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Abstract 
 
Aims- Common chromosome 9p21 SNPs increase coronary heart disease (CHD) risk, independent 

of “traditional lipid risk factors”.  However, lipids comprise large numbers of structurally-related 

molecules not measured in traditional risk measurements, and many have inflammatory bioactivities.  

Here we applied lipidomic and genomic approaches to three model systems, to characterize lipid 

metabolic changes in common Chr9p21 SNPs which confer ~30% elevated CHD risk associated with 

altered expression of ANRIL, a long ncRNA. 

Methods and Results- Untargeted and targeted lipidomics was applied to plasma samples from 

Northwick Park Heart Study II (NPHSII) homozygotes for AA or GG in rs10757274.  Elevated risk GG 

correlated with reduced lysophosphospholipids (lysoPLs), lysophosphatidic acids (lysoPA) and 

autotaxin (ATX). Five other risk SNPs did not show this phenotype.  Correlation and network analysis 

showed that lysoPL-lysoPA interconversion was uncoupled from ATX in GG, indicating metabolic 

dysregulation.  To identify candidate genes, transcriptomic data from shRNA downregulation of 

ANRIL in HEK293 cells was mined. Significantly-altered expression of several lysoPL/lysoPA 

metabolising enzymes was found (MBOAT2, PLA2G4C, LPCAT2, ACSL6, PNPLA2, PLBD1, PLPP1, 

PLPP2 and PLPPR2). Next, vascular smooth muscle cells differentiated from iPSCs of individuals 

homozygous for Chr9p21 risk SNPs were examined.  Here, the presence of risk alleles was 

associated with altered expression of several lysoPL/lysoPA enzymes.  Importantly, for several, 

deletion of the risk locus fully or partially reversed their expression to non-risk haplotype levels: 

ACSL3, DGKA, PLA2G2A, LPCAT2, LPL, PLA2G3, PNPLA3, PLA2G12A LIPC, LCAT, PLA2G6, 

ACSL1, MBOAT2. 

Conclusion- A Chr9p21 risk SNP associates with complex alterations in immune-bioactive 

phospholipids and their enzymatic metabolism. Lipid metabolites and genomic pathways associated 

with CHD pathogenesis in Chr9p21 and ANRIL-associated disease are demonstrated.   
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Introduction 

The association of altered plasma “lipids” with coronary heart disease (CHD) risk has been known for 

decades, however for some CHD-risk SNPs, there is no association with “traditional lipid 

measurements”, such as lipoproteins (HDL or LDL) or their constituents: cholesteryl esters (CE) and 

triglycerides (TG) 1.  As a prominent example, the relatively common CDKN2A/2B (rs10757274, A>G) 

(minor allele frequency = 0.48) SNP on chromosome 9p21 confers ~30% elevated risk of CHD, but 

acts independently of traditional lipid risk factors 1. Chr9p21 SNPs, including rs10757274, are 

believed to alter disease risk through modulation of the long non-coding (lnc)RNA, ANRIL, although 

both up and downregulation has been associated with risk 2, 3 The ANRIL product is detected in 

peripheral blood cells, aortic smooth muscle, endothelial cells and heart, and SNPs in Chr9p21 are 

associated not only with CHD but also numerous cancers 2, 4-6.  Cellular studies show that ANRIL 

lncRNA down-regulates the tumour suppressors CDKN2A/2B by epigenetic regulation, modulating 

expression of pathways involved in differentiation, apoptosis, matrix remodelling, proliferation, 

apoptosis, senescence and inflammation 5, 7.  

 Lipids represent thousands of diverse molecules.  However, CHD clinical risk algorithms such 

as Framingham or QRISK include circulating lipoproteins only 8, 9. Importantly, bioactive lipids that 

regulate vascular inflammation/proliferation in line with the function of ANRIL and thus maybe directly 

relevant to Chr9p21-medicated CHD are not included in these measures. Indeed, whether ANRIL 

mediates its effects via an impact on bioactive lipid signalling has not been examined, and was 

studied herein using lipidomics.  

Here, plasma from a prospective cohort (Northwick Park Heart Study II, NPHSII) which 

recruited ~3,000 men aged 50 - 61 years clinically free of CHD in 1990-1991, was analysed using 

targeted and untargeted lipidomics, followed by validation, metabolic correlation and network analysis 

10, 11.  Then, gene transcription for lipid metabolic enzymes was mined in data from a cellular ANRIL 

knockdown study, and from vascular smooth muscle cells differentiated from iPSCs obtained from 

individuals carrying Chr9p21 risk SNPs12, 13.   
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Methods  

(more details methods are in Supplementary Data) 

Patient samples  

NPHSII is a prospective CHD study of ~3000 men 10, 11. Middle-aged men (aged 50–64 yrs) were 

recruited from 9 general practices in the UK 27-yrs ago.  Exclusions included a history of CHD or 

diabetes. Full information on the cohort is in Supplementary Methods.  SNPs were chosen based on 

known association with altered risk of CHD and described in full in Supplementary Methods. Details of 

sample sizes, genes, SNPs and average levels of total triacylglycerides (TAG) and total cholesterol 

determined for these samples, are provided in Table 1. Samples were randomly chosen.  

 

Global lipidomics, informatics and statistics analysis 

Lipids were extracted using two consecutive liquid-liquid extractions, first, hexane:isopropanol:acetic 

acid, then a modified Bligh and Dyer method as outlined in Supplementary Methods 14. Orbitrap 

datasets were processed using the R version of XCMS (Version 3.4), then using LipidFinder as 

described in Supplementary Methods 15, 16. This enabled assignment of a putative lipid class to 30 – 

50 % of all ions detected.  Our approach to statistical analysis of global datasets is described in 

Supplementary Methods. 

 

Targeted analysis of lysoPLs . 

Lipids were extracted from plasma using the liquid:liquid extraction method outlined in Supplementary 

Methods.  LC-MS/MS was performed on a Nexera liquid chromatography system (Shimadzu) coupled 

to API 4000 qTrap mass spectrometer (Sciex) as in Supplementary Methods.   

 

Measurement of ATX.  

The ATX levels in the plasma were determined using a two-site immunoenzymatic assay with an ATX 

assay reagent equipped with an automated immunoassay analyzer, AIA-2000 (Tosoh, Tokyo, Japan) 

as previously described 17. 
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Measurements of LPA 

Quantification of LPA was performed according to a previous method with minor modification 18. 

Briefly, plasma samples were mixed with a 10-fold volume of methanol containing internal standard 

(17:0-LPA), then sonicated. After centrifugation at 21,500 × g, the supernatants were filtered and 

subjected to LC-MS/MS. This consisted of a Ultimate3000 HPLC and a TSQ Quantiva triple 

quadropole mass spectrometer (Thermo Fisher Scientific, San Jose, CA).  

 

Analysis of Affymetrix data from ANRIL down-regulation in cell lines and RNAseq data from iPSC-

derived VSMCs. 

Raw Affymetrix CEL files relating to total transcript expression in HEK 293 cells stimulated with 

Tetracycline (shRNA ANRIL silenced for 0h, 48h and 96h) were downloaded from the GEO database 

(accession: GSE111843) and analysed using packages in CRAN and Bioconductor: limma, oligo, 

ggplot2 12, 19-22, as described in Supplementary Methods.  Data from iPSC-derived VSMCs available at 

GEO (GSE120099) was analysed as described in Supplementary Methods.   

 

Statistics. 

Statistics for untargeted lipidomics was performed as described in Supplementary Methods.  Targeted 

data are shown as Tukey box plots, * p < 0.05, ** p < 0.01, *** p < 0.005, Mann Whitney U and 

Student’s t-test were used as described in legends. Correlation analysis was undertaken using 

Answerminer (https://www.answerminer.com/calculators/correlation-test), using Pearson’s correlation 

coefficient. To compare the slopes (or "Pearson correlation coefficients") of regression lines between 

AA and GG carriers, we used the method described 23.  See Supplementary Methods for more details 

on statistical methods used.  
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Results 

 

Global lipidomics demonstrates that lysoPLs are reduced in GG plasma versus AA  

To capture all lipids (knowns/unknowns), high resolution Orbitrap MS data from long 

chromatographic separations was analysed using XCMS, then processed for cleanup/assignment to 

LIPID MAPS categories, using LipidFinder (Figure 1 A,B) 16. Plasma quality was checked through 

careful comparison with fresh plasma, detailed in Supplementary Data. Most lipid categories were 

unchanged, however oxidized phospholipids and lysoPCs had elevated somewhat in storage 

(Supplementary Figures 1-3). This is not unexpected and we include a full discussion of this 

phenomenon in Supplementary Data.  To assess the impact of the rs10757274, A>G SNP, we 

compared AA (n = 39) with the risk genotype GG (n = 33). The full dataset is provided as 

Supplementary Data (supplementary data.xlsx, tab 1). Data was analysed first using a Mann Whitney 

U test, then chromatograms for all features with p<0.075 were manually checked for quality. 

LipidFinder detected 1878 lipids, with 872 assigned to a category (Figure 1 B).  Next, quantile 

normalization was applied followed by Mann Whitney U test, and then a p-value adjustment using 

sequential goodness of fit metatest (SGoF) to each subclass24. The SGoF has been shown as 

especially well suited to small sample sizes when the number of tests is large. This data is shown in 

volcano plots in Figure 1 C-J, and the p-values are in column M (Supplementary Data.xls, tabs 1,2). 

Those most affected by genotype were GPLs and unknowns (Figure 1 C-J, Table 2).  Following p-

value adjustment the number of significantly different lipids was 17, with 7 putatively identified as 

lysoPC ions and adducts (supplementary data.xlsx, tab 1,2). An additional group of 8 had p-values 

close to significance at 0.05-0.08. All were reduced in GG plasma. As this method is used as for 

hypothesis generation only, we next validated our results using gold-standard quantitative targeted 

methods.  

 

Quantitative targeted lipidomics confirms decreased lysoPLs in the GG samples.  The same plasmas 

were analysed using a targeted fully-quantitative assay for 15 lysoPLs. Of these several lysoPCs 

significantly decreased, with both lysoPC and lysoPEs all trending towards lower levels in GG 

(Supplementary Figure 4 A). This was replicated using new samples from NPHSII (n = 47: AA, 49: 
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GG) (Supplementary Figure 4 B).  When both datasets were combined (n = 82 – 86/group), all 8 

lysoPCs were significantly lower in the GG genotype (Figure 2 A).  Thus, lysoPLs are overall 

suppressed in the GG genotype, with a more robust effect on lysoPCs than lysoPEs. 

 

Significantly altered lysoPLs are not detected in five additional CHD risk-altering SNPs.  LipidFinder 

data was analysed for additional SNPs from the NPHSII cohort, comparing subjects homozygous for 

the common alleles with subjects homozygous for rare protective alleles for SORT1, LDLR or 

APOE E2/E2, or rare risk alleles APOA5 or APOE4/E4 (Table 1).  For most lysoPLs, levels were not 

significantly altered, with the exception of one for APOA5 (upregulated, lysoPE(18:1), and one for 

LDLR (downregulated, lysoPC(18:2)) (Figure 2 B).  This indicates that lysoPLs are consistently 

reduced only in the GG risk SNP rs10757274.  

 

The plasma lysophosphatidic acids(lysoPA)/autotaxin (ATX) axis is dysregulated in the GG group. 

Next, lysoPL-related metabolites/enzymes were measured. Metabolism of lysoPL to lysoPA in healthy 

plasma can be mediated by ATX25.  Here, we used a targeted LC/MS/MS assay for lysoPAs, and an 

immunoenzymatic assay for ATX. ATX was significantly decreased (p = 0.026). Based on power 

calculations (Supplementary Data), an additional set of plasmas was included to increase sample 

numbers to 95-100 per group for lysoPAs.  LC/MS/MS demonstrated overall small reductions, but with 

several being significantly lower (Figure 2 C,D). Taken with the lysoPL data, this indicates a global 

suppression of lysoPL/lysoPA/ATX metabolic pathway in the GG group.    

Next, correlation analysis was undertaken to determine the contribution of ATX in metabolizing 

lysoPL to lysoPA.  In AA plasmas, ATX showed weakly negative or positive correlations with total 

lysoPL or lysoPA, respectively (Figure 3 A,B).  This agrees with reports that ATX contributes to 

lysoPL conversion to lysoPA in healthy subjects 25.   In contrast, in GG plasmas, these trends were 

reversed (Figure 3 C,D).  Next, we correlated substrates with products (Figure 3 E-H).  In the AA 

group, significant positive correlations were seen for total lysoPA with lysoPL (p = 0.034).  Comparing 

lipids with the same fatty acyl, significant correlation was seen between lysoPA(18:2) and 

lysoPL(18:2) (p = 0.023) (Figure 3 E,F).  This indicates that as the pool of lysoPL increases, the level 

of lysoPA increases in parallel, consistent with conversion by ATX.  This relationship was fully 
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reversed in the GG group, where total lysoPL, lysoPL(18:2) or lysoPL(20:4) were negatively 

correlated with their corresponding lysoPAs (p = 0.019, 0.054, 0.019 respectively) (Figure 3 G-I). We 

next analysed correlation slopes for AA versus GG, comparing either lysoPL:lysoPA (Figure 3 E 

versus G), or lysoPL(18:2):lysoPA(18:2) (Figure 3 F versus H).  Both these comparisons revealed 

significant differences (p = 0.0264 and 0.0029 respectively) 23.  These data confirm altered 

metabolism of lysoPL and lysoPA lipids between genotypes.  Specifically, conversion of lysoPL to 

lysoPA is suppressed in the GG homozygotes.    

The direct contribution of ATX to metabolizing lysoPL to lysoPA was next examined by 

correlating normalized ratios of lysoPC(18:2):lysoPA(18:2) with ATX.  In this comparison, we expect 

that as ATX increases, the ratio of substrate:product will reduce due to their interconversion.  Indeed, 

the For AA plasma, a weak negative correlation was seen (Figure 3 J).  In contrast, a significant 

positive correlation was observed for GG plasma (Figure 4 K).  Thus, as ATX increases, a higher ratio 

of substrate:product was seen in GG, decoupling ATX from metabolizing lysoPL to lysoPA. 

Comparing the slopes for AA versus GG revealed significant differences based on genotype (p = 

0.0157). This further underscores the dysregulation of the lysoPL metabolic pathway in the GG group, 

suggesting that non-ATX pathways mediate lysoPL to lysoPA conversion. Last, the relative ratios of 

all lysoPL and lysoPA molecular species were unchanged in the GG versus AA groups (Figure 3 L).  

Thus, while metabolism of lysoPL/lysoPA by ATX is altered, there was no influence of genotype on 

molecular composition overall.   

Next, a Pearson correlation analysis looking at relationships between individual lipids and ATX 

was next undertaken using Cytoscape.  For thresholds, the classification system of Schober was used 

26.  Here, we see that there are moderate (r = 0.40-0.69, green) or strong (r = 0.70-1.00 grey) 

correlations between lipids of the same class, while there are weak (r = 0.10-0.39, red) correlations 

between different lipid classes (Figure 4 A).  Importantly, the key difference in the dataset is that the 

weak correlations between classes are positive for the AA group, while they are negative for the GG 

group (Figure 4 A). Overall, this indicates that these lipids behave similarly within AA subjects. In 

contrast, in GG plasma, while lipid classes still positively correlate within their groups (e.g. lysoPCs 

correlate strongly with each other), the links between lysoPL and lysoPA are lost.  Instead correlations 

were negative between lysoPE and lysoPA (Figure 4 A). As in Figure 4, ATX weakly positively 
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correlates with lysoPA in the AA group, but instead with lysoPL in the GG group.  This analysis 

reinforces our findings of altered metabolism for lysoPL/lysoPA, but here at the level of individual lipid 

species.  

 

ANRIL knockdown significantly alters lipid and lysoPL metabolism gene expression  

Chr9p21 risk SNPs are believed to act via altering expression of ANRIL, which regulates cell 

proliferation/senescence in vitro 2, 4, 5.  To examine for a functional link with lysoPL/lysoPA 

metabolism, we analysed the effect of shRNA downregulation of the proximal ANRIL transcripts 

EU741058 and DQ485454 in HEK 293 cells at 48 hrs and 96 hrs 12. A GO analysis found significant 

alterations of several lipid pathways by ANRIL, including Regulation of Lipid Metabolic Processes 

(GO: 0019216), Phospholipid Metabolic Processes (GO:0006644), Cellular Lipid Metabolic Process 

(GO:0044255) and Lipid Biosynthetic Processes (GO:0008610), for example, Regulation of Lipid 

Metabolic Processes was 1.9 or 1.88 fold-enriched (FDR < 0.05, Benjamini-Hochberg) respectively at 

48 and 96-hrs respectively (Table 3, Supplementary Data.xlsx, tabs 3,4).  Thus, large numbers of 

lipid-associated genes were significantly differentially regulated (Supplementary Data.xls, tabs 5,6).  

We next examined the effect of ANRIL knockdown on 48 candidate lysoPL metabolism genes 

(Supplementary Data.xlsx, tab 7). Of these, 9 were significantly changed at both timepoints, and 

another 6 at a single timepoint (Table 4). Several were consistent with lowered lysoPL/lysoPA 

including reduced PNPLA2, PLA2G4C, increased LPCAT2, MBOAT2, ACSL6, PLBD1, PLPP1, 

PLPP2 and PLPPR2 (Table 4, Scheme 1).  Additional relevant genes were regulated, but in the 

opposing direction, including decreased LPCAT1 and LPCAT3 and increased LPL, PLA2G7, and 

DGKA (Table 4). ENPP2 (the gene encoding ATX) was significantly increased by ANRIL suppression 

(Table 4, Scheme 1).  This data is displayed in volcano plots of the full Affymetrix dataset (Figure 4 

B,C, Supplementary Figure 5).  Genes in red represent significantly-different lysoPL metabolizing 

genes from the lipid GO pathways.   

 

VSMCs generated from iPSCs from Chr9p21 risk haplotypes show altered expression of lysoPL 

metabolism genes.  
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VSMCs generated by differentiation of iPSCs from humans homozygous for risk haplotypes in 

Chr9p21 show globally altered transcriptional networks, dysregulated adhesion, contraction and 

proliferation, with deletion of the risk haplotype rescuing the phenotype 13. Here, we interrogated the 

RNAseq dataset of mature iPSC derived VSMCs for expression of the same 48 lysoPL metabolism 

genes.  Multivariate analysis using PCA shows clear separation of cell lines containing the risk 

haplotypes  (RRWT) from controls (NNWT) in PC1 (Figure 5 A).  When the risk locus was deleted, the 

resulting RRKO cell lines instead clustered with NNWT and NNKO (Figure 5 A).  This indicates that 

overall expression of lysoPL metabolizing genes is different in risk haplotype cells, but reverts closer 

to non-risk (NN) on removal of the 9p21 locus.  Examination of individual genes revealed 13 that were 

significantly different between NNWT and RRWT, where removal of the risk locus in RR led to partial 

or complete rescue: ACSL3, DGKA, PLA2G2A, LPCAT2, LPL, PLA2G3, PNPLA3, PLA2G12A LIPC, 

LCAT, PLA2G6, ACSL1, MBOAT2  (Figure 5 B, Supplementary Figure 6).   

 

Discussion 

Lipidomics MS has been commonly applied to prospective CHD cohorts that contain no 

genetic information, while conversely GWAS studies have examined associations with traditional 

“lipid” measures only (e.g. total cholesterol or triglycerides) 27-41. Cohorts are only now starting to 

examine the association of individual lipid molecular species with specific risk SNPs, and little 

information on this is yet available. Here, we show that a common Chr9p21 (rs10757274, A>G) CHD-

risk SNP is associated with metabolic alterations to the lysoPL/lysoPA/ATX axis (Figures 1-4). This 

revealed a genotype-specific defect absent in five other GWAS-proven CHD-risk SNPs. Since the 

action of rs10757274 GG is independent from “traditional lipid” measurements, it represents a 

different component of the disease, characterized by changes to bioactive signalling phospholipids 

(PL), rather than circulating storage/energy lipid pools 1. The three nearest genes to chromosome 

9p21 are two cyclin-dependent kinase inhibitors CDKN2A and CDKN2b, and the non-coding RNA 

ANRIL. Compared to AA individuals, GG have almost 50% lower ANRIL transcription in peripheral 

blood cells 2, 4, 5. However, there are multiple ANRIL isoforms, including short, long and circular, and 

reports differ on which are specifically increased or decreased in CVD. In this regard, iPSC-derived 

VSMC lines from humans with risk haplotypes express higher levels of short ANRIL transcripts 13. The 
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ANRIL gene product upregulates metabolic genes in cultured cells, as well as stimulating VSMC 

proliferation 2, 5, 12.  Here, we showed that either shRNA knockdown of two proximal ANRIL transcripts 

or the presence of risk haplotypes in VSMCs from humans with risk haplotypes lead to multiple 

changes in PL-related lipid-metabolizing genes (Figure 4, Scheme 1). In the case of VSMCs, removal 

of the risk locus indicated that this was controlled by the Chr9p21 locus itself (Figure 5 A,B). 

Collectively, this suggests that Chr9p21 risk alleles may alter lysoPL/lysoPA in humans via ANRIL 

regulation, providing novel insights into the biology of this important cause of CHD. With the exception 

of MBOAT2, which was consistently elevated when ANRIL was lower, genes that were significantly 

altered were different between the in vitro datasets. This is likely a reflection of the complex and 

incompletely understood role of ANRIL in CVD risk, in line with the conflicting reports on its 

expression in risk haplotypes and its incompletely characterized multiple isoforms.     

Our initial plasma screen comprised a relatively small sample size, while measuring large 

numbers of “features”. However, multiple comparison testing/correction (as in genomics), is 

problematic for this type of data for many reasons including: (i) multiple variables can represent the 

same metabolite, because it is impossible to remove all duplicates ions, (ii) lipidomic/metabolomics 

datasets are considerably more heterogeneous than genomics, at least in part because co-efficients 

of variation for MS data are relatively high. Here, we used LipidFinder as a screening tool only, to 

identify candidate lipids that we then validated using all the approaches outlined above.  Next, we 

applied quantile normalization followed by Mann Whitney U test, and then a p-value adjustment using 

sequential goodness of fit metatest (SGoF) to each subclass. The SGoF has been shown to be 

especially well suited to small sample sizes when the number of tests is large24. This provides the 

level of confirmation required for identifying underlying pathways and mechanisms (rather than 

biomarkers). A similar approach led to the discovery (repeated now by many others) of the high 

importance of trimethylamine N-oxide (TMAO) in CHD pathogenesis 42.  

Cohort lipidomics can be fraught with pitfalls, and it is critical these are taken into account to 

enable findings to be interpreted rigorously. Untargeted methods enable large numbers of samples to 

be analysed, but do not provide quantitation or full identification of lipids.  This major issue inhibits 

cross-cohort data comparisons, and lacks validation.  On the other hand, gold standard targeted 

methods are not generally amenable to large-scale screening.  Here, we used untargeted lipidomics 
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as a first screen only, avoiding naming lipids.  This hypothesis-generating tool preceded a full 

replication and validation in the same and additional samples proving the observations were real, not 

false positives. We also combined two separate sample sets in our targeted approach to increase 

statistical power, as described43. LysoPCs/PAs can be formed/metabolized by enzymes in plasma, 

and the rate of this when samples are at room temperature is not trivial44, 45. This means that sample 

processing and storage are critical, and that it is essential that time-to-freezing is consistent.  If not, it 

will impossible to reliably compare across samples both within and between cohorts. Lack of 

consistent sample processing is a major issue underlying well-known problems of reproducibility 

across cohort studies. In NPHSII, and the Bruneck cohort, which reported similar findings of lower 

lysoPC in subjects who subsequently developed CVD, sample processing was on site and fast, with 

immediate low temperature freezing following plasma isolation (Manuel Mayr, personal 

communication).  Thus, artefactual generation of these lipids during plasma isolation will have been 

minimized, and the reduced levels found will either have occurred in vivo, or gradually during long 

term low temperature storage.  Regardless, it is seen that AA and GG plasmas metabolize 

lysoPL/lysoPA differently, and understanding the underlying biological differences is important.  We 

provide an expanded discussion on lipidomics methodologies and storage considerations in our 

Supplementary Data file.   

LysoPL/lysoPAs were significantly lower in GG plasmas (Figure 2 A,D), and correlation of 

lipids and subjects revealed that their metabolism was altered in the risk SNP group (Figures 3,  4 A).  

This finding could indicate reduced involvement of ATX in metabolising lysoPL to lysoPA (consistent 

with the reduced levels of ATX detected), but it is likely that there are additional factors responsible 

that are not understood.  One interpretation is that as ATX levels increase in this group, another 

metabolic pathway that either generates lysoPC or removes lysoPA is concurrently increased, and 

that the outcome is reflective of this overall cumulative change in enzyme activity.  Potential 

candidates could include the following, which were all identified as altered in the HEK293 dataset: 

PLA2G7, LPCAT3, LPCAT1 (all generate lysoPL), PLPP1, PLPP2, PLPPR2 (all metabolise lysoPA).   

Using the HEK293 dataset, we identified several enzymes that metabolize these lipids, and 

are known to be expressed in leukocytes, platelets, erythrocytes, heart, adipose tissue and plasma. 

We first focused on ATX (ENPP2), a plasma enzyme that converts primarily unsaturated lysoPC to 
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lysoPA in healthy subjects (Table 4) 46. However, ATX was lower (Figure 2 C), and lysoPC 

metabolism by ATX appeared suppressed in the GG group (Figure 3 A-K). Furthermore, all lysoPCs 

were impacted by GG, including both saturated and unsaturated.  Conversely, ENPP2 was elevated 

in vitro in HEK cells.  However, the HEK dataset only measures the impact of ANRIL knockdown on 

basal expression of ENPP2 and it has been reported that inflammatory cytokine induction of ENPP2 

is suppressed by 50% in primary human monocyte derived macrophages that carry the 9p21 risk 

haplotype allele47. The role of ATX in CHD is not understood, and may vary with underlying genetic 

cause48.  Indeed, while it metabolizes lysoPL to lysoPA in health, in acute coronary syndromes other 

pathways appear to predominate 46.  Here, we found significant downregulation of ATX in GG plasma 

from middle-aged men who are otherwise healthy and without clinically detectable CHD (Figure 2 C).  

Thus, switching to ATX-independent metabolism may precede cardiovascular events in this risk 

group.   

In healthy subjects, lysoPLs, particularly lysoPC, circulate at relatively high concentrations, 

where they could be generated by (i) lipases bound to the cell surface of endothelial cells in liver, 

heart and adipose tissues (LPL, LIPC, LIPG), (ii) Land’s cycle enzymes in circulating blood 

cells/platelets 25, (iii) lecithin-cholesterol acyl transferase (LCAT) trans-esterification in the liver, or (iv) 

by remodelling pathways for platelet activating factor (PAF) removal (Scheme 1).  In healthy tissue, 

lipases predominate, but during vascular inflammation the balance may alter.  The Land’s cycle 

involves phospholipase A2 (PLA2) hydrolysis, although the isoforms controlling blood levels are 

unknown. Candidates include stromal isoforms and cellular or secreted PLA2s from circulating cells 

and platelets.  Also, a role for circulating/platelet PLA1 from platelets in lysoPL formation has also 

been proposed 49. In HEK cells, downregulation of PNPLA2 (ATGL, a lipase) and PLA2G4C 

(PLA2Group IVC, a PLA2 strongly expressed in artery and heart) is consistent with our lipidomics 

findings of decreased lysoPL (Table 4) 50, 51 (Supplementary Data.xlsx, tab 7, Table 4, Scheme 1). 

We also tested for upregulation of potential lysoPL removal pathways following ANRIL 

knockdown. LysoPL can be metabolized by PLBD1 (Phospholipase B Domain Containing 1, 

expressed in neutrophils), removing the phospholipid headgroup, and this was significantly elevated 

in GG (Table 4, Scheme 1) 52. LysoPL can also be recycled back into PL pools via Land’s cycle 

enzymes, and consistent with this, upregulated LPCAT2 (PC-acyl transferase in blood cells) and 
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MBOAT2 (a PE-acyl transferase in neutrophils) were seen (Table 4, Scheme 1) 50, 53, 54. Also, 

significant upregulation of ACSL6, a long chain acyl-CoA synthetase expressed in leukocytes and 

erythrocytes, required for fatty acid re-acylation was noted (Table 4, Scheme 1) 50, 55-57. ACSL6 works 

in concert with LPCAT2 and MBOAT2.   

GG plasma showed significantly lower lysoPAs (Figure 2 D). These can be removed by 

phospholipid phosphatases, including PLPPR2, PLPP1 (expressed in platelets), or PLPP2 (in lung), 

and all were significantly induced by ANRIL knockdown 58, 59.  In summary, our in vitro analysis 

provided several new candidates for reducing lysoPL/lysoPA in the context of Chr9p21-mediated 

CHD risk, including MBOAT2, LPCAT2, ACSL6, PNPLA2, PLA2G4C, PLBD1, PLPP1, PLPP2 and 

PLPPR2.   Based on their known cellular localization, potential sources are proposed (Figure 5 C) 

LysoPLs have well characterized in vitro bioactivities, through mediating G protein-coupled 

receptor (GPCR) signalling that causes immune cell migration and apoptosis.  This has led them to be 

proposed as “pro-inflammatory” 49, 60-63. However, most lysoPL is bound to albumin, immunoglobulins 

and other plasma carrier systems, and levels are already higher than required for mediating GPCR 

activation 64, 65. Lower levels of lysoPL in GG plasma suggests they are not pro-atherogenic in this 

case.  

In addition to lipid class-specific changes in phospholipids, many significantly-decreased 

“unknowns” were found, which are currently absent in databases (Figure 1). The plasma lipidome 

contains large numbers of such species and a significant challenge lies in their structural and 

biological characterization. The comprehensive list of all lipids detected with fold-change and 

significance levels is provided (Supplementary data.xlsx, tab 1) as a resource for further mining.  

A final question relates to how ANRIL and lysoPLs are functionally connected.  PL metabolism 

is finely tuned during cell proliferation, with higher concentrations of lysoPC and lysoPE detected at 

G2/M, that then fall dramatically along with concomitant increases in PC/PE due to acylation during 

progression to G1 66.  This provides the PL membranes required to complete the cell cycle.  Given 

ANRIL’s ability to regulate cell proliferation, and observations that silencing ANRIL prevents division 

and promotes senescence, the lower levels of lysoPLs in plasma may simply reflect altered rates of 

cell turnover in the vasculature, but this remains to be determined (Figure 5 C,D).   
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In summary, we reveal a selective association of altered GPL metabolism with CHD risk in a 

common risk SNP.  In support of our findings, lower lysoPCs are associated with CHD factors such as 

visceral obesity, and a trend towards higher future risk of acute coronary events, although since 

lysoPA cannot be measured using shotgun or untargeted methods, we have not found other cohort 

data that includes this lipid as yet 33, 37, 38.  In the Bruneck cohort, inclusion of lysoPCs in classifiers 

improved power for CHD risk prediction, indicating that although the reduction is rather modest, it is 

clinically significant37. Furthermore, the Malmö cohort reported that CVD development is preceded by 

reduced levels of lysoPCs67.  Like our study, the reductions were rather modest being only around 8% 

for each lipid. In Malmö and Bruneck, the lipidomics methods were not as highly validated as in this 

study, thus our new data provides stronger analytical confidence while linking their findings to a 

specific risk locus and. Specifically, Bruneck applied a shotgun method with precursor/neutral loss 

scanning, while Malmö used untargeted MS and did not undertake any validation. Given the 

prevalence of rs10757274 GG in the general population (~23%), our data may at least in part explain 

the findings in Bruneck and Malmö, with lower lysoPLs associating with a sub-group with a common 

SNP.  Last, the alterations in multiple GPL regulatory pathways seen on ANRIL silencing, or the 

presence/removal of the risk locus in vitro, further indicate the involvement of bioactive lipids in this 

form of vascular disease, and mechanistic studies are warranted.  To this end, fresh blood from AA 

and GG subjects is required to measure plasma and cellular levels of all candidate enzymes and 

relevant lipids, in order to identify how lysoPC/lysoPA metabolism is altered by the presence of the 

risk SNP. It would also be interesting to compare AG with AA and GG men, although for this, 

considerably larger sample numbers would be required than we have available currently in NPHSII.  
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Table 1: Summary of genes, SNPs, sample numbers and recruitment lipid levels used in the untargeted analysis. $ All subjects were 
homozygous for the common alleles for all other selected SNPs. * p < 0.05, ** p < 0.01, *** p < 0.005, 2-tailed, unpaired Student’s T-test, 
significantly different to APOE E3E3 controls.  
 
 

Gene SNP Genotype n total cholesterol 

(mean ± SD) 

total triglycerides 

(mean ± SD) 

CVD 

incidence 

APOE 

(controls) E3 E3E3$ 39 6.02 ± 0.96 1.91 ± 1.17 2 

APOE E2 E2E2 21 5.08 ± 0.99*** 2.15 ± 0.99 0 

APOE E4 E4E4 37 5.69 ± 0.85 2.08 ± 1.39 4 

APOA5 rs662799 (A>G) GG 14 5.39 ± 0.82* 2.76 ± 1.25* 4 

SORT1 rs599839 (A>G) GG 38 5.45 ± 0.81** 1.79 ± 0.87 5 

LDLR rs6511720 (G>T) TT 21 5.21 ± 1.12** 2.29 ± 2.16 4 

CDKN2A/2B rs10757274(A>G) GG 33 5.64 ± 0.80* 1.68 ± 0.80 6 
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Table 2: Number of detected and identified lipid features in the global lipidomics assay. The number of lipids in each class are shown, with 
the number of significantly different lipids (non-parametric one-tailed Mann–Whitney U test, assuming unequal variance with a threshold of p ≤0.05, 
after SGoF correction), between the SNP group and controls shown in parentheses.  FA: Fatty acyl, GPL: glycerophospholipid, GL: glycerolipid, 
SL: sphingolipid.   
 
Lipid Class  FA GPL GL SL Sterol  Prenol  Unknowns  TOTAL  

Detected  
(P<0.05 after SGoF) 

 51 (0) 220 (0) 401 (13) 166 (2) 27 (1) 7 (0) 1006 (1)  1878 (17) 
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Table 3. Several lipid related Gene Ontology Pathways are significantly regulated by ANRIL silencing in HEK 293 cells.  Results are from 
the PANTHER Over-representation Test, Term enrichment service (pantherdb.org), using default analysis parameters (Fisher’s Exact test with 
False Discovery Rate: FDR P < 0.05, Benjamini-Hochberg).  Fold-enrichment represents the number of observed differentially expressed genes 
with the GO annotation of interest, relative to genome background. The full list of genes significantly altered in these GO processes, is provided in 
Supplementary Data.xlsx, along with a list of all significantly-altered GO processes at both timepoints.   

 

 
 GO biological process  

Significantly 
different genes  

Fold 
enrichment  P-value FDR 

 
 

48 hrs shRNA 
knockdown  

versus control glycosphingolipid metabolic process (GO:0006687) 14 3.05 5.68E-04 3.12E-02 

 
 regulation of lipid metabolic process (GO:0019216) 46 1.9 1.12E-04 9.22E-03 

 
 phospholipid metabolic process (GO:0006644) 51 1.85 9.16E-05 7.99E-03 

 
 cellular lipid metabolic process (GO:0044255) 109 1.68 6.07E-07 1.37E-04 

 
 lipid metabolic process (GO:0006629) 130 1.61 5.02E-07 1.19E-04 

 
 response to lipid (GO:0033993) 84 1.53 2.59E-04 1.74E-02 

 
 

     
 
 

96 hrs shRNA 
knockdown  

versus control regulation of lipid metabolic process (GO:0019216) 74 1.88 2.80E-06 3.38E-04 

 
 phospholipid metabolic process (GO:0006644) 73 1.63 2.05E-04 1.30E-02 

 
 lipid biosynthetic process (GO:0008610) 102 1.61 1.54E-05 1.51E-03 

 
 cellular lipid metabolic process (GO:0044255) 164 1.56 2.74E-07 4.70E-05 

 
 lipid metabolic process (GO:0006629) 203 1.54 1.61E-08 3.79E-06 
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Table 4. Several LysoPL relevant genes are significantly-altered in ANRIL knockdown.  Data 
were analysed using the oligo and limma packages in Bioconductor, see methods.  P values were 
corrected for multiple testing using Benjamini-Hochberg (adjusted p-value cut-off: 0.05) 
 
 
 

Predicted 
effect  

on lysoPL(ê)  
or lysoPA(ê) 

 
 48 hr, knockdown vs control 

 
 96 hr, knockdown vs control 

      
Gene 
name  

Log2fold 
change adjustedPval 

 
 

Log2fold 
change adjustedPval 

 
 êé ENPP2  

 
1.249 7.50E-3 

 
 1.483 4.65E-05 

 
ê LPCAT2  0.212 1.95E-02 

 
 NS NS 

 
ê MBOAT2  NS NS 

 
 0.289 3.28E-03 

 
ê ACSL6  0.283 0.0017 

 
 0.519 5.31E-06 

 
ê PLA2G4C  -0.351 0.0266 

 
 -0.356 0.016 

 
ê PNPLA2  -0.447 0.000031 

 
 -0.666 2.53E-7 

 
ê PLBD1  0.368 0.0263 

 
 0.5036 0.00217 

 
ê PLPP1  NS NS 

 
 0.1637 0.049 

 
ê PLPP2  0.258 0.00137 

 
 0.2940 4.65E-5 

 
ê PLPPR2  0.1136 0.0792 

 
 0.124 0.0101 

 

 
 
 

 
 

   
 

  
 

é PLA2G7  0.611 0.000225 
 

 0.439 0.0016 

 
é LPCAT1  -0.257 0.025 

 
 NS NS 

 
é DGKA  0.247 0.00724 

 
 0.403 9.98E-5 

 é LPL  NS NS   0.230 0.0429 

 
é LPCAT3  NS NS 

 
 -0.298 0.0013 

 
         

 
 
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 2, 2019. ; https://doi.org/10.1101/789768doi: bioRxiv preprint 

https://doi.org/10.1101/789768
http://creativecommons.org/licenses/by/4.0/


25	
	

Figure Legends  

 

Figure 1. Global lipidomics reveals class specific changes in GPLs in rs10757274 GG vs AA.  

Panel A: Scatterplot of features in a plasma sample (≈14,000) after processing high-resolution MS 

data using XCMS.  Analysis was undertaken using parameters provided in Supplementary 

Methods.  Panel B. Scatterplot obtained after LipidFinder and manual-data clean-up, as described 

in Methods. Each dot represents a lipid described by m/z value and retention time. Putative 

identification and assignment of category was performed using WebSearch of the curated LIPID 

MAPS database. Panels C-J. Volcano plots show differences in lipid classes with genotype. 

Volcano plots were generated as described in Methods, plotting log2(fold-change) versus –

log10(p-value) for all (n = 39 AA, 33 GG), following p-value adjustment using sequential goodness 

of fit metatest (SGoF).   

 

Figure 2. LysoPLs are significantly reduced in rs10757274 GG, but not in subjects with 

unrelated SNPs.  Panel A. Several LPCs are lower in GG samples than AA controls, and LPEs 

trend towards lower levels. LysoPLs were determined using LC/MS/MS as described in Methods (n 

= 88 AA, 81 GG). Tukey box plot, * p < 0.05, ** p < 0.01, *** p < 0.005, 2-tailed, unpaired Student’s 

T-test (black) and Mann Whitney U (red). Panel B. Plasma lysoPL are not altered by other risk 

SNPs.  Plasma from the NPHSII cohort containing several risk (up or down) SNPs were analysed 

using LipidFinder, and m/z values corresponding to lysoPL extracted and compared.  These are 

plotted on a volcano plot, to show fold change vs significance, following p-value adjustment using 

sequential goodness of fit metatest (SGoF).  Numbers and genotypes are shown in Table 1. Panel 

C. ATX is significantly decreased in GG samples compared to AA controls.  Plasma ATX activity 

was measured as described in Methods (n = 47 AA, 49 GG).   Panel D.  LysoPAs are significantly 

decreased in GG plasma compared to AA controls.   Plasma lysoPAs were measured as described 

in Methods, using LC/MS/MS (n = 95 AA, 100 GG). Tukey box plot, * p < 0.05, ** p < 0.01, *** p < 

0.005, 2-tailed, unpaired Student’s T-test (black). 
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Figure 3. The lysoPL/lysoPA/ATX axis is dysregulated in the GG plasmas, while the profile 

of molecular species is unchanged for lysoPL/lysoPA.   Panels A-D. ATX shows altered 

correlations with plasma lysoPL or lysoPA in GG versus AA plasma.  Levels of lysoPL or lysoPA 

quantified by LC/MS/MS in the validation cohort were correlated using Answerminer, to determine 

Pearson’s correlation co-efficient.  A,B: AA control plasma, C,D: GG risk plasma (n = 47 AA, 49 

GG).  Panels E-I. LysoPL and lysoPA are positively correlated for AA plasma, but negatively 

correlated for GG.  The sum of all lysoPAs or lysoPLs in each set were correlated using 

Answerminer, as above (E,G).  Alternatively, lipids containing 18:2, or 20:4 were separately 

correlated (F,H,I).  E,F: AA control plasma, G,H,I: GG risk plasma (n = 47 AA, 49 GG). Panels J,K.  

The lysoPA(18:2)/lysoPL(18:2) ratio positively correlates with ATX in AA plasma, but negatively for 

GG, indicating a block in substrate:product conversion in GG. Correlations were performed using 

Answerminer (n = 47 AA, 49 GG). J: AA plasma, K: GG plasma. P<0.05 indicates significant using 

Pearson’s correlation test.  Panel L. The profile of individual lysoPL or lysoPA molecular species is 

unchanged between GG and AA plasmas.  Levels of individual lysoPL/lysoPA were compared 

across both groups, and shown as %.  

 

Figure 4. Cytoscape analysis of lipids reveals divergent metabolism in GG versus AA, while 

ANRIL knockdown is associated with significant changes to lysoPL/lysoPA-metabolising 

genes.  Panel A. Cytoscape reveals strong links within related families, but a positive-negative 

switch for lysoPL-lysoPA correlations between AA-GG plasmas. Pearson correlation networks 

were generated for the AA and GG validation samples (n = 47 AA, 49 GG), using lipid 

concentrations. Nodes are coloured by lipid sub-category and represent individual molecular 

species, and edges represent the correlation. Edges detail the Pearson correlation coefficients 

between nodes (lipids), where the width of the edge denotes value. Additionally, edges are 

coloured by value: red (r = 0.10-0.39); green (r = 0.40-0.69); grey (r 0.70-1.00). Panels C,D. 

Significant changes in lipid regulatory gene expression are observed with ANRIL knockdown in cell 

culture.  Affymetrix array data generated in 5 was analysed using GO as described in Methods. 
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Volcano plot showing differential gene expression of all genes on the Affymetrix HuGene1.0 v1, 

chip.   LysoPL/lysoPA regulating genes that alter in line with decreased levels of the lipids in GG 

plasma are labelled. The horizontal dashed line shows where adj.pvalue < 0.05  (Benjamini-

Hochberg correction) where points (genes) above this line are significantly differentially 

expressed.  LysoPL-regulating genes that alter in line with decreased levels of the lipids are 

labelled in black.  Genes in red are annotated to the GO-term detailed in the plot title.  Data are 

plotted in R using ggplot2.    Panel B: 48-hr shRNA knockdown, Panel C: 96-hr shRNA knockdown.    

 

Figure 5. VSMCs from risk haplotypes show differential gene expression of lysoPL 

metabolizing genes, that are rescued by deletion of the Chr9p21 locus.  Panel A. PCA shows 

that the presence of risk haplotypes is associated with differential gene expression of lysoPL 

genes.  iPSCs from peripheral monocytes were obtained and differentiated as described in 

Supplementary Methods.  RNAseq data was clustered using lysoPL metabolizing genes by PCA in 

R.   Non-risk haplotype (NNWT), risk haplotype (RRWT) and their genome edited counterparts 

(NNKO and RRKO) are shown.  Panel B. Example datasets for ACSL3 and DGKA, showing that 

removing the risk locus reverts gene expression back to levels in non-risk individuals. * p < 0.05, ** 

p < 0.01, *** p < 0.005, Students t-test.  Panels C,D. Schematics showing impact of ANRIL 

silencing or risk haplotypes on relevant lysoPL metabolizing genes.  

 

Scheme 1. Metabolic pathway showing lysoPL/lysoPA regulatory genes that are 

significantly-altered by ANRIL knockdown.  Genes that metabolise these lipids are shown.  Full 

data on their transcriptional regulation is provided in Table 4.  LCAT was not significantly regulated, 

but is shown for completeness.  
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