent tools to help better 

understand the human phenotypes of IGRA reversion and persistent resistance to IGRA 

conversion (54, 57).  

Our current analysis has some limitations. Because most transmission occurs outside the 

household contact setting, many individuals in the GC6-74 study were TST+ at enrollment 

(~51.4% in Ethiopia, ~36.3% in The Gambia), and follow-up TST in this study were incomplete, 

it is highly likely that many, and possibly the majority, of contacts in this study were not infected 

or re-infected from their index TB case (10, 11, 58). However, the 6-gene RNA signature 

discovered in this cohort validated in adolescents where recent M.tb infection was documented 

via IGRA conversion in 100% of study participants (25). Finally, our current analysis excluded 

HIV co-infection. 
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Methods 

Study Design 

The objective of this study was to identify blood RNA correlates of time since M.tb infection or 

exposure. We first infected mice with M.tb via the aerosol route and measured genome-wide 

RNA expression at pre-specified time points. Unsupervised analysis revealed potential 

discrimination between mice sacrificed at early time points (1-2 months) vs. late time points (3-5 

months). Cross-validation without hyperparameter tuning identified an unbiased RNA signature 

that accurately predicted early vs. late time period post-infection. We then retrospectively mined 

data from a prospective M.tb infected cynomolgus macaque cohort and a prospective healthy 

household contact human cohort to identify RNA signatures that predicted these same time 

periods post-infection. The human RNA signature was validated in an independent cohort, 

adolescents who were recently infected with M.tb during longitudinal sampling. 

Mice 

Specific pathogen-free, 6-12 week old, female C57BL/6 wild-type mice (The Jackson 

Laboratory, Bar Harbor, ME) were maintained in ventilated cages inside a biosafety level 3 

(BSL3) facility and provided with sterile food and water ad libitum. All protocols were approved 

by The Ohio State University’s Institutional Laboratory Animal Care and Use Committee. 

Mouse aerosol infection and blood collection 

M.tb Erdman (ATCC no. 35801) was obtained from the American Type Culture Collection. 

Stocks were grown according to published methods (59). Mice were infected with M.tb Erdman 

using an inhalation exposure system (Glas-Col) calibrated to deliver 50 to 100 CFUs to the lungs 

of each mouse, as previously described (59, 60). At specific time points post-M.tb infection, 
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infected and age-matched uninfected mice were sacrificed and blood collected (400 L) from the 

heart into 1.2 mL Tempus reagent and stored at -80°C. No formal randomization was employed 

for choosing cages of mice to be sacrificed at each time point. For the M.tb infected mice, sample 

size per time point was determined by using the number we routinely use for well-powered 

molecular and immunological studies in inbred mice. No blinding was performed for the mouse 

study. 

RNA processing and microarray hybridization 

Whole blood RNA was processed, quantified using a NanoDrop 1000TM spectrophotometer 

(NanoDrop Technologies) and RNA integrity (RIN) determined by a 2100 Bioanalyzer 

(Agilent). Samples with RIN ≥ 6.5 were submitted for hybridization onto Illumina mouse WG 6-

V2 beadchips and scanned on an Illumina Beadstation system. Microarray data will become 

available in the Gene Expression Omnibus (GEO) database upon publication. 

Microarray data pre-processing 

For our murine data, Illumina BeadStudio/GenomeStudio software was used to subtract 

background and scale average signal intensity for each sample to the global median average 

intensity across all samples. Probes with a detection P value ≤ 0.01 in at least 10% of mice were 

filtered for analysis. Thereafter R scripts were used to quantile normalize the data, set all values 

<10 to 10 and log2 transform the data. Probes were filtered by two-fold change in expression 

from the median in at least 10% of samples. For the macaque data (GSE84152), microarray data 

pre-processing was performed as previously described (24). The data from the human adolescent 

cohort of IGRA converters (GSE116014) was pre-processed identically as the macaque data, 

except that data were quantile normalized and no batch correction was performed.  When these 
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adolescent data were used to validate the 6-gene signature, the data were downloaded at the 

gene-level using the R MetaIntegrator package, before additional pre-processing (43). 

RNA-seq data pre-processing 

Human data from the Grand Challenges 6-74 (GC6-74) cohort were downloaded at the gene 

count level from GEO (GSE94438). Genes with read count ≤ 5 in 50% of samples were 

excluded. Data were quantile normalized and log2 transformed. To facilitate comparisons with a 

common RNA-seq alignment pipeline, gene counts were obtained from the ARCHS4 resource 

when comparing data from the Adolescent Cohort Study (GSE79362) and GC6-74 cohorts 

using the 6-gene signature (61). These data were otherwise processed identically. 

Machine learning predictions 

For predicting time since infection in mice, we used the Random Forest algorithm in R with 

default parameter values (62). Out-of-bag predictions were used to estimate model accuracy, 

which corresponds approximately to 3-fold cross-validation. 

To predict time since infection in macaques, we randomly partitioned the macaques into 

training (70%) and test (30%) sets. We compared several different machine learning 

algorithms using the R caret package (63). These included: Random Forest (R ranger package 

(64)), Gradient Boosted Machines (R gbm package (65)), Support Vector Machines using 

Polynomial (R kernlab package (66)) or RBF kernels (R kernlab package (66)) and 

Regularized Logistic Regression (R glmnet package (67)). 9-fold cross validation was used in 

the training set to optimize model hyperparameters and assess predictive performance, with 

all samples related to individual macaques being partitioned into the same held-out fold to 

ensure unbiased cross-validation. The caret package implementation did not permit 10-fold 
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cross validation for this dataset, as in humans, but the results should be equivalent. Only 

Regularized Logistic Regression was used for predictions in the test set and Regularized 

Linear Regression for predicting each time point post-infection after Regularized Logistic 

Regression was shown to be superior in predicting time period post-infection. 

To predict time since TB exposure, time since IGRA conversion or prospective risk of TB in 

humans, we used 10-fold cross validation on the training set (either GC6-74 or Adolescent 

IGRA converter cohort), with each subject’s samples partitioned into the same held-out fold, to 

optimize Regularized Logistic Regression model hyperparameters before predicting on the test 

set. Prior to performing this procedure for time since TB exposure on the GC6-74 training set, 

we performed feature selection on genes by a Wilcoxon test (P < 0.05). Where longitudinal data 

were available for individual macaques or persons, each time point was considered as an 

independent sample.  

Forward search to discover parsimonious 6-gene signature 

A forward search was performed in the GC6-74 Gambia and Ethiopia training set on genes 

selected by a Wilcoxon test (P < 0.05) using the R MetaIntegrator package as previously 

described (43, 68). The stopping threshold for increase in AUC with the addition of each gene 

was varied until a signature comprising less than 10 genes and including both upregulated and 

downregulated genes at 6 months post-enrollment (vs. baseline) was obtained. The final 

signature’s score is calculated on normalized log2 expression values as a difference between 

upregulated and downregulated genes: (RP11-552F3.12 + PYURF + TRIM7 + TUBGCP4) – 

(ZNF608 + BEAN1). When applying this score to microarray data, multiple detected probes that 

mapped to these genes, using the R biomaRt package, were averaged (69). Genes without 

corresponding detected probes were omitted from the calculation. 
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Cell type deconvolution, pathway and transcriptional module analysis 

Cell type proportions in blood were estimated from RNA-seq data as previously described using 

the R MetaIntegrator package (25, 40, 43). Gene-level expression for this deconvolution was 

obtained from the ARCHS4 resource (61). For pathway analysis, the 250 genes comprising the 

signature of time since exposure to an active TB case (6 months vs. baseline) were analyzed 

using canonical pathway analysis with QIAGEN’s Ingenuity® Pathway Analysis platform (IPA®, 

QIAGEN Redwood City, www.qiagen.com/ingenuity). To compare transcriptional modules that 

were concordantly or discordantly regulated between mice, macaques and humans at early and 

late post-exposure time points, we used the R disco and tmod packages with transcriptional 

modules from Li et al. (70–72). Genes used in this analysis included all detected probes (mice 

and macaques) and genes (humans). Differential expression and ortholog assignment were 

performed as previously described (42). The 6-month time point in the GC6-74 cohort was taken 

as the early time point in humans based on the results in Figures 5 and S3, as this time point had 

the highest 6-gene score (data not shown). 

Statistical analysis 

All statistical analyses were performed in R (version 3.4.3). Prediction performance was 

evaluated using receiver operator characteristic (ROC) curves. Statistical significance of the area 

under the curve (AUC) was assessed using the one-sided Wilcoxon test via the R Verification 

package (73). ROC graphs and confidence intervals were obtained via the R pROC package (74). 

Pearson test was used for correlation analysis. Fischer’s exact test (two-sided) was used to 

determine statistical significance of comparisons between proportions in evaluating the 

independence of the time since infection signatures from risk of TB disease in macaques. We 

used linear mixed models to assess the significance of cell type proportion changes with time 
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since TB exposure via the R lme4 package (75). Subject and site were included as random 

effects and time since exposure and site as fixed effects. These two-sided P values were obtained 

via the Satterthwaite approximation. The IPA canonical pathway P values were calculated by a 

one-sided Fisher’s Exact Test, with P < 0.01 considered as significant. The transcriptional 

module P values were calculated using the CERNO statistical test, with P < 0.05 considered as 

significant after Benjamini-Hochberg correction (42). For all other statistical tests, P < 0.05 was 

considered as significant. 

Data availability 

Mouse microarray data will be made available in the Gene Expression Omnibus database upon 

publication. Published data used in this study are available in the Gene Expression Omnibus 

database under accession numbers GSE79362, GSE84152, GSE94438 and GSE116014.  

Code availability 

Source code for all analyses is publicly available in a GitHub repository: 

https://github.com/remi10001/TB. 

Supplementary Materials 

Figure S1. Training and test set partition for cohort of cynomolgus macaques. 

Figure S2. Comparison of different machine algorithms to predict time period of M.tb infection 

in cynomolgus macaques. 

Figure S3. Trajectory of 3-gene signature for recent M.tb infection before and after IGRA 

conversion in adolescents who acquire M.tb infection. 

Table S1. Feature importance for all probes used in predicting time since M.tb infection in mice 

(regression of 1-5 months post-infection). 
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Table S2. Probes comprising 50-probe RNA signature of time since M.tb infection in 

cynomolgous macaques (regression of 1-6 months post-infection). 

Table S3. Genes comprising 250-gene RNA signature of time since exposure to active TB index 

case (6 months vs. baseline). 

Table S4. Top significantly enriched canonical pathways in 250-gene RNA signature of time 

since exposure to active TB index case (6 months vs. baseline) by IPA. 
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Figures: 

 

Figure 1. Blood genome-wide RNA expression discriminates early vs. late M.tb infection 

time periods in C57BL/6 mice. Principle component analysis of genome-wide RNA expression 

measured via microarray in (A) all mice (n = 6 uninfected mice, n = 20 M.tb infected mice) 

stratified by infection status and (B) only M.tb infected mice stratified by time period post-

infection. (C) ROC curve for out-of-bag performance of Random Forest Classifier predicting 
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time period post-infection (1-2 months vs. 3-5 months; P from Wilcoxon test, 95% confidence 

interval shown). (D) Random Forest Regression out-of-bag predictions of monthly time point 

post-infection. Fit curve calculated via the Loess method with 95% CI shown. 
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Figure 2. Blood RNA signature discriminates early vs. late M.tb infection time periods in 

cynomolgus macaques. (A) ROC curves for Regularized Logistic Regression prediction of time 

period post-infection (20-56 days vs. 90-180 days) from RNA expression in cynomolgus 

macaques on 9-fold cross-validation in the training set (blue curve; n = 107 early time period 

samples, n = 103 late time period samples) and final model prediction on test set (red curve; n = 

44 early time period, n = 40 late time period) (P from Wilcoxon test). (B) Comparison between 

early (20-56 days) (n = 107 train, n = 44 test) vs. predicted early (n = 104 train, n = 50 test) time 

period samples in proportion of samples from macaques that develop active TB (P from 

Fischer’s Exact test). Regularized Linear Regression predictions of time point post-infection for 

(C) 9-fold cross-validation in the training set (n = 210) and for (D) final model prediction on the 

test set (n = 84). (E-F) Predictions from models trained and evaluated only on samples from the 

first 90 days post-infection (n = 134 train, n = 55 test). Boxplots represent medians with 

interquartile ranges for the predictions at each time point (best fit line shown, P from Pearson 

test). 
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Figure 3. Blood RNA expression of 250 genes predicts time since active TB exposure in 

humans. (A) ROC curves for prediction of time since first known IGRA+ (0 vs. 6 months) in 

South African adolescents who acquire M.tb infection for 10-fold cross-validation in the training 

set (blue curve; n = 17 0 month samples, n = 21 6 month samples) and final model prediction on 

the test set (red curve; n = 10 0 month, n = 9 6 month) using Regularized Logistic Regression. 

(B) ROC curves for Regularized Logistic Regression prediction of time since active TB exposure 

(baseline vs. 6 months post-enrollment) in GC6-74 Gambia and Ethiopia test set (n = 37 baseline 
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samples, n = 31 6 months samples) using expression of genes from published signatures that 

predict prospective risk of active TB. (C) ROC curves for Regularized Logistic Regression 

prediction of time since active TB exposure for 10-fold cross-validation on the Gambia and 

Ethiopia training set (blue curve; n = 67 baseline, n = 48 6 months) and for final model 

prediction (contains 250 genes) on the Gambia and Ethiopia test set (red curve; n = 37 baseline, n 

= 31 6 months). (D) ROC curves for prediction of prospective risk of TB for 10-fold cross-

validation on the Gambia and Ethiopia training set (blue curve; n = 67 baseline, n = 48 6 months) 

and for final model prediction on the test set (red curve; n = 37 baseline, n = 31 6 months) using 

the 250-gene set that predicted time since active TB exposure. P values for all ROC curves are 

from Wilcoxon test, and 95% confidence intervals are shown. 
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Figure 4. Time since TB exposure in humans is associated with alteration in CD4+ T cell 

proportion and immune activation pathways. Changes in CD4+ T cell percentages (A,B) and 

NK cell percentages (C, D) in GC6-74 healthy household contacts cohort at baseline (n = 104 in 

A,C; n = 272 in B, D), 6 month (A, C; n = 79) and 18 month (B, D; n = 64) time points after 

active TB exposure were determined by cell-type deconvolution (P from linear mixed model). 

Boxplots represent medians with interquartile ranges. (E) Top immunity related enriched 

F 
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canonical pathways in the 250-gene RNA signature of time since exposure to active TB index 

case (6 months vs. baseline) by IPA (P from Fisher’s Exact test). (F) Enriched transcriptional 

modules that are concordantly or discordantly regulated during recent M.tb exposure or infection 

between mice, macaques or humans by disco analysis (P from CERNO statistical test). 
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Figure 5. Application of reduced 6-gene signature of time since active TB exposure to 

adolescent M.tb infection acquisition cohort confirms its identification of recent infection in 

humans. (A) ROC curves for 6-gene score prediction of time since active TB exposure in the 

Gambia and Ethiopia training set (blue curve; n = 67 baseline samples, n = 48 6 months samples) 

and for the Gambia and Ethiopia test set (red curve; n = 37 baseline, n = 31 6 months). (B) ROC 

curves for discrimination between time of first known IGRA+ and all pre-conversion time points 

(blue curve; n = 27 0 month, n = 24 pre-conversion) and between time of first known IGRA+ and 
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all other time points (green curve; n = 27 0 month, n = 24 pre-conversion and n = 31 6 or 12 

months after known conversion) in South African adolescents who acquire M.tb infection using 

3-gene score from genes detected in microarray data. (C) ROC curves for prediction of 

prospective risk of TB using highest 6-gene score observed per individual in the ACS cohort (n = 

74 nonprogressors, n = 31 progressors), GC6-74 Gambia and Ethiopia test set (n = 49 

nonprogressors, n = 11 progressors) and GC6-74 South Africa cohort (n = 141 nonprogressors, n 

= 39 progressors). (D) ROC curves for discrimination of early and late time periods post-

infection in mice (blue curve; n = 8 early mice, n = 12 late mice) and macaques (green curve; n = 

151 early samples, n = 143 late samples) using genes from the 6-gene signature that were 

detected in the respective microarrays. P values for all ROC curves are from Wilcoxon test, and 

95% confidence intervals are shown. 
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Figure S1. Training and test set partition for cohort of cynomolgus macaques. Active = 

Developed active TB during the 6 months of study follow-up. Latent = did not develop active TB 

in this study. n corresponds to individual macaques, each of which underwent longitudinal 

sampling. 
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Figure S2. Comparison of different machine algorithms to predict time period of M.tb 

infection in cynomolgus macaques. Random hyperparameter search and 9-fold cross-validation 

of macaques were used on the training set to evaluate models to predict time period of infection 

from microarray data. Median (point), interquartile ranges (boxes), and ranges (whiskers) are 

shown for predictions on each independent fold for the best performing model for each 

algorithm. glmnet = Regularized Logistic Regression, gbm = Gradient Boosted Machines, 

svmPoly = Support Vector Machines with Polynomial kernel, svmRadial = Support Vector 
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Machines with RBF kernel, ranger = Random Forest. Sens=Sensitivity, Spec=Specificity, ROC= 

Area under the curve. 
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Figure S3. Trajectory of 3-gene signature for recent M.tb infection before and after IGRA 

conversion in adolescents who acquire M.tb infection. One sample (score = 0.47) from 360 

days after known conversion is omitted but was included in analyses of Figure 5B. Boxplots 

represent medians with interquartile ranges, and the blue line connects medians. n = 7 -360 days, 

n = 17 -180 days, n = 27 0 days, n = 30 180 days.  
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