
Fluorescence photography of patterns and waves of

bacterial adaptation at high antibiotic doses

Carlos Reding∗+1, Mark Hewlett+1, Tobias Bergmiller1,

Ivana Gudelj1 and Robert Beardmore1

1Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.

∗To whom correspondence should be addressed, E-mail: R.E.Beardmore@exeter.ac.uk

1

Fisher suggested advantageous genes would spread through populations as a wave so we2

sought genetic waves in evolving populations, as follows. By fusing a fluorescent marker to3

a drug efflux protein (AcrB) whose expression provides Escherichia coli with resistance to4

some antibiotics, we quantified the evolution and spread of drug-resistant E. coli through5

spacetime using image analysis and quantitative PCR. As is done in hospitals routinely, we6

exposed the bacterium to a gradient of antibiotic in a ‘disk diffusion’ drug susceptibility test7

that we videoed. The videos show complex spatio-genomic patterns redolent of, yet more8

complex than, Fisher’s predictions whereby a decelerating wave front of advantageous genes9

colonises towards the antibiotic source, forming bullseye patterns en route and leaving a10

wave back of bacterial sub-populations expressing AcrB at decreasing levels away from11

the drug source. qPCR data show that E. coli sited at rapidly-adapting spatial hotspots12

gain 2 additional copies of acr, the operon that encodes AcrB, within 24h and imaging data13

show resistant sub-populations thrive most near the antibiotic source due to non-monotone14

relationships between inhibition due to antibiotic and distance from the source. In the15

spirit of Fisher, we provide an explicitly spatial nonlinear diffusion equation that exhibits16

these properties too. Finally, linear diffusion theory quantifies how the spatial extent17

of bacterial killing scales with increases in antibiotic dosage, predicting that microbes can18

survive chemotherapies that have been escalated to 250× the clinical dosage if the antibiotic19

is diffusion-limited.20

Introduction21

Quantifying Fisher’s idea1 that an advantageous gene moves through space as a diffusive wave is difficult22

for populations of large organisms. It requires spatiotemporal measurements of a single gene under positive23
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selection, sampled repeatedly from those organisms in situ, on an evolutionary timescale with minimal, non-24

destructive interference from the observer. So, to meet these requirements we turn to single-cell organisms.25

We created an observational rig for bacterial populations using a bespoke time-lapse camera and used it26

to seek Fisher waves in an antibiotic disk diffusion assay that is routinely used to determine the antibiotic27

susceptibility of bacteria. We videoed a bacterial population expressing a green fluorescent protein (GFP)28

that had been physically fused to an antibiotic efflux mechanism (protein AcrB) in Escherichia coli and by29

culturing the latter in an antibiotic gradient photographed at regular intervals in appropriate light conditions,30

we used image analyses, corroborated by qPCR, to determine where high AcrB-expressing antibiotic efflux31

mutants were at all times. This method quantified an increase in antibiotic resistance that occurred within32

24h in this clinical assay. Image data show this was due to a 3-fold increase in efflux pumps per cell appearing33

within complex spatiotemporal patterns.34

An important question for in vivo treatments that we sought to quantify using an in vitro approach35

is how does an antibiotic become too spatially diffuse, and so achieve too low a concentration, to inhibit36

bacteria? Moreover, antibiotics exhibit gradients in vivo2 so how does dose escalation mitigate this ef-37

fect? Indeed, human infections are treated at high dosages that exceed clinical breakpoints3–8 yet aggressive38

chemotherapies can fail,9, 10 whether pathogens have pre-existing resistance or else develop resistance during39

chemotherapy.11–17 So, here we take a diffusion-theoretic approach to quantify features of the ubiquitous disk40

diffusion antibiotic susceptibility assay, paying attention to how very high, super-clinical dosing increases41

bacterial killing. We revisit this classical problem in microbiology18 and quantifying bacterial ‘zones of inhi-42

bition’ (ZoI) mathematically, thus relating gains in inhibition to dosage increases, providing new quantitative43

expressions that relate dose to ZoI that are consistent with our imaging data.44

Results45

Part I: Waves and bullseyes from antibiotics: predicting spatial structure from ecological dif-46

fusion theory. Intriguingly, patterns are often visible in antibiotic diffusion assays.19–21 To explain them,47

we turn to an ecological genetics model written in the spirit of Fisher – the CARS equation: carbohydrate-48

antibiotic-susceptible-resistant – that captures fundamental features of bacterial growth and antibiotic dif-49

fusion:50

Ct = σ(Cxx + Cyy)− u(C)(S +R), (1a)51

At = σ(Axx +Ayy)− dA− α ·A(S +R), (1b)52

Rt = σ′(Rxx +Ryy) +G(C)R+ µS, (1c)53

St = σ′(Sxx + Syy) +G(C)S − (µ+DA) · S. (1d)54

Here, drug-resistant and susceptible bacteria (R and S, respectively) colonise agar containing a carbohy-55

drate at concentration C. This is taken into the cell at rate u(C) and converted into biomass with efficiency56
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c, where all cells have the same half saturation coefficient for resource uptake (κ), uptake rate (u(C)) and57

maximal uptake rate (ν). Thus G(C) = c · u(C) represents bacterial growth rate, where u(C) = νC/(κ+C)58

is carbohydrate uptake rate and σ and σ′ are diffusion coefficients of small molecules and bacteria, respec-59

tively. µ is a gain of resistance mutation rate andD an antibiotic-dependent death rate and α is the antibiotic60

uptake rate.61

In the absence of antibiotic, so that A ≡ 0 when t = 0, CARS is a spatial logistic equation of the type62

studied by Fisher. To see this, define the number of cells, N , by N = S + R. Then define the total system63

mass as N + cC and note that the latter is constant through time if A = 0, call this constant C0. Adding64

(1c) to (1d) yields65

Nt = σ′(Nxx +Nyy) +N ·G(C0 −N),66

which is a Fisher equation with a vast mathematical history that is known to support waves.22
67

Bullseye patterns. CARS predicts the formation of spatial patterns when antibiotics are deployed (Figure68

1A) because it generates moving bi-modal distributions of bacterial densities formed from waves whereby local69

population density maxima occur both near to the antibiotic source and far from it, thus creating ‘bullseyes’.70

Intuition behind the bullseyes is this: high antibiotic dosages kill (or inhibit) so many cells that they create71

spatial regions abundant in nutrients close to the drug source. So, counterintuitively, the resistant cells that72

are able to grow in those high-nutrient, low-competition regions can grow more quickly than drug-susceptible73

cells situated much further from the antibiotic where nutrients are lower per cell because competitor densities74

are higher there.75

This intuition (formalised in Supplementary §1) is borne out by imaging data extracted from photographs76

of disk diffusion assays (Supplementary §2) where E. coli K12 (AG100) was exposed to gradients of doxy-77

cycline (Figure 1B), creating bullseye patterns of population densities. Our explanation for this is known as78

competitive release which exacerbates resistance because resistant mutants, namely ones that can survive79

high antibiotic dosages, are granted access to more nutrients than would have been the case if the drug were80

not present.81

The theory of competitive release predicts (Supplementary §1) that the bullseye can form from different82

genomes which exhibit their fastest growth rates at different distances from the drug source, thus one83

genotype could be largely responsible for one bullseye ring. To test this idea, we sought spatiotemporal84

data on population densities of a genetic mutation and so we observed E. coli K12(eTB108) in a disk85

diffusion assay using doxycycline (Supplementary §2). Strain eTB108 has GFP physically fused to AcrB86

and it amplifies the efflux operon acr that encodes subunits of the multi-drug efflux pump AcrAB-TolC23,24
87

under doxycycline stress because this drug is a substrate of the pump. By photographing the diffusion assay88

through green filters and using quantitative PCR to determine the number of copies of acr per chromosome89

to corroborate the fluorescence images, we sought to track the spatial locations of acr amplification mutants90

across the agar plate.91
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Bullseye rings of population densities formed during this assay (Figure 2A). A ring was first measured92

160 pixels (NB: 13.2 pixels per mm throughout) from the drug source at 8h, which subsequently transits93

with diminishing wavespeed (Figure 2B) towards the antibiotic. qPCR data show acr per genome was94

amplified within 24h and acr copy number correlates positively with distance to the doxycycline source at 24h95

(Figure 2C; linear regression p < 0.002, F ≈ 19.6, AICc ≈ 16.2, quadratic regression p ≈ 0.0026, F ≈ 12.4,96

AICc ≈ 18.1). However, the spatial distribution of acr per genome had changed quantitatively by 48h97

and a ‘hotspot’ formed whereby acr copy number was now maximised some intermediate distance from98

the drug, as indicated by a quadratic regression being a more likely descriptor of the data than a linear99

regression (linear regression p ≈ 0.05, F ≈ 4.7, AICc ≈ 27.0; quadratic regression with unimodal geometry100

p ≈ 0.0012, F ≈ 12.5, AICc ≈ 22.1). Thus, later populations harbour mutants with 2 mean copies of acr per101

genome (and 3 copies were observed in 1 biological replicate) whereas earlier populations have fewer operons102

(c.f. Figure 2C and D).103

Genomic waves. Seeking empirical evidence of waves, we examined relative fluorescence image data (green104

light intensity per pixel divided by white light per pixel) as a proxy for the spatial distribution of the per-cell105

abundance of AcrB (Figure 3A shows a positive nonlinear correlation). These data indicate (Figure 3B) an106

expanding population front at the edge of the ZoI situated approximately 80 pixels from the drug source at107

24h where qPCR and GFP imaging data both indicate between 2 and 3 copies of acr per genome. Imaging108

data indicate a spatial gradient of up to 3 AcrB relative protein units per cell where cells have 1 AcrB relative109

unit per cell at those spatial locations sited as far as possible from the drug source (Figure 3B and C).110

The wave front exhibits a bi-phasic wave speed (Figure 2B) that approaches the antibiotic source at two111

different rates that slow but do not stop (Figure 2B, linear regression: 0.019 pixels per h ± 0.012, slope112

± 95% confidence interval, p � 0.001). The faster initial phase (before 16h) is likely driven by the carbon113

gradient-mediated growth of drug sensitive, wild-type cells with 1 acr per genome. After 24h, the emergence114

of higher acr copy-number variants likely forms the second, slower phase of colonisation towards the drug115

source as mutants overcome both the increase in antibiotic dose at those locations and the large fitness costs116

of carrying acr amplifications.24 Finally, we highlight a wave-back behind the front, away from the drug117

source, where AcrB per cell increases towards the antibiotic source (Figure 3C), up to approximately 3 units118

relative to 1 for the wild-type.119

Part II: how zone of inhibition size scales with dose. We are now interested in how the size of the120

zones of bacterial clearance depend on the antibiotic dosage supplied. The above theory and data indicate121

subtle nonlinear dependancies that we henceforth ignore in the expectation that linear diffusion theory122

might be sufficient to answer this classical question. Indeed, much can be gleaned from basic dimensional123

considerations alone. For instance, spatially-extended chemotherapy should follow a law of diminishing124

returns because as antibiotics diffuse through 3D-space, killing as they go, the ZoI radius should depend on125

the 1/3 (cube) root of the dose applied: to double the ZoI volume, 8 times more antibiotic must be supplied.126
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This number is larger if the antibiotic degrades as it diffuses, as we now show.127

Diffusion-kill theory. We now present the simplest possible theory of spatially-extended antibiotic killing128

that we call diffusion-kill theory. Assume a spatially extended bacterial population encounters an antibiotic129

diffusing isotropically from a point source at rate σ. Suppose antibiotic is supplied at the centre of a spatial130

domain at concentration Ac and that the distribution of antibiotic, A, is described by the fundamental131

solution of the diffusion equation in n-dimensions (n ≤ 3). This is At = σ(Axx +Ayy +Azz), where x, y and132

z are spatial coordinates, thus:133

A(r, t) = Ac
(4πσt)n/2 exp

(
− r2

4σt

)
. (2)134

Here, r is distance from the antibiotic source so that r2 is either x2, x2 + y2 or x2 + y2 + z2 for n = 1, 2135

and 3 respectively and A(r, t) represents a spatially-normal distribution that expands out from the source136

as a decaying, spherical wave. Experiments correspond to n = 2 and n = 3 where the former approximates137

an agar plate where molecules cannot penetrate far into the agar and the latter approximates a region of138

homogeneous tissue.139

Suppose a threshold concentration exists above which the antibiotic kills cells, call this threshold Ad (c.f.140

the minimal bactericidal concentration (MBC)). The ZoI is described by the set of coordinates at distance141

r from the antibiotic source that satisfy142

Ad ≤ max
t>0

A(r, t). (3)143

We can solve inequality (3) (Supplement §3) which yields a constant depending on spatial dimension and144

Ad, call it C, whereby killing occurs at those distances, r, for which145

n = 2 : r ≤ CA1/2
c and n = 3 : r ≤ CA1/3

c . (4)146

This formulae are expected from dimensional considerations but the calculations generalises to the situation147

where the drug decays: in 2 dimensions we find constants C1, C2 and C3 (Supplement §3) such that148

lnAc ≤ C1 + C2
r2

−1 +
√

1 + C3r2
+
(
−1 +

√
1 + C3r2

)
+ ln

(
−1 +

√
1 + C3r2

)
. (5)149

Testing diffusion-kill theory. We tested (5) by imaging disk diffusion assays, as follows. We excised a150

circular section of agar from a plate, replacing it with agar supplemented with identical nutrients but with151

added antibiotic at a defined dose (Methods). We photographed the latter (Figure S3) to track bacterial152

inhibition, taking photographs at regular intervals to produce data on the dynamics of the sizes of ZoIs.153

The resulting data agree with theory: ZoIs at up to 256×MIC follow the diminishing returns law (4)154

although the model (5) better fits data for penicillin (Figures 4A, S6) though not for doxycycline (Figures155

4B). Prior theory (25, equation 1),18 predicts ZoI geometries of the form r ≤ C1 ln(Ac/C2))1/2 which capture156

data well too, though not as well as diffusion kill theory (Figures 4A and B; more replicates in Supplement §3).157

However, prior theory makes a non-physical prediction that the ZoI boundary (where r = C1 ln(Ac/C2))1/2)158
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has a logarithmic singularity that grows without bound as the antibiotic concentration reduces. Our theory159

corrects this: exponentiating (5) predicts r → 0 as Ac → 0, meaning the ZoI disappears when there is no160

drug.161

Discussion162

Theory and data highlight a fundamentally different bacterial dose response to antibiotics in spatial as-163

says compared with non-spatial assays conducted in mixed liquid environments. Notwithstanding the Eagle164

effect26 whereby dose-response data can be non-monotone in liquid cultures, methods for determining an-165

tibiotic dose responses generally predict that bacterial growth declines with increasing antibiotic dose. Here,166

in contrast, spatial structures form when antibiotics diffuse from a source so that bacteria can grow fastest167

in a mid-dose regime, leading to patterned growth within waves and rings of colonisation moving towards168

the antibiotic source at slowing rates.169

One mechanism supporting non-monotone spatial dose responses is competitive release: antibiotic gra-170

dients create nutrient gradients, thus cells that can grow in zones rich in antibiotic (i.e. resistant cells)171

access more nutrients than cells far from the antibiotic source. This creates conditions whereby the most172

rapid population growth can arise close to (and not far from) the antibiotic source because growth ben-173

efits provided by the nutrients there outweigh any costs of being resistant. Here, this dynamic promotes174

resistance by producing cells with 2 additional copies of the acr efflux operon within 24h in a mid-dose175

region. We tracked these mutants in real-time by combining qPCR with image analysis of GFP-labelled176

AcrB protein and observed gradients of acr amplifications in a wave structure that qualitatively resembles177

Fisher’s predictions,1 albeit with additional complexities, like biphasic wave speeds and bullseye rings.178

Antibiotics form gradients in the body2 so predictions on resistance progression in vitro can only have179

limited predictive power in vivo. Our data is consistent with this idea in the sense that spatial and non-180

spatial assays behave differently: here, the evolution to 3-fold acr amplifications observed within 24h in a181

spatial antibiotic gradient dosed at 128× MIC compares unfavourably against the mere 4×MIC needed in182

a shaken liquid environment to prevent detectable bacterial growth, therefore preventing acr amplifications,183

following 7 rounds of antibiotic treatment (Figure 4C).184

In conclusion, fluorescence photography and imaging data extracted from a ubiquitous clinical assay show185

a 250-fold increase in antibiotic concentration increases bacterial clearance by much less than 1cm on an186

agar plate. Thus, without active transport mechanisms to a bacterial site or else spatial mixing to prevent187

gradients forming, diffusion can prevent antibiotics from achieving the high concentrations needed to kill188

bacteria. Drug diffusion can therefore promote resistance by providing a smooth path that leads from the189

lowest to the highest dosages over short spatial scales.190
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Methods191

Media and strains. We used strains E. coli K-12 MG1655 and TB108. Strain TB108 derives from strain192

MG1655 in which a superfolder GFP locus was inserted in-frame and downstream of acrB. As a consequence,193

the GFP is attached to the cytoplasmatic c-terminal end of AcrB after translation, with an additional eight194

amino acids long polylinker peptide between AcrB and GFP. The fluorescence tag led to a partial malfunction195

of the pump AcrAB-TolC, as determined by the MIC of the strain TB108 to erythromycin, that was repaired196

(increased back to wild-type) by propagating TB108 in M9 media supplemented with 0.2% glucose (w/v),197

0.1% casamino acids and 10µg/mL of erythromycin for seven days. After this step, the MIC of the evolved198

TB108 strain (now denoted eTB108) was identical to the wild-type MG1655. By using erythromycin we199

sought to prevent mutations that pre-adapt eTB108, that we use used to the track abundance of GFP-AcrB,200

to doxycycline and penicillin. The same M9 media, but with no antibiotic, was used for Petri dish assays by201

adding 6g/L of agar powder (semi-solid agar). To embed the microbes in semi-solid media, 1mL of overnight202

culture in liquid media was added to 99mL of semi-solid media prior to use.203

Spatially-extended diffusion assays. For spatial diffusion plates we prepared two sets of semi-solid me-204

dia, one being inoculated from an overnight culture as described above, and the other containing doxycycline205

equivalent to from 1 to 300 times the minimum inhibitory concentration (1xMIC = 0.227 ± 0.007µg/mL,206

mean ± s.e.m. with n = 8). To our theoretical assumptions, a volume of 20mL from inoculated semi-solid207

media was used to fill the Petri dish and we later removed a circular section, at the centre of the Petri dish,208

we then refilled this with semi-solid media containing the drug (1.3mL used). The resulting concentration209

of nutrient was therefore uniform at the start of this assay whereas that for the drug was not because the210

drug source lay at the centre of the plate.211

Quantitative polymerase chain reaction (qPCR). We first removed a section of agar of 2.5×5×5mm,212

approximately, at different distances from the source of antibiotic and degraded the agar using agarase213

(ThermoScientific #EO0461) as per manufacturer instructions but with additional incubation time. We then214

extracted DNA from each fragment using the DNA extraction kit ‘GeneJET’ (ThermoScientific #K0729),215

quantified DNA yield using ‘Qubit’ and diluted accordingly to harmonise DNA content. The kit ‘Luminaris216

Color Probe Low ROX’ (ThermoScientific #0342) was used as per manufacturer instructions to quantify217

the abundance of the loci acrB and rob, the latter being a housekeeping gene of reference, sited outside the218

genomic region known to be amplified under our experimental conditions. The amplification efficiency was219

≈ 100% with the primers and probes described in Table 1 and, based on the resulting calibration curves220

(Figure S7), we used 25ng of material from the agar samples.221

Image analysis pipeline. To track culture growth we used a custom-built plate imaging system (Fig-222

ure S3) equipped with a digital camera (Canon EOS 1100D). To detect GFP-AcrB, we used high intensity223
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LEDs with an effective excitation bandwith of 475-490nm (Comar #475GY25 and #490IK25) and filtered224

emission bandwiths in the 530-560nm range (Comar #530GY50, #560IK50). We implemented an algo-225

rithm in MATLAB to read the resulting time lapse data, with photographs taken every 2h for three days,226

thus determining dynamic, spatial dose-responses. After a baseline correction to harmonise readings from227

subsequent photographs, we generated a dose-response profile measuring the pixel intensity in a 16-bit scale228

(0-255 for each red, green and blue channel) across a line connecting the centre of the zone of inhibition to229

the edge of the Petri dish, and rotated this line every 15o to generate technical replicates.230

Data analysis. To measure the effect of drug dose on microbial growth, we fitted mathematical models to231

population density and growth data to determine dose-response profiles (Figure S4A). The following logistic232

model was used to model bacterial density timeseries at different distances from the drug source:233

B(t) = B0 + K

1 +Ae−r(t−λ) .234

Here B0 is an estimated experimental blank due to reading an empty microtitre plate, K is the culture235

density during stationary phase or carrying capacity, A is a composite parameter that includes the initial236

cell density (inoculum), r the growth rate per cell per hour and λ the duration of the lag phase in hours.237

Curves for GFP-AcrB were reconstructed (Figure S4B) by fitting the following model to timeseries data238

F (t) = F0 + Kf

1 +Be−rf t
+ Ce−dt.239

The constant and logistic terms here are analogous to those in the above population growth model and the240

additional exponential term Ce−dt models the potential for down-regulation or degradation of GFP-AcrB,241

at rate d.242

Table 1: Primer and probe sequences for the loci acrB and rob. The amplicon size for acrB is

104bp and 112bp for rob.

243

244

Target gen Sequence (5′ → 3′) Tm (oC) Feature

acrB TCTGCAAGCAACTGGTTACG 60.0 oC Forward

ATCGTGGAACTGGGTACTGC 60.0 oC Reverse

CGTGACCAAGGCCAGCCTGG 70.6 oC Probe

rob ACGTTCCGTATACCGTCAGG 59.9 oC Forward

TATGTACTGACGGGGCATCC 60.7 oC Reverse

TATTCGCCGCCCTGCAGCAT 70.1 oC Probe

245
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Figure 1: Theoretical predictions: antibiotic diffusion creates bacterial waves and rings. A)

Simulating antibiotic growth inhibition on agar using radially symmetric solutions of the CARS equation:

a bacterial inoculation localised to the left of the spatial domain where there is no drug eventually forms a

bi-modal spatial wave. Note how a sharp population density peak first forms (this creates the first bullseye

ring) and then decays while a resistant wave front breaks off from the bulk of cells and propagates into the

region of high antibiotic concentration (this creates a second bullseye ring). The left image shows radial

slices through simulated cell densities at moments increasing in time, the right image uses those slices to

form a surface. B) Bullseyes (meaning local population density maxima) are apparent in empirical imaging

data (leftmost) that can be seen by eye (right) in photographs when E.coli K12 strain AG100 is challenged

by doxycycline; the left-hand data are radial averages of the right-hand assay images. Note the 3 local

maxima (i.e. the bullseye rings) in the AG100 density profile. Data for strain AG100-A that does not posses

a functional acr operon exhibits a less visible ringed pattern in the same experimental conditions with a

larger zone of inhibition for the same dose (black region, far right).
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Figure 2: Hotspot dynamics of acr per genome in a doxycycline gradient. A) Spatial dose-response

profiles after 8h and 50h of exposure to doxycycline. A bullseye ring was detected at radius 158 ± 3.6 pixels

(mean ± 95% CIs, n = 22). The wavefront location (WFT - in pixels), defined as the radius at which 1% of

the population density was observed relative to the value at the outer edge of the agar plate, was measured

at 121 ± 2 pixels (black line on the x-axis, mean ± 95% confidence, n = 22) after 8h and at 69 ± 0.6 pixels

after 50h. B) Dynamics of the front: the inset highlights the position (DST - distance in pixels) of the front

at 16, 24h and beyond: a linear regression (shown in red alongside mean slope ± 95% confidence interval)

shows the front speed slows in time with a bi-phasic structure whereby the rapid early inroads towards the

high-dose region slow after 16h. C) Copy number of acrB, a component of the acr operon, per chromosome

regressed against distance to the drug source (supplied dose as indicated) after 24h. Raw data are black

dots, mean and 95% confidence interval are grey. To test for local maxima, acrB per cell was modelled using

linear and quadratic regressions; p and adjusted R2 values are shown and the linear regression is the more

likely datafit here. D) Copy number of acrB per chromosome as a function of distance to the drug source

after 48h: the quadratic regression is now the more likely datafit. This is consistent with theory (Supplement

§1, Figure S1) showing that growth rates of different mutants are maximised at different intermediate spatial

locations.
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Figure 3: A wave front and back in a doxycycline gradient. A) A significantly positive correlation

is observed between the green per white light signal (a proxy for AcrB per cell) and acr operons per genome:

y-axis shows green light per white light intensities, x-axis shows acrB per genome from qPCR. Linear and

nonlinear (power law) regressions illustrate the positive correlation between these two sets of empirical ob-

servations. B) Abundance of GFP-AcrB per cell in spacetime: dark red represents the wild-type, background

abundance found at the edge of the plate (unity on the colour gradient) while white represents the highest

observed abundance; black represents no growth. C) The distribution of AcrB per cell (green light per

white light) between 24h (red) and 72h (dark gray) with data at other times indicated as thin lines: the

leftmost peak at 24h subsequently widens whilst AcrB copy number progressively increases, forming a more

highly-resistant wave back behind a slowly advancing wave front at later times.
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Figure 4: Diffusion theories capture bacterial ZoI data. A) ZoI radii regressed against antibiotic

dose data using penicillin and E. coli K12(MG1655). The regression using (5) is called ‘diffusion kill’ in the

legend, the model from (25) is called ‘Bonev2008’ and a power law regression is motivated by (4). Adjusted

R2 values show all models provide similar quality datafits. B) Is the analogy of A but for doxycycline

where (5) provides the most appropriate fit to data. C) A heatmap showing the population density (optical

density) of E.coli K12(MG1655) propagated in liquid media at increasing dosages of doxycycline. Integer

multiples of the MIC used during 7, 24h-long growth ‘seasons’ are indicated where data to the right of the

MIC marker were obtained in that antibiotic background. Population density was measured at 24h each

treatment round and the hot colour scale indicates white/yellow as high and red/black as low, columns

denote different replicates and rows denote 24h seasons. Note when dosage is 4×MIC we observe no growth

(black regions), although 1×MIC and 2×MIC support increasing growth.
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1 Supplementary Information: Growth rate is maximal an inter-

mediate distance from an antibiotic source

One can use the competitive release concept to explain bullseye patterns quite directly. To do so, modify

the basic Monod growth law from the main text and represent bacterial growth rate (G) as

G = G(C,A) =

cell yield︷︸︸︷
c ×

resource uptake︷ ︸︸ ︷
vC

κ+ C
×

growth inhibition︷ ︸︸ ︷
f(A) . (6)

where G is reduced by a function of the antimicrobial, A, by an inhibition function, f , that satisfies 0 ≤

f(A) ≤ 1. Assuming A and C diffuse, we can predict how G changes through space assuming two things:

the drug decays and carbohydrates create the conditions that exhibit competitive release at very high drug

dosages. For this, write the steady-state solution of the decay-diffusion equation At = σ(Axx + Ayy) − dA,

as A(r) = Acφ(r), where d is the antibiotic degradation rate and Ac is the antibiotic supply concentration.

Assume the free diffusion of carbohydrate away from the antibiotic source occurs due to the use of high

antibiotic dosages, so the steady solution for C is analogous: C(r) = C0φ(r), where C0 is the carbon

supplied that is initially uniformly distributed on agar at t = 0.

If one could show these assumptions imply the maximal bacterial growth rate occurs at intermediate

spatial locations sited away from the antibiotic source and if the intracellular antibiotic concentration for

two sub-populations were different, for instance if one were to express more antibiotic efflux pumps than

another, then their spatial location of optimal growth would be different too. Thus bullseyes would form

from the growth rings of the different sub-populations.

So, to demonstrate this, take growth rate defined in (6) and suppose that the spatial distribution of A is

given by the steady-state solution of the diffusion equation,

At = −dA+ σ(Axx +Ayy),

so A = Acφ(r) where φ(r) is a strictly decreasing function. So φ(r) satisfies, for this example,

0 = −dA+ σ(Axx +Ayy),

(although our argument cam be made much more general than this single model). Now assume that where

the drug source is, doses to cells are so high so they are rapidly killed due to the high dose, thus a carbon

‘haven’ is formed which begins to supply carbon to surrounding cells by diffusion. Thus, C is also the steady-

solution of a diffusion equation and C = C0φ(r). In the following, a dash (′) and a subscript (typically r)

will both denote derivatives, as is standard notation.

Growth rate is maximal where ∂G/∂r = 0 and lnG = ln ν + ln(f(A)) + ln(C)− ln(κ+ C), so that

∂(lnG)
∂r

= 1
G

∂G

∂r
= f ′(A)

f(A) Ar + Cr
C
− Cr
κ+ C

.
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Using f(A) = 1/(1 + pA) for the sake of definiteness, we find f ′(A) = −p/(1 + pA)2 so that f ′(A)/f(A) =

−p/(1 + pA) and therefore

∂(lnG)
∂r

=
(
− p

1 + pAcφ
Ac + 1

φ
− C0

κ+ C0φ

)
φ′(r).

The assumed monotonic property of φ (assuming the drugs decay away from the source, which is consistent

with solutions of diffusion equations) now means that we are seeking the values of r for which

− p

1 + pAcφ
Ac + 1

φ
− C0

κ+ C0φ
= 0

where φ = φ(r). Simplifying this, we arrive at the following fixed point equation for φ = φ(r):

φ = φ(1 + κ−1C0φ)− (pAc)−1.

Elementary sign and growth considerations of the RHS of this equation (which is quadratic in φ) show it

always has a unique solution, φ∗, so that the point of maximal growth rate in the spatial domain is the value

r = r∗ for which φ(r) = φ∗.

Now note that if a population of cells has two different responses to antibiotics whereby each cell is

associated with a different internal drug concentration, then this is represented in this model by having A

take on lower values for the more resistant cells. For instance, having more drug efflux pumps would reduce

A when is modelled here by scaling the value of Ac by a constant between 0 and 1, call this λ: A = λAcφ(r)

is the internal concentration of antibiotic of a cell at location r where λ is lower for cells with more efflux

pumps. Thus the equation for maximal growth rate becomes

φ = φ(1 + κ−1C0φ)− (λpAc)−1.

Now, as the resistance phenotype becomes increasingly significant, represented by λ reducing towards

0, the form of these equations makes the value of φ∗ become larger and so r∗ becomes inreasingly smaller

because φ(r) is a decreasing function. It is feasible that the value of φ∗ becomes so large that r∗ approaches

0 and so the fastest growth rate of some highly resistant strains could be achieved very close to the drug

source.

Continuing this argument, because of the efflux from highly resistance cells, it could arise that there is

a local increase in drug concentration within some highly drug-susceptible cells above the value Ac. In this

case, λ would be bigger than 1 and, as this value grows, the solution φ∗ heads towards zero and so r∗ could

grow towards being a point very far from the drug source.

To get a sense of how the resulting spatial distributions of population density might appear, consider the

mathematical solutions provided by the above analysis. So, first we need solutions of the radially symmetric

diffusion equation where x and y coordinates are replaced by the distance, r, from the drug source and the

angular coordinate is removed: σ
(
∂2A
∂r2 + 1

r
∂A
∂r

)
= dA, such that A(r)→ 0 as r →∞ and A(r = 0) = Ac, or

Arr+r−1Ar−Ad/σ = 0. As the solution of this equation is a Bessel function that requires lengthy techniques
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Figure S1: Two different theoretical growth rate profiles for bacteria carrying different numbers of a drug

resistance gene that carries costs based on the Monod-like analysis in this section. Note how the addition

of the gene shifts the growth rate maximum point towards the drug source but makes growth slower further

away from the source.

to derive that are likely to obscure our point, we illustrate the 1-dimensional version of this calculation in

Figure S1 where A(r) is an exponential function A(r) = Ac exp(−r(d/σ)1/2).

When we compare the theoretical Figure S1 against the empirical equivalent of the same concept, we find

Figure S2 which has been determined for the total population, not for a sub-population. Thus growth rate

is maximised some intermediate distance from the drug in data, as the theory claims.
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Figure S2: Empirical per capita growth rate at different distances from the drug source. The absolute

maximum growth rate was detected at 168 ± 2.66 pixels from the source (mean ± 95% confidence interval)

and a local maximum is found at 72 ± 0.61 pixels (see Figure S1 for the theoretical derivation of this

property).
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2 Supplementary Information: a fluorescence and white-light pho-

tography rig

We constructed a fluorescence photography rig to take images and videos in laboratory conditions. This is

based on a standard camera, LEDs used to excite bacterial samples on agar plates in white light and at

specific wavelengths, and light filters that are rotated into place by a servo to read different protein emission

wavelengths. A heating mat is placed below the camera on a mounting point to control agar temperature.

Antibiotic disk diffusion assays are illustrated in Figure S3B which shows a circular piece of agar (in black)

into which high dosage antibiotic has been impregnated which diffuses outwards to create a zone of inhibition

on a bacterial lawn. We can measure this lawn either in white light to determine population density, or else

in a fluorescent wavelength if wish to determine the level of expression of a GFP-tagged gene throughout

space by that population. Dividing white light measurements by GFP measurements gives a proxy for local

expression levels per cell through space. Figure S4 shows two exemplars of these spatiotemporal datasets.

NB: Figure S5 shows that there is a positive, albeit nonlinear and saturating correlation between plated cell

counts and white light intensity as measured using a camera. Thus white light intensity can be used as a

proxy for cell densities provided the latter is not too high.
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Figure S3: Imaging device. A) Overview of the imaging rig with the control unit containing Arduino

UNO on top, from which all the connections stem. Seeded agar plates are placed by a human operator at the

centre of the device. B) Sample photographs of a seeded agar plate are used to determine bacterial density

(labelled ‘White Light’) and green fluorescence emitted by green fluorescence protein (GFP).
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Figure S4: Spatiotemporal density and AcrB::GFP expression surfaces from image analysis. A)

An aggregation of radially averaged white light dose-response data needed to reconstruct one set of technical

replicates of growth curves and dose responses, all laid together to form a surface. A lack of growth is shown

in deep blue whereas the maximal growth is shown in red. The parallel red lines remark the coordinates at

which the absolute and local maximum growth rate were observed for this data whereby E.coli K12 (eTB108)

is incubated for over 60h at 37◦C. B) Analogous data to A) but instead of using population growth data it

uses GFP that is physically fused to AcrB (see Methods).
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Figure S5: Correlation between white light turbidity and culture density (colony forming units

(CFUs)). White light measurements from a standard camera quantified using JPEG RGB values (y-axis)

and culture density as CFUs on the same agar plate (x-axis); note the positive, nonlinear correlation.
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3 Supplementary Information: How zone of inhibition size scales

with antibiotic dose

In this section, we use inequality (3) to predict the effect of dose escalation on the size of the zone of growth

inhibition. By calculus, differentiate the expression for A(r, t) from the main text with respect to t, set this

derivative to zero and solve it for t. This shows that the maximal drug dose is reached when time, t, satisfies

t = t∗ = 2r2/(4nσ), at this time A(t∗, r) = Ac

rn · nn/2

(2πe)n/2 . Placing this expression in (3), antibiotics inhibit

growth provided Ad ≤ Ac

rn ·C, where C denotes a dimension-dependent constant. Setting n = 1, 2 and n = 3

and re-arranging, respectively, we determine the radii of the zones of inhibition: microbes do not grow if

they are placed at distances, r, from the drug source if

n = 1 : r ≤ C ·Ac/Ad , n = 2 : r ≤ C · (Ac/Ad)1/2 and n = 3 : r ≤ C · (Ac/Ad)1/3 (7)

where C is a placeholder for constants of proportionality.

We now generalise this calculation to the more realistic case where the drug decays. We again need

solutions of the inequality (3) but now where A(t, r) is a solution of the isotropic decay-diffusion equation

which, with decay rate d, in 3-d reads:

At = −dA+ σ(Axx +Ayy +Azz). (8)

The solution of this is the solution (2) from the main text multiplied by a decaying exponential, at rate d:

a(r, t) := A(r, t) exp(−dt) = Ac
(4πσt)n/2 exp

(
− r2

4σt

)
· exp(−dt).

By calculus, we differentiate a(r, t) with respect to t, set this derivative to zero and solve it for t:

t = t∗ = n

2d

(
−1 +

√
1 + 4dr2

σn2

)
.

Thus, a(t, r) > Ad for some t > 0 if ln a(t∗, r) > lnAd, or

lnAd < lnAc − C0 − C1
r2

−1 +
√

1 + cr2
− n

2

(
−1 +

√
1 + cr2

)
− n

2 ln
(
−1 +

√
1 + cr2

)
where c = 4d/σn2, C1 = d/2σn,C0 = n ln(2πσn/d)/2. Given zone of inhibition radius data on from agar

plate diffusion assays, where n = 2, this provides a 3-parameter nonlinear regression model to fit against

data of the form (re-stating (5) from the main text)

f(A, r; p0, p1, p2) = − lnA+ p0 + p1
r2

−1 +
√

1 + p2r2
+
(
−1 +

√
1 + p2r2

)
+ ln

(
−1 +

√
1 + p2r2

)
(9)

where A is the antibiotic supply concentration, r is the zone of inhibition radius and p1, p2 and p3 are

unknown parameters to be determined from data.

Dimensional arguments from main text suggests the use of the 2-parameter regression model

f(A, r; p0, p1, p2) = p0r
p1 −A (10)
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for the same ZoI data where we expect p1 to be close to the value 2 for diffusion assays on agar plates. This

may not be true in practise because agar plates are not 2-d objects, but anisotropic, 3-d objects which are

much wider than they are high.

We tested the ZoI regression models defined by equations (4), (9), (10) and one used already in the

literature18,25,27 defined as

f(A, r; p0, p1) = −r + p0 ln(A/p1))1/2 (11)

against ZoI data. The result of applying these 4 regressions can be seen in Figure S6.

NB: Throughout, the equation f(A, r; p) = 0 determines the ZoI boundary as a function of dose (A) and

this observation is used to determined the resulting model parameters p.

A) B)

C) D)

Figure S6: A, B, C and D are the results of applying the regressions (4 - using dimension n = 2), (9), (10)

and (11) respectively to the penicillin disk diffusion test (as per Figure 4A) repeated for K12 strain AG100.

Each plot looks different because the x- and y-axis were chosen to reflect the nature of each regression, some

of which use logarithmically transformed data and some which do not. In A, ZoI radii for doxycycline AG100

follow the predicted quadratic power law between radius (x-axis) and dose (y-axis); this is consistent with

equation (4) (adjR2 ≈ 0.95, F-statistic versus constant model is F > 103, p ≈ 10−76). In all cases, theory

and data correlate well but the diffusion-kill theory (9) presented in the main text outperforms prior theory,

as demonstrated by adjusted R2 values in the legends.
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Figure S6 shows that the four different possible regressions for the same phenomenon that we propose all

capture data, having adjusted R2 values above 0.88. However, while equation (9) predicts the ZoI radius at

the MIC dose, equation (11) makes an unusual and non-physical prediction whereby as dosage heads towards

zero, the radius of the ZoI diverges to infinity (see Figure S6). This paradoxical behaviour (of very good

fitting at high dose and non-physical behaviour at low dose) can be seen in Figure S6D.
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4 Supplementary Methods

Methodological data for determining quantitative PCR amplification efficiency are shown in Figure S7.
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Figure S7: Quantitative PCR amplification efficiency. Calibration curves for acrB (left) and rob

(right). The threshold cycle (Ct) is shown on the y−axis as a function of DNA content on a log2 scale. A

linear model was robustly fitted to data (in grey; mean prediction ± 95% confidence interval, n = 3). The

amplification efficiency was calculated as 21/Slope − 1, where the slope is given by the linear fit.
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