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Abstract  

Low back pain (LBP) remains a critical health issue impacting literally millions of 

people worldwide.  Currently, clinical practitioners rely on subjective measures such as 

the STarT Back Screening Tool to categorize LBP patients, which then informs specific 

treatment regimens. This study sought to develop a machine learning model to classify 

LBP patients into different groups according to kinematic data. Specifically, an inertial 

measurement unit (IMU) was attached to each patient’s chest while he performed trunk 

flexion/extension motions at a self-selected pace. Machine learning algorithms such as 

support vector machine (SVM) and multi-layer perceptron (MLP) were implemented to 

evaluate the efficiency of the models. The results showed that the kinematic data we 

obtained could be used to categorize the patients into two groups: high vs. low-medium 

risk. We achieved accuracy levels of ~75% and 60% for SVM and MLP, respectively. 

Additionally, among a range of variables detailed herein, we determined that time-scaled 

IMU signal resulted in the highest accuracy. Our findings support the use of body-motion 

measures in developing prognosis tools for healthcare applications. Our results could 

help overcome the need for objective clinic-based diagnosis approaches, which in turn 

would lead to assigning better treatment approaches and rehabilitation services for LBP 

sufferers. 

Keywords: Objective clinical decision, Wearable technology, Inertial measurement unit, 

3-D kinematics, Pattern recognition, Classification 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/803155doi: bioRxiv preprint 

https://doi.org/10.1101/803155


Introduction 

Low back pain (LBP) remains a challenging and often debilitating health condition 

that is considered to be the most common cause of disability and the most widespread 

musculoskeletal disorder worldwide [1, 2].  It is estimated that around 84 percent of the 

adult population will experience LBP at some time in their lives, and up to 33% of adults 

may be dealing with this condition at any given moment in time [3-5].  In both 

developed/developing countries, LBP has been identified as the fourth-most frequent 

condition warranting a visit to a physician, the fifth-most common reason for 

hospitalization, and the third- most frequent cause for undergoing a surgical operation [4, 

6].  There is, therefore, a compelling rationale for investigating this widespread condition 

in order to identify more appropriate treatments and injury-prevention approaches. 

Meanwhile, researchers have verified that there is no one-size-fits-all treatment 

approach for LBP patients given the complexity of condition and the heterogeneity of LBP 

causes among sufferers [7, 8].  However, evidence-based guidelines do confirm the 

necessity of stratifying LBP patients in primary care according to (a) their risk for 

subsequent disability, and (b) specific treatment approaches for each group [9, 10]. While 

it may seem straightforward to partition treatment groups in this way, it it by no means 

easy to assign each patient to the most suitable LBP group/treatment scenario.  To 

address this dilemma, several methods have been developed to classify LBP patients 

[11-14]. The most commonly accepted instrument for stratifying treatment based on 

prognosis risk is the STarT Back Screening Tool (SBST) [11, 15-18].  This approach 

requires LBP patients to complete a screening questionnaire, whose results are used to 

assign the respondent into one of three groups: low, medium, and high risk [19].  For each 

of the three LBP groups, there exists a specific treatment approach.  Notably, one of them, 

i.e., the high-risk group, requires the patients to undergo a series of six individual 

physiotherapy sessions over three months. In contrast, the low- and medium-risk groups 

are treated with less aggressive approaches, such as providing therapeutic information 

to the patients.  Hence, it is important to distinguish the high-risk individuals among these 

patients for much-needed curative therapies. 
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To categorize LBP patients for appropriate treatment protocols, clinical decision-

making in a primary care environment is currently based on qualitative questionnaires, 

and thus the pitfalls of subjective reporting.  In other words, although stratifying patients 

into different groups and assigning different treatment approaches has led to better 

therapeutic outcomes (e.g., decreasing disability from LBP and reducing the time off 

work), this classification approach tends to be prone to error due to the low reliability of 

the subjective information collected from patients [20].  In contrast, advancements in 

sensor technology are leading to efforts to augment subjective measures with objective 

approaches, such as measuring patient movements during walking or other controlled 

tasks [21-25].  The core concept of these studies involves utilizing differences in trunk 

motion (i.e., trunk kinematics) for people suffering from LBP. 

Researchers continue to investigate kinematic approaches for their diagnostic 

potential, or even as a tool to make a clinical decision in primary care [21, 26-31].  Some 

earlier studies involving LBP sufferers have confirmed a correlation between the quality 

of motion in people and their health status [32-35].  Marras et al. implemented several 

models to classify healthy versus LBP people based on trunk angular motion features 

during flexion/extension and bending of the trunk in various symmetric and asymmetric 

planes of motion [33, 36].  Similarly, Ashouri et al. was able to distinguish healthy people 

from LBP patients based on a signal from an inertial measurement unit (IMU) sensor on 

the chest during a trunk flexion/extension task using a Support Vector Machine (SVM) 

classifier [21].  In addition to focusing on LBP, similar studies have focused on the neck 

region.  For example, Bahat et al. revealed that neck pain would lead to lower peak and 

mean velocity of the neck during flexion/extension motions [37].  

All of these prior studies sought to investigate a model that would distinguish 

healthy subjects from a patient cohort. In contrast, there are far fewer scholarly reports 

designed to stratify LBP patients and correlate those findings with proper treatment 

approaches.  This study, therefore, was designed to categorize LBP sufferers using a 

new objective method. Specifically, we utilized an IMU sensor placed on the torsos of 

LBP patients to collect kinematic data. We then utilized different machine learning 

approaches to classify our study subjects into different subgroups based on trunk 
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kinematics, and then compared the results of these data analytics approaches to identify 

the most accurate one.  This study is expected to contribute to the ability to objectively 

diagnose and categorize LBP according to severity, which will help clinicians and care 

providers make more accurate decisions about the risk levels for individuals with LBP. 

Materials and Methods 

A system diagram is provided to depict the overall procedures for data collection 

and data analysis in this study (Fig 1).  Details about each aspect of the study are provided 

in the following sections. 

 

Figure 1. Schematic system diagram of the platform for the classification of LBP patients. (a) 

Sensor and data collection procedure. (b) Data analysis procedure. 
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Participants. Ninety-four male volunteer LBP patients were recruited for this 

study.  The average (standard deviation) age, height, and weight of the participants were 

43.6 (6.9) years, 172.6 (7.3) cm, and 79.5 (12.5) kg, respectively.  Statistical analyses, 

i.e., ANOVA and t-test, were conducted to ensure that there were no significant 

differences (p-value > 0.05) among different groups in terms of age, height, weight, and 

BMI.  Three inclusion criteria were implemented to recruit participants: 1) Participants had 

to be between 20-50 years of age who identified with low back pain based on Waddell et 

al.’s definition [38]; 2) During the assay, pain intensity had to remain less than 5 on the 

Visual Analog Scale (VAS) [39, 40]; and 3) Any participant with a history of spinal surgery 

was excluded from taking part.  All LBP patients were examined by an orthopedic surgeon 

to meet all the inclusion criteria, and participation was wholly voluntary.  Each individual 

was also required to sign a consent form approved by the Shahid Beheshti University of 

Medical Sciences Ethics Committee prior to taking part in this study. 

Experimental design. Each subject was asked to perform as many trunk 

flexion/extensions as he could within a 14-second period.  An IMU sensor (9DOF Razor 

IMU, Sparkfun®, Niwot, Colorado) composed of a 3-axis accelerometer and a 3-axis 

gyroscope with a sampling frequency of 20 Hz was implemented to acquire trunk 

kinematic data.  The sensor was placed on the sternum of the patients during the task 

(Fig 1) to collect acceleration and angular velocity.  In addition to kinematic data, a 

balance board was used to collect data related to the center of pressure (COP).  Four 

variables were measured from the balance board: x and y range, path length, and area 

of the ellipse, which captured 95% of the COP data.  Moreover, each participant was 

required to complete the Hospital Anxiety Depression Scale (HADS) [41] and the Tampa 

Scale of Kinesiophobia (TSK) [42] questionnaires.  These quantitative measures were 

implemented to help verify the objective accuracy of resulting chest kinematic data.  

Finally, the subjects were asked to fill in the Persian version of the STarT questionnaire 

[43], which divided (labeled) the LBP patients into three risk groups (low, medium, and 

high).  This data was implemented as the ground truth data for our machine learning 

algorithms.  During the supervised learning algorithm portion of this study, the labeled 

data was divided into two segments in order to train the model and calculate its sensitivity, 

specificity, and the accuracy. 
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Data processing. For each subject, the collected data were processed in 

MATLAB (Mathworks, Inc., Natick, MA, USA) to provide a feature vector to be 

implemented for classification.  In this study, there were four performance-oriented 

feature types: (1) acceleration, (2) velocity, (3) angular acceleration, and (4) force platform 

data.  The first three features included data in X, Y, and Z directions, which were defined 

as Vertical, Medio-lateral, and Antero-posterior directions, respectively. 

The data for each subject comprised several trunk flexion/extension cycles, which 

could be different depending on the individual.  Then, all of the flexion/extension cycles 

were aggregated into one cycle in order to produce a single profile representing the first 

three features for each subject.  This step led to determining angular/linear acceleration 

and angular velocity for each subject in only one resultant cycle.  Thus, for each subject 

there was only one acceleration graph, which resulted from averaging (using root mean 

square) all of the acceleration profiles during flexions/extensions during the 14-second 

interval.  Furthermore, the data were time-scaled such that for each feature profile of the 

first three features, there were only 100 points.  Once the variable of time was removed 

from the data, the resulting data was the features’ profile in each percentile of task 

completion.  Moreover, 16 statistical features such as max, standard deviation, kurtosis, 

and skewness, were calculated for each signal. 

Since participants were asked to perform flexion/extension as fast as they 

comfortably could within a specific time (i.e., 14 seconds), the number of cycles differed 

from person to person.  To consider this performance aspect, the angular acceleration of 

the trunk was also calculated from the angular velocity signal applied in the study.  It 

should be noted that by removing the time variable from the signals through time-scaling 

and averaging the cycle for each trial, the effect of the different number of cycles for each 

trial could be eliminated.  To shed further light on point, assume two different signals for 

angular velocity—a single cycle and four cycles.  In this instance, the resultant signals 

would be the same as long as they have the same range and trend of angular velocity.  

This factor was the primary reason for adding angular acceleration as a study measure 

(in addition to angular velocity and linear acceleration); angular acceleration would 

preserve needed data about changes in angular velocity. Apparently, more 
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flexion/extension cycles would result in a larger range of angular acceleration.  In other 

words, the range of angular acceleration corresponds to the number of cycles for each 

subject. 

The last factor incorporated in the analysis represents the four measures obtained 

from the force platform underneath the participants’ feet: displacement range of center of 

pressure (COP) in both the x and y directions, COP path length during the task, and 

ellipse area of the center of pressure amplitude.  These features enabled the algorithm to 

consider balance factors as a part of the discriminating protocol.  Finally, prior to applying 

any machine learning algorithm to the data, all of the features were scaled. All the features 

implemented for this investigate are listed in Table 1. 

Table 1. The description of various features and their sources 

Feature Source Description 

Full Signal (FS) IMU Sensor 

Linear/angular acceleration and 

angular velocity in X, Y, and Z 

direction; all time-scaled to have 

100 data points for each of them  

Four Significant Features 

from FS (FT16) 
IMU Sensor 

E.g., max, standard deviation, 

kurtosis and skewness for 

linear/angular acceleration and 

angular velocity in X, Y, and Z 

direction 

Balance Analysis (Wii) Balance Board 

From COP data; x and y range 

(balance board's axes), path 

length, and area of the ellipse 

which could capture 95% 

percent of the data 

Subjective Features (ADT) Questionnaires 
Participants filled out HADS and 

TSK questionnaires 

 

Classification approaches 

After data processing, three algorithms were implemented in MATLAB software to 

classify the patients into distinct risk groups.  First, the K-means algorithm was 
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implemented to cluster study participants based on their kinematic data and with no use 

of any labels (unsupervised learning).  In the next step, data were evaluated using the 

support vector machine (SVM) algorithm.  Finally, a neural network approach was applied 

to the data.  To determine the best discriminating approach, the feature set of FS (see 

Table 1) was implemented for all of the algorithms. 

I. K-means 

K-means is an unsupervised learning method to cluster data without labeling. In 

this study, we used K-means to (1) check how many subgroups could appropriately 

represent all LBP patients based on trunk kinematics, and (2) assess if the kinematic data 

were properly classified.  The latter objective was intended to provide general perceptions 

about the kinematic data from all patients. The algorithm was initiated from some initial 

points (equal to the number of clusters), and then added each point to one of these 

clusters and updated the center points.  Finally, all of the sample data were assigned to 

one of the clusters.  The important point that had to be considered was finding the optimal 

number of clusters, which was essential prior to implementing the K-means algorithm 

since the number of clusters was the input of the algorithm. 

The Calinski-Harabasz index was implemented to determine the proper clustering 

number.  The formulation of the index was as follows [44]: 

Calinski − Harabasz index =
𝑆𝑆𝐵

𝑆𝑆𝑊
×

𝑁 − 𝑘

𝑘 − 1
 (1) 

Where 𝑆𝑆𝐵 is overall between-cluster variance, 𝑆𝑆𝑊 is the overall within-cluster 

variance, N is the total number of observations, and k is the number of clusters.  The 

number of clusters was determined such that this index could achieve the maximum 

possible value.  The first ratio illustrates the case of having more variance between 

clusters and less variance in each cluster, thus causing the index to increase.  In other 

words, if the clusters are far away from each other, the index would increase.  These data 

were calculated for the different features, including angular velocity, linear acceleration, 

and the combination of them.  
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II. Support Vector Machine (SVM) 

The SVM method was implemented to see how the labeled data could be 

discriminated using a supervised learning algorithm. For this approach, leave-one-out 

cross-validation was used, which is useful for finding a hyperplane that can distinguish 

two groups with high accuracy.  The kernel function was selected based on the best 

outcome among Gaussian, polynomial, and radial basis kernel function.  The SVM 

algorithm was run for each of the subjects such that all other subjects were considered 

as training data in that particular run.  The algorithm predicted the label of the patient 

using the relevant trained network. 

Initially, multi-class SVM was used to segregate patients into the three risk groups: 

low, medium, and high.  Since the accuracy of the three-class SVM approach for all 

combinations of the features was less than 40%, we decided to combine two groups and 

compare it to the third one.  Toward this end, the SVM algorithm was run to calculate the 

accuracy, sensitivity, and specificity of the method based on the comparison of the 

predicted label and ground truth.  

For the SVM method, the balance of the dataset could make a significant 

difference in the accuracy of the discrimination.  Since patients were being discriminated 

into two groups, the sample size for the first group was almost twice the size of the 

second.  To address this concern, some sample data were randomly selected from the 

larger group so that we ended up with two groups of equal sample size.  For example, in 

the case of two groups of high vs. low-medium risk, in addition to the 28 high-risk patients, 

28 patients were randomly selected from the pool of 66 low-medium risk patients.  This 

procedure was performed ten times, and the model was run to avoid the effects of random 

biased sampling.  The same dataset was used for other machine learning tools in order 

to ensure that we could compare data.  The results of the analysis were reported as mean 

and standard deviation of the ten runs. 

III. Neural Network 

Multilayer perceptron (MLP) was implemented for the data.  For each subject, 

there were 900 features (FS feature set), which were considered as the neuron of the 
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input layer.  The architecture of the network was considered with eight hidden layers of 

700, 500, 300, 100, 50, 15, 10, and 5 neurons.  These values were determined based 

on a manual trial-and-error process to increase the accuracy of the model.  The 

implemented network was a 10-layer feed-forward network.  The activation function was 

a sigmoid function for the hidden layers, and softmax transfer function was applied for 

the output layer. Eighty percent of the data was utilized in training, and the rest was 

used to test the model.  The algorithm was run for 3-class classification.  Since the 

accuracy for all combination of features was not larger than 40%, similar to the SVM 

approach we utilized 2-class classification with the same dataset.  

As mentioned earlier, all three machine learning algorithms, i.e. SVM and MLP, 

were run for the feature set of FS.  However, the approach leading to the highest 

accuracy was run for all combination of the features.  Accordingly, a full factorial 

combination of the four feature sets (24 − 1 = 15 cases) was analyzed.  A comparison 

of the accuracy, sensitivity, and specificity for all for these cases produced the feature 

set(s) with the highest accuracy.  

Results 

Analyzing the Calinski-Harabasz index for different features (i.e., angular velocity 

and linear acceleration) revealed that the maximum value for all the plots (representing 

different cluster numbers) occurred for the two clusters (Figure 2).  In other words, by 

clustering the data into two groups, we achieved the most significant variance between 

the clusters, as well as the lowest variance within each cluster.  To evaluate the efficiency 

of k-means clustering, each cluster was labeled based on the largest population of the 

sample from each group.  For example, assume that there were 40 samples in the first 

cluster in which there were 34 samples with the actual label of ‘A’.  In this case, the cluster 

was labeled as the ‘A’ group, and the other cluster was labeled as the ‘B’ group.  Based 

on this approach, accuracy, sensitivity, and specificity for the K-means algorithm were 

reported to be 57%, 43%, and 63%, respectively.   
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Figure 2.   Calinski-Harabasz index for different features including linear acceleration, 

angular velocity, and the combination of them, for different number of clusters 
 

After implementing the SVM and MLP algorithms for 2-class classification of the 

data, accuracy, sensitivity, and specificity of the approaches were calculated for all 

possible 2-class categories (see Table 2).  As noted earlier, the sample size for each of 

the two selected classes was made equal, which required a random selection of samples 

from the larger group (among the two classes).  In order to avoid any biased selection, 

this process was repeated ten times.  Hence, the reported numbers were the mean of ten 

runs and the relevant standard deviation values (Table 2). 

Table 2. The accuracy, sensitivity, and specificity of the different combinations of the 

classes for SVM and MLP algorithms 

  
Low vs. 

Medium-High 
Medium vs. 
Low-High 

High vs 
Low-Medium 

SVM 

Accuracy 46.3 (6.3) 45.5 (6.8) 75.4 (4.2) 

Sensitivity 45.0 (10) 59.7 (7.5) 72.5 (3.8) 

Specificity  47.6 (8.6) 31.4 (7.2)  78.2 (5.3) 

MLP 

Accuracy  50.2 (4.2)  43.2 (5.6)   60.2 (5.3) 

Sensitivity   44.7 (10.1)   43.8 (9.2)   66.4 (8.1) 

Specificity   55.5 (6.4)   42.5 (8.6)    54.0 (9.8) 
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Since the highest accuracy was achieved in the SVM approach for discriminating high 

vs., low-medium risk, the same algorithm was run for the full factorial combination of the 

feature sets to evaluate the effects of different types of features on the accuracy of the 

model (Table 3).  

Table 3. SVM accuracy, sensitivity, specificity for high vs. low-medium classification considering different 

feature sets including full signal (FS) which was the processed signal of IMU, 16 features from that signal 

(FT16), the output of balance board (Wii), and finally HADS and TSK questionnaire data (ADT). The reported 

numbers are in the format of the mean (standard deviation) of the ten runs. 
 

FS FT16 Wii ADT FS 
+FT16 

FS 
+Wii 

FS 
+ADT 

FT16 
+Wii 

FT16 
+ADT 

Wii 
+ADT 

FS 
+FT16 
+Wii 

FS 
+FT16 
+ADT 

FS 
+Wii 
+ADT 

FT16 
+Wii 
+ADT 

ALL 

Accuracy 
75.4 
(4.2) 

66.9 
(5.4) 

39.5 
(8.3) 

54.8 
(6.8) 

63.5 
(5.6) 

65.2 
(6.6) 

66.6 
(6.3) 

58.9 
(5.1) 

52.7 
(7.4) 

46.8 
(4.8) 

64.8 
(5.5) 

66.8 
(6.2) 

64.2 
(4.9) 

54.9 
(6.2) 

59.3 
(5.4) 

Sensitivity 
72.5 
(3.8) 

58.3 
(5.1) 

40.4 
(8.8) 

55.7 
(6.9) 

65.8 
(5.5) 

61.6 
(7.9) 

67.4 
(8.7) 

52.1 
(5.5) 

42.5 
(8.6) 

48.2 
(5.3) 

58 
(4.9) 

68.4 
(6.7) 

64 
(6.1) 

44.7 
(7.7) 

61.5 
(4.8) 

Specificity 
78.2 
(5.3) 

75.7 
(6.5) 

38.6 
(9.8) 

53.9 
(7.3) 

61.2 
(7.3) 

68.7 
(5.5) 

65.7 
(7.7) 

63.6 
(8.9) 

62.8 
(8.5) 

45.3 
(6.9) 

71.6 
(6.4) 

65.1 
(7.4) 

64.4 
(5.5) 

65.1 
(7.6) 

65.4 
(6.7) 

Discussion 

This study sought to develop a machine learning-based model having the 

capability of classifying LBP patients into different risk groups (treatment scenarios) 

based on trunk kinematic data obtained from an IMU sensor on the chest, and then 

compare that data with results obtained from the STarT questionnaire.  Prior information 

from participants who completed the STarT questionnaire was used to categorize each 

person as being a high or low-medium risk patient.  First, to evaluate the separability of 

the data, an unsupervised algorithm was implemented.  After determining the optimal 

number of groups (i.e., two classes), supervised machine-learning algorithms (SVM and 

MLP) were utilized.  When we compared the outcomes of these approaches, it was clear 

that the SVM model delivered the highest accuracy for classifying LBP patients with a 

maximum accurate level of 75.4% (Table 2).  Finally, using the SVM approach, other 

feature sets such as FT16, Wii, and TSK (see Table 1) were added to the feature vector.  

Accuracy-related findings for the full factorial combination of the feature sets confirmed 

that the IMU signal (FS feature set) remains the best feature for identifying LBP patients 

(Table 3). 
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As noted earlier, we had originally envisioned that this study would include three 

distinct categories of LBP sufferers: low, medium, and high risk.  However, the 

unsupervised machine learning approach we employed determined the optimal number 

of classification groups to be two. Moreover, supervised machine learning for three-class 

classification resulted in moderate accuracy. Thus, based on our earlier discussion on the 

importance of discriminating the high-risk LBP patients, it was decided to complete the 

analysis for the 2-class classification.  This decision was bolstered by the fact that, 

according to clinical treatment protocols associated with the three risk groups, there are 

no significant differences in the treatment of low and medium risk LBP patients as 

identified by the STarT questionnaire [19].  Hence, discriminating between high vs. low-

medium risk patients would still be valuable and fulfill the objectives of this investigation. 

Interestingly, outcomes from the SVM model also demonstrated the substantially better 

discriminative capability of the motion-sensor signal to distinguish patients with high risk 

vs. low-medium risk for LBP (Table 2).  

It is noteworthy to mention that a recent study was successful in discriminating 

between healthy subjects and lower back pain sufferers based on trunk kinematics [21]. 

However, differences in trunk kinematic data between a healthy cohort and a patient 

group are likely to be more significant in comparison to differences within groups of LBP 

patients at variable risk levels.  Moreover, partitioning the subjects into healthy and LBP 

groups could be performed more accurately in comparison to subgrouping LBP patients 

into three risk levels. It should also be noted that there is a gray zone for the reference 

method—for this study the STarT questionnaire—in terms of the appropriate group to 

which to assign a patient. For example, according to the STarT questionnaire, if a patient’s 

score was less than 4, s/he would be assigned to the low-risk group. The question, 

however, is the extent to which questionnaire can successfully assign those on the cusp 

to the proper group, whether low- or medium-risk.  Hence, the uncertainty in labeling the 

“cusp patients” to one group or another could also introduce some inaccuracy in results 

obtained from the motion-based classification.  Consequently, less accuracy was actually 

anticipated in the partitioning of the LBP patients compared to discriminating between 

healthy vs. LBP group.  
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Since the accuracy of K-means clustering was not sufficiently high, we concluded 

that there was no clear data boundary between the high and low-medium risk groups.  

This analysis could signal the necessity to implement supervised algorithms to develop 

models with higher accuracy.  Since there was no similar study designed to classify LBP 

patients such that there are different treatment approaches for each class, we then we 

compared our model to other machine-learning-based models that were developed for 

clinical decision making [45-47].  The obtained accuracy for the best machine learning 

model (i.e., the SVM algorithms) in this study was in the range of clinical decision-making 

models described in the literature that were based on signals from IMU or body-worn 

sensors (i.e., <80%) [45-48].  Compared to the SVM model, the MLP approach achieved 

a lower accuracy of ~60%, which could be related to the fairly small sample size in this 

study (94 for 3-class and about 65 for 2-class). In comparison, other analogous studies 

have included a greater number of observations for each class [49, 50], and in particular, 

for implementing a neural network approach [51].  

The accuracy of the SVM model was investigated in connection with the different 

feature sets. First  we confirmed that COP data for the Wii feature were inadequate for 

discriminating between high vs. low-medium risk LBP patients (accuracy of ~40%). 

However, the ADT feature set (which included psychological information such as anxiety 

and depression) achieved better results compared to the Wii feature set.  The FT16 

feature set, which had 16 statistical measures of the IMU signal, led to better accuracy 

(~67%) and specificity (~76%) compared to ADT.  However, they demonstrated roughly 

the same capability in identifying high-risk subjects (sensitivity of ~56% and ~58% for 

ADT and FT16, respectively).  Overall, the kinematic feature set of FS was by far better 

than the others individually, or in combination with the FS signal itself (see Table 3). 

Currently, LBP patients have to go to clinics to complete the STarT questionnaire 

in order to determine their risk status.  Additionally, a qualified care provider must analyze 

the results of the questionnaire in order to assign the patient to a treatment path.  

Accordingly, the findings from this investigation could facilitate the development of an 

objective tool to provide insights on the risk/level of LBP without requiring people to visit 

their medical provider—at least initially.  Another important aspect of this study is that the 
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presented approach only utilized the data from one motion sensor during trunk 

flexion/extension in the sagittal plane.  This setup was designed in order to make the data 

collection as simple and quick as possible without the help of an expert.  Hence, it could 

be implemented in an application and installed on most of the current smartphones, which 

as we know are already ubiquitous and are expected to grow in sophistication [52]. Thus, 

by embedding the developed algorithm of this study on a smartphone application, 

assessing the risk factors for LBP patients would become easier and more accessible for 

patients in need.  

This study features several limitations that should be addressed in future 

investigations.  The first limitation is that all of the participants were male.  Therefore, 

utilizing the developed models for the female population should be undertaken with a 

certain degree of caution.  A future study should include a gender-balanced population to 

address this shortcoming.  A second limitation pertains to the moderate sample-size.  

Accordingly, a follow-on investigation should recruit a larger sample size, which could 

enhance the generalizability of findings and the accuracy of machine learning algorithms. 

Investigating patient clustering during the treatment process also represents an 

interesting opportunity for future research. Specifically, a study could be designed and 

conducted that would compare the impact of treatment processes to patient kinematics 

and/or self-reported questionnaire data.   

Conclusion 

In our study, we assessed the capability of motion-capture sensors as an objective 

measurement tool to be implemented as a clinical decision-making scale instead of STarT 

questionnaire, which is a subjective scale for classifying LBP patients.  Our results 

showed that machine learning methods, especially SVM, can distinguish high vs. low-

medium risk LBP patients with adequate accuracy (>75%).  The outcome of this 

exploratory study could be used to develop an objective tool capable of classifying the 

patients to better assign them to the proper treatment path.  Finally, the findings from this 

investigation could facilitate the development of healthcare prognosis tools that would 

help to assess low back pain sufferers with greater ease, more objectively, and at lower 

cost in comparison to current clinic-based methods. 
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