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Abstract 

Mendelian randomisation analysis has emerged as an important tool to elucidate the causal 

relevance of a range of environmental and biological risk factors for human disease. However, 

inference on cause is undermined if the genetic variants used to instrument a risk factor of 

interest also associate with other traits that open alternative pathways to the disease (horizontal 

pleiotropy). We show how the ‘no horizontal pleiotropy assumption’ in MR analysis is 

strengthened when proteins are the risk factors of interest. Proteins are the proximal effectors of 

biological processes encoded in the genome, and are becoming assayable on an -omics scale. 

Moreover, proteins are the targets of most medicines, so Mendelian randomization (MR) studies 

of drug targets are becoming a fundamental tool in drug development. To enable such studies 

we introduce a formal mathematical framework that contrasts MR analysis of proteins with that 

of risk factors located more distally in the causal chain from gene to disease. Finally, we 

illustrate key model decisions and introduce an analytical framework for maximizing power and 

elucidating the robustness of drug target MR analyses.   

 

Keywords Drug target validation; Mendelian Randomization Analysis; Statistics.  
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Introduction 

Mendelian randomization (MR) studies estimate the causal relationship of a risk factor of 

biomedical interest to disease outcomes using genetic variants as instruments to index the risk 

factor1. The naturally randomised allocation of genetic variation at conception reduces the 

potential for confounding, which compromises causal inference drawn from the directly observed 

association between risk factor and disease2.   

 

Risk factors of biomedical interest (some of which are amenable to modification by drugs or 

behaviour change) can be both exogenous and endogenous, encompassing health-related 

behaviours (e.g. smoking and alcohol consumption3), complex biological traits (e.g. blood 

pressure and body mass index4) or, circulating constituents of the blood (e.g. complex analytes 

such as lipoproteins, metabolites such as uric acid5, or proteins such as interleukin-66,7, 

hundreds or thousands of which can now be assayed on high throughput platforms, e.g. from 

Somalogic and O-Link8). Interest has also emerged in tissue-level mRNA expression as an 

exposure of interest9.  

  

Four advances have fuelled an explosion in MR studies. First, genome-wide association studies 

(GWAS) have provided a rich source of genetic instruments10. Second, access to summary level 

genome wide association data has been made possible through the provision of public data 

repositories11. Third, methods have been developed to execute two-sample MR analysis (risk 

factor vs disease outcome) based on summary level genetic associations, obviating the need to 

share potentially sensitive participant information12. Fourth, bioinformatics tools have been 

developed that allow efficient exploitation of such resources. For example, MR-base13 is an 

online platform for MR analyses that links summary level genetic estimates with a number of 
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analytic tools. Additional resources that can be utilised include GCTA, PrediXcan14 and 

MetaXcan15. 

 

Most prior MR analyses utilise an approach whereby multiple SNPs identified from GWAS are 

used as instruments to increase power. SNPs are drawn from throughout the genome, often with 

a single variant selected per locus16 ensuring instruments are independent (i.e. in linkage 

equilibrium); preventing erroneously inflated statistical significance. This standard approach has 

often been applied regardless of the position of the exposure of interest in the biological pathway 

connecting genetic variation to disease risk. For example, an MR analysis investigating the 

causal relevance of C-reactive protein in a range of disease end-points17, and another between 

educational attainment on cardiovascular disease risk were conducted using broadly similar 

methodology and assumptions18.  

 

However, there are reasons for thinking that MR analysis of a protein risk factor should be 

considered as a distinct category of MR analysis. First, an analysis of this type induces a natural 

dichotomy in the genetic instruments that might be used: those that are located in and around 

the encoding gene (‘cis-MR’) vs those located elsewhere in the genome (trans-MR) 19. Second, 

aside from mRNA expression, differences in protein expression or function are the most 

proximal consequence of natural genetic variation. This has two consequences: frequently, 

variants located in and around the encoding gene can be identified with a very substantial effect 

on protein expression in comparison to other traits; moreover such instruments may also be less 

to prone to violating the ‘no horizontal pleiotropy’ assumption’ than variants located elsewhere in 

the genome (discussed below and ref 19).  Lastly, in the case of MR analysis of proteins, Crick’s 

‘Central Dogma’20  imposes an order on the direction of information flow from gene to mRNA to 

encoded protein, which does not extend beyond this to other biological traits that lie more 
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distally in the causal chain that connects genetic variation to disease risk. Thus, from an MR 

perspective, proteins are in a privileged position compared to other categories of risk factor.  

 

Understanding which proteins influence which diseases is a fundamental problem in biomedical 

science since proteins are the major biological effector molecules. Proteins are also the targets 

of most medicines, so interest has emerged in the use of MR approaches to identify and validate 

drug targets 21–24. Moreover, recent technological developments enable measurement of 

hundreds or thousands of proteins on an –omics scale in a single biological sample8. This opens 

up the possibility of scaled cis-MR analysis of thousands of proteins against hundreds of 

diseases to inform understanding of their causes and improve drug development yield. 

 

The key to realising this potential is the development of a robust conceptual and mathematical 

framework for cis-MR analysis of proteins. Since cis-MR analysis restricts selection of genetic 

instruments to those located in, or in the vicinity of the encoding gene, new questions emerge as 

how to optimise the selection of such variants. These include how best to select and define the 

loci of interest, the physical distance around each gene from which instruments might be drawn; 

how to select genetic variants as instruments with options including “no selection”, “selection by 

strength of association”, or “according to functional annotation. Regulatory, non-coding variants 

act through the level of the encoded protein which is what high-throughput assays detect. 

Coding-variants might influence protein activity but may also alter the detected rather than actual 

protein level by protein epitope changes, resulting in a technical artefact. Further questions 

include whether to weight such instruments in an MR analysis by the level of protein expression 

or activity, where the relevant assays are available; or, where they are not, by the level of mRNA 

expression (and, if so, in which tissue), or by some downstream consequence of protein action, 

e.g. differences in the level of a metabolite known to be influenced by the protein.  
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We therefore develop a mathematical framework for cis-MR analysis for causal understanding 

and drug development and investigate the influence of alternative strategies for the selection of 

genetic instruments and the choice of analytical approach best suited to this task; agnostic of the 

type of estimation methods.  

 

To help validate our findings, we select examples where the effect of a drug has already been 

reliably quantified on the protein of interest; on a widely measured downstream mediator of its 

effect; and on the disease outcome for which the treatment is indicated; and where variants in 

the gene encoding the drug target have been associated with effects that are consistent with this 

knowledge. Four genes that fulfil these criteria are HMGCR, PCSK9, NPC1L1 and CETP that 

encode the targets of licensed or clinical phase drugs with known effects on lipids and coronary 

heart disease risk. 

 

A mathematical framework for cis-MR analysis 

MR studies determine the causal effect of a risk factor on a disease using instrumental variable 

(IV) methods25, leveraging two estimates: the genetic association with the risk factor (exposure) 

and the genetic association with the disease (outcome). For the effect estimate in MR to equate 

to a causal estimate the following critical assumptions should hold: (i) the genetic instrument is 

(strongly) associated with the exposure, (ii) the genetic instrument is independent of observed 

and unobserved confounders of the exposure-outcome association (which is secure because 

genetic variants are fixed and allocated at random), and (iii) conditional on the exposure and 

confounders, the genetic instrument is independent of the outcome (i.e. there is no instrument – 

outcome effect other than through the exposure of interest – the “no horizontal pleiotropy” 

assumption).  
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The no horizontal pleiotropy assumption is violated when there are additional pathways by which 

the instrument may be related to the disease, sidestepping the exposure of interest. This could 

occur, for example if a genetic variant is in linkage disequilibrium (LD) with another variant that 

influences disease through a pathway distinct from the exposure, or if a genetic instrument also 

influences disease risk through another risk factor, located proximal to the risk factor of interest 

in the causal chain from gene to disease. In contrast, the association of a genetic instrument 

with exposures that lie in the causal chain distal to the exposure of interest (vertical pleiotropy26) 

does not violate the assumptions underpinning MR analysis. In the context of MR analysis of 

proteins, vertical and horizontal pleiotropy correspond to ‘pre-’ and ‘post’-translational effects 

respectively. 

 

To address the possibility of horizontal pleiotropy in MR analyses of exposures other than 

proteins, it has been common to select as instruments independently inherited SNPs identified 

by GWAS from multiple locations across the genome. In doing so, the average horizontal 

pleiotropy may reduce to zero (so-called balanced pleiotropy). Where this is not the case, an 

estimator such as MR-Egger27 can recover an estimate of the causal effect in the presence of 

horizontal pleiotropy contingent on the Instrument Strength is Independent of the Direct Effect 

(INSIDE) assumption27; i.e., that the strength of the genetic association with the risk factor does 

not determine the magnitude of horizontal pleiotropy..  

 

Figure 1 adapts the typical depiction of an MR analysis to illustrate these considerations. A 

genetic variant (𝑮) has the potential to influence risk of disease (D) directly (𝜙𝑮) or through its 

effect (𝛿ሚ) on a protein (P) which exerts its action through a downstream biomarker (X), which in 

turn influences disease risk. The relevant genetic associations can be resolved as follows:  

1) The genetic effect on the protein 𝛿ሚ. 

2) The genetic effect on a downstream complex biomarker 𝛿ሚ𝜇. 
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3) The genetic effect on disease 𝜙𝑮 + 𝛿ሚ(𝜙𝑷 + 𝜇𝜃). which comprises: 

a) A direct effect of the variant on disease 𝜙𝑮. 

b) An indirect effect: 𝛿ሚ(𝜙𝑷 + 𝜇𝜃), which is a function of the genetic effect on a 

protein 𝛿ሚ, the direct effect of the protein on disease 𝜙𝑷, the effect of the 

protein on a biomarker 𝜇, and the biomarker effect on disease 𝜃.  

 

Depending on the risk factor of interest, an MR analysis constitutes a simple quotient of the 

genetic effect on disease by the genetic effect on the risk factor. For example, if we are 

interested in the causal effect the biomarker X on disease, i.e. 𝜃, we use the following ratio.  

𝜙𝑮 + 𝛿ሚ(𝜙𝑷 + 𝜇𝜃)

𝛿ሚ𝜇
     (1). 

 

For expression (1) to equate to the causal effect on disease we need to additionally assume that 

there is no horizontal pleiotropy, in other words 𝜙𝑮 = 𝜙𝑷 = 0, which reduces the expression to:  

𝜙𝑮 + 𝛿ሚ(𝜙𝑷 + 𝜇𝜃)

𝛿ሚ𝜇
=

𝛿ሚ𝜇𝜃

𝛿ሚ𝜇
 

= 𝜃. 

In contrast, if we are interested in the causal effect of the protein P on disease D, we want to 

obtain an estimate of 𝜔, where 𝜔 = 𝜙𝑷 + 𝜇𝜃, we assume 𝜙𝑮 = 0 as before, and use the ratio:  

𝛿ሚ(𝜙𝑷 + 𝜇𝜃)

𝛿ሚ
= 𝜙𝑷 + 𝜇𝜃, (2) 

= 𝜔. 

Critically, where the causal effect of the protein is the parameter of interest, we only need to 

assume that there is no direct effect of the genetic variant on disease, i.e. 𝜙𝑮 = 0, and the 

protein can have any mixture of direct (𝜙𝑷), and indirect (𝜇𝜃) effects. For this reason, MR 
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analysis of protein-disease relationships is less prone to violation of the ‘no horizontal pleiotropy’ 

assumption than MR analysis of downstream exposures. 

 

Alternative exposures in cis-MR analysis of proteins 

It is important to note that a protein can remain the inferential target in an MR analysis even if it 

is not measured directly. For example, in cardiovascular disease large sample size GWAS are 

available on lipids which are often intermediate biomarkers, positioned downstream between the 

drug target 𝑷 and disease, 𝑫. In our recent drug target MR analysis of PCSK9 22,23 we used 

instruments selected from the encoding locus and divided the variant to coronary heart disease 

(CHD) estimates, not by the effect on PCSK9 level (which was unavailable), but by LDL-C, a 

variable known to be altered by perturbation of the PCSK9 protein. Thus, using the same 

notation as above, and assuming 𝜙𝑮 = 0: 

𝜔௕௪ =
𝛿ሚ(𝜙𝑷 + 𝜇𝜃)

𝛿ሚ𝜇
=

𝜙𝑷 + 𝜇𝜃

𝜇
, 

with bw indicating ‘biomarker weighted’. Clearly because the denominator contains 𝛿ሚ𝜇, instead 

of  𝛿ሚ, 𝜔௕௪ does not equal 𝜔, however 𝜔௕௪ may still provide a valid null-hypothesis test of 𝜔 = 0, 

because 𝜔௕௪ ≠ 0 implies 𝜔 ≠ 0, under the assumption of 𝜙𝑮 = 0.  

 

In the absence of available measures of the protein of interest, a similar argument can be made 

for using mRNA expression (this time as an upstream variable) that proxies the effect of genetic 

variation on the level of the encoded protein (see Appendix Figure 1): 

𝜔௘௪ =
𝛿ሚ𝑮𝑬𝛿ሚ𝑬𝑷(𝜙𝑷 + 𝜇𝜃)

𝛿ሚ𝑮𝑬

=  𝛿ሚ𝑬𝑷(𝜙𝑷 + 𝜇𝜃), 

Here the weighting is done by the association with of mRNA expression, and the 𝛿ሚ effect has 

been decomposed into the variant effect on expression 𝛿ሚ𝑮𝑬 and the expression effect on protein 

level 𝛿ሚ𝑬𝑷 Similar as for 𝜔௕௪, the expression weighted (“ew”) drug target effect provides a valid 
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test of 𝜔 = 0 conditional on the absence of any horizontal pleiotropy predicting the protein effect; 

that is, a necessary assumption 𝜙𝑮 = 𝜙𝑬 = 0 (with index 𝑬 for expression). It should be noted 

that mRNA expression level (eQTL) is tissue-specific, and utilizing eQTLs for drug target MRs 

necessitates a decision on the tissue(s) relevant for (de novo) drug development. We return to 

these issues later in the manuscript. 

 

Having provided the mathematical framework, we now address issues pertaining to the selection 

of instruments for cis-MR analysis of proteins. Specifically, we address locus selection (all 

protein-coding genes; genes only encoding druggable proteins); locus size; instrument selection 

(one versus many; selection based on LD or functionality); and potential influence of enhancer 

variants. Also, we illustrate the influence, and limitations, of weighting genetic instruments by 

mRNA expression vs. protein expression vs. level of some downstream biomarker, by starting 

with the current modus operandi in MR which is to weight instruments by a downstream 

biomarker exposure (which is often more widely measured than the protein of interest). 

Throughout, we draw from current paradigms of MR analysis but critically extend and evaluate 

modelling choices to derive strategies most relevant for cis-MR.  

 

Design, conduct and interpretation of cis-MR analysis of proteins 

encoding drug targets 

 

Selection of loci encoding proteins 

Unlike MR analysis of non-protein traits, where it has become common to select instruments 

from throughout the genome, cis-MR analysis necessitates the selection of genetic variants from 

within or in the vicinity of a protein coding gene. The Ensembl 97 GRCh38 human genome 

assembly contains an estimated 20,454 protein coding genes, encoding an estimated 24,700 
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protein coding transcripts (merged Ensembl/Havana annotation). Of these transcripts, 21,869 

have a support level of ≤ 2, meaning that there is some level of experimental support for the 

presence of these transcripts. In addition, UniProt (version 2019_06, combining SwissProt and 

TrEMBL) reports 20,416 high quality manually annotated proteins. 

 

Selection of loci encoding druggable genes 

Not all encoded proteins are amenable to pharmacological action by small molecule drugs, or 

peptide and monoclonal antibody therapeutics, which currently account for the majority of 

medicines. cis-MR for drug target validation requires the selection of genes encoding druggable 

proteins. Progressive efforts to delineate the druggable genome28,29 (available through the DGI 

database (DGIdb30), have culminated in the latest iteration containing 4,479 genes31 

encompassing targets of existing therapeutics, potentially druggable close orthologues and 

targets accessible by monoclonal antibodies. Of these, ChEMBL v.24 identifies 896 genes as 

encoding the target components for existing therapeutics, this includes single protein targets, 

protein complex targets and targets comprising whole protein families. A further 535 genes 

encode target components of compounds currently in clinical phase testing. Clearly the 

druggable genome is not static and will be redefined periodically, reflecting changes in drug 

targeting mechanisms. However, currently, to define the druggable genome is to progressively 

reduce the high-dimensional search space for genetic instruments from the whole genome to 

around 20,000 protein coding genes to fewer than 5,000 genes encoding druggable targets. As 

such, a specific subset of cis-MR can inform drug development, which we term “drug target MR”.  

 

Instrument selection  

Drug target MR focuses on a single gene known to encode a protein, and variants within and 

around such a gene are used to characterize the effect of the drug target on a single or multiple 

outcome(s). Given the inferential target, it would seem logical to select variants based on the 
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variant to protein level association (𝛿ሚ). Ideally one would have sound knowledge on the number 

of causal variants and only select those to minimize bias and maximize precision (power). 

However, typically this information is unavailable, imposing the need for instrument selection, 

often using biomarker risk factors as proxies for genetic effects on protein expression.  

 

In such cases, variants are often selected based on 1) a biomarker association (e.g. LDL-C in 

the case of PCSK9 discussed earlier), 2) predicted functionality; and 3) low linkage 

disequilibrium (LD). These, often ad hoc, selection strategies typically result in the use of a 

single24,32,33 or perhaps a handful of SNPs22,34,35 out of a multitude of potential candidate SNPs. 

Due to a lack of appropriate (pQTL or eQTL) data, it is often unclear how well such a small 

subset of SNPs characterizes the genetic effect on the drug target (IV assumption i), and how 

influential selection strategies are on the final MR estimate.  

 

To explore this, we mimicked instrument selection by repeatedly (500 times) sampling four SNPs 

at random per locus22,23 from four known drug target encoding loci HMGCR (statins), NPC1L1 

(ezetimibe), PCSK9 (PCSK9 inhibitors), and CETP (CETP inhibitors). (In the next section we 

consider larger number of variants). These loci contain variants that influence LDL-cholesterol 

(HMGCR, NPC1L1, PCSK9, CETP), with variants at the CETP locus additionally influencing 

HDL-cholesterol and triglycerides as identified by the Global Lipids Genetics Consortium 

(GLGC36). We then used a generalized least squares (GLS) method12,37; to account for pairwise 

LD between variants at each locus. Variants were extracted from within the gene ±2.5kb, with a 

minor allele frequency (MAF) above 0.01, and LD less than 0.80 (Appendix Tables 1-5, 

Appendix Figure 2).  

 

The first and third quartiles (Q) of the CHD odds ratios (OR) per standard deviation (SD) in LDL-

C for HMGCR, NPC1L1, PCSK9 (or HDL-C in the case of CETP) indicated modest variability in 
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the point estimate: (Q1 1.61, Q3 1.78) for HMGCR, (Q1 1.42, Q3 1.77) for PCSK9, (Q1 1.19, Q3 

1.68) for NPC1L1, and (Q1 0.87, Q3 0.91) for CETP. Between 95-99% of the estimates across 

all four genes were in the expected direction as inferred from the findings of drugs used in 

clinical trials to target the corresponding proteins38–44.  

 

We further categorised effect estimates based on the EnsEMBL Variant Effect Prediction (VEP) 

that reports the functional consequence of each variant (Figure 2). We found little to no 

difference between estimates derived using non-coding variants only and those estimates based 

on functional variants. The overall stability and agreement between estimates derived with or 

without functional annotations suggests a strong influence of multivariate LD between the 

selected and unselected variants in small cis-regions (Appendix Figure 2). However, we did 

observe a large degree of variability in the p-values which is explored in the subsequent section 

(Appendix Figure3).  

 

Taking advantage of linkage disequilibrium within the region 

Given the observed influence of LD it seems desirable to leverage this in drug target MR. For 

example, after defining a cis-genetic region (discussed further below) one can LD-clump highly 

correlated variants that might destabilize a statistical model (multicollinearity), and actively model 

the remaining pairwise LD using an LD-reference panel to maximize power and decrease 

variability. Besides increasing power and robustness, this strategy also introduces some further 

complexities e.g. the choice of LD threshold, and the ramification of the possible inclusion of 

null-variants (i.e. variants that are not associated with the risk-factor).  

 

The effect of LD thresholds can be readily explored by performing a “grid search”, clumping 

variants at different R-squared thresholds. From modelling theory, (and empirically: Figure 2) 

one would expect that when using such a grid search that the point estimate stabilizes early (at 
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low thresholds), while the standard errors decrease further until, at a certain point, 

multicollinearity results in clear deviations. Such a grid search was implemented in Figure 3, 

showing clear signs of multicollinearity for the HMGCR and PCSK9 estimates, but less so for 

NPC1L1. While trends observed for HMGCR and PCSK9 are examples of what one would 

expect on theoretical grounds, this does not occur at the same threshold, and seemingly not at 

all for the CETP locus.  

 

The possible inclusion of “null variants”, that do not affect the intermediate risk factor, is more 

difficult to prevent. In a very conservative attempt at excluding null-variants researchers often 

focus on genome-wide significance (e.g., a p-value < 5 × 10ି଼). Dudbridge45 and many others 

have shown that such an approach excludes many useful variants harming power/precision, and 

lower thresholds (e.g., 10ିହ) often result in greatly improved performance. Clearly such lower 

threshold could result in the inclusion of (many) null-variants. However, as sample size 

increases, null-variants will cluster around the origin when regressing the variant-outcome 

estimates on the variant-exposure estimates, and hence will not affect point estimates of the 

slope (see Appendix Figure 4). As such, null-variants are not expected to invalidate MR 

analyses if their inclusion is offset by other variants that are strong predictors of the risk factor; 

see Appendix Table 11 for a simulation study. Additionally, by employing the two-sample MR46 

paradigm (using risk factor and outcome estimates from different samples), any possible weak-

instrument bias should attenuate results towards the null47.  

 

Linkage disequilibrium modelling compared to selecting functional variants 

Based on these considerations, we explored the performance of a very limited instrument 

selection strategy, geared towards characterizing a cis-genetic region encoding a drug target as 

fully as possible by: 1) considering all variants with limited LD clumping to prevent 

multicollinearity; 2) modelling LD using external data such as the 1000 genomes reference 
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panel; 3) limited or no p-value thresholding. This strategy (with R2 = 0.60) was applied to our four 

empirical examples and compared to MR estimates at the same locus using only variants with 

strong evidence of function based on VEP (Figure 4 and Appendix Tables 6-9). We found 

general agreement between the effect estimates from both analytical approaches, with the GLS 

estimates having higher precision (1/SE) than those based on functional variants alone.   For 

example, the precision of the two PCSK9 splice variants used in MR was 5.72 compared to 

13.33 for the GLS estimates (incorporating variants selected on the basis of LD structure 

regardless of function).  

 

These results confirm that precision/power is increased by including more correlated variants. To 

prevent erroneously low p-values in such analyses, we accounted (conditioned) for pairwise LD 

used the European (EUR) 1000 genomes panel. We further investigated the influence of different 

1000G ancestry reference panels on the effect estimates, and found these to be stable for the four 

examples evaluated (Appendix Figure 5); although significance of the NPC1L1 was dependent on 

the panel used. We did find however that the GLS method often failed because of (small) changes 

in LD resulting in multicollinearity. After inspection this seemed to be related to LD-estimates of 

low MAF variants varying considerably across ethnicities (Appendix Figure 6); improved behaviour 

may be expected with either increased sample size (1000G sample size n ~ 100), or with the 

removal of low MAF variants (at the risk of losing information).   

 

Selection of the exposure (risk factor) to be instrumented 

The analyses to this point have utilised lipids exposures to index the effect a drug on the 

corresponding target. With the publication of the INTERVAL study8, genetic associations with 

circulating protein concentration (pQTL data) have been made available for around 3,500 

proteins measured using the Somalogic aptamer based chemistry in around 3,000 participants. 
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This opens up the possibility of using the genetic effect on protein concentration as a more direct 

proxy of the effect of a drug on its target. Of the four proteins considered here only HMGCR 

concentrations were available from the INTERVAL study. To supplement this we extracted pQTL 

estimates from a GWAS of circulating CETP concentration measured by an enzyme-linked 

immunosorbent assay (ELISA) 48 in around 4000 subjects. Initially focussing on the same 

±2.5KB region as before, we found the causal estimates for the effect of HMGCR on CHD, using 

the Somalogic protein expression level to be very imprecise, failing to reject a null-effect (Figure 

5); despite the known beneficial effect of HMGCR inhibition by statin drugs on CHD risk. 

Corresponding estimates using circulating CETP concentration based on an ELISA indicated a 

causal CHD increasing effect, consistent with the findings of a recent large-scale clinical trial 

where CETP inhibition reduces CHD risk (Figure 5).  

 

In the biomarker weighted analysis, the size of the genetic flanking region was constrained to 

prevent erroneously modelling effects from neighbouring genes not encoding the drug target of 

interest (horizontal pleiotropy). However, pQTL associations provide a direct estimate of the 

genetic association with the drug-target and hence reduces the need for small flaking regions. 

We compared findings from the ±2.5KB region, to pQTL MR results using a broader ±1MB 

flanking region. To further guard against potential horizontal pleiotropy bias (for example through 

LD) we additionally implemented the Egger adjustment. At intermediate R2 values (0.30), 

HMGCR was significantly associated with an increased CHD risk (with Egger correction). 

However, with larger values (R2 = 0.50), the GLS failed, indicating model instability. Conversely, 

CETP was (again) robustly causally associated with CHD, with larger R-squared values 

decreasing variability without any indication of model instability (Figure 5).  

 

We additionally evaluated the performance of MR analysis using mRNA expression level as the 

exposure variable, assuming a certain proportionality between mRNA and protein expression. 
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We obtained information on genetic effects on mRNA expression from GTEx49 version 7, for all 

four cis-regions, based on post mortem tissues from 449 donors (84% of European descent). 

Variants were considered that were located in a ±1MB region around each gene. Relative 

expression levels for each gene differed considerably across tissues and between each locus 

(Appendix Figure 7). Most strikingly, HMGCR was uniformly expressed across tissues, while 

CETP was most expressed in spleen, and PCKS9 and NPC1L1 in the liver. In Appendix Figures 

8-11 we provide tissue-specific eQTL estimates over a number of genetic regions, showing that 

HMGCR eQTL variants were located throughout the surrounding ±1MB region, and that 

associations for the other loci were more confined: CETP (±10KB), PCSK9(±250KB), and 

NPC1L1 (±250KB). There was also considerable directional inconsistency in the effects of cis-

variants on expression across the various tissues, for example NCP1L1 variants were negatively 

associated with expression in esophageal mucosa, with the same variants positively associated 

in aortic artery tissue (Appendix Figure 10).  

 

This directional inconsistency resulted in directionally discordant tissue-specific MR estimates of 

the same drug-target. For example, PCSK9 mRNA expression in the adrenal gland was 

associated with an increase in CHD risk: OR 1.0.9 (95%CI 1.02; 1.16), while PCSK9 expression 

in the uterus was associated with decreased CHD risk: OR 0.92 (95%CI 0.88; 0.97). Selecting 

variants from a broader ±1MB region universally attenuated effect estimates, with Egger 

correction (Figure 6) moderately reversing this attenuation. Horizontal pleiotropy did not however 

fully explain the directional inconsistency in CHD effects across tissues. For example, the causal 

relationship of HMGCR with CHD weighted based on instrument effects on HMGCR mRNA 

expression in brain regions (caudate basal ganglia, putamen basal ganglia, and spinal cord 

cervical c-1 tissues) using Egger correction would be inferred to be protective (opposite to that 

known to be the case from clinical trials).  
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Region size 

To explore the possible cause of this directional inconsistency we next explored the influence of 

genetic region by iteratively increasing the flanking region from ±2.5KB to ±1MB, selecting 

variants from upstream, downstream or in both direction of the gene. With all 4 loci showing 

similar behaviour, we focus here on the CETP region (Figure 7, see appendix Figures 12-14 for 

the other drug targets) finding that effect direction in any given tissue remained constant across 

the expanding region. The significance of the association with mRNA expression could either be 

attenuated when selecting variants from larger regions (e.g. lung tissue), or conversely increase, 

(e.g., spleen) potentially reflecting different regulatory regions including enhancers for the same 

gene in different tissues. 

 

Statistical heterogeneity 

To further explore the inconsistency in effect direction when weighting MR analysis by mRNA 

expression in different tissues, we estimated any potential causal relationship between mRNA 

expression level as the exposure and circulating lipid concentration (rather than CHD risk) as the 

outcome.  

 

In these analyses, directional inconsistency was also observed (Appendix 15). However, 

comparing the mRNA expression level effect estimates on lipids, to the expression level estimates 

on CHD across tissues did not indicate a significant correlation between the two (Appendix 16; 

correlation estimates between -0.20 and 0.20). As expected both the CHD and lipids estimates 

showed a large degree of heterogeneity (Appendix Figure 17), indicating either 1) remaining 

horizontal pleiotropy (despite Egger correction), or 2) true tissue specificity heterogeneity of the 

expression level effect on CHD. Excluding tissues or variants displaying greater heterogeneity, 

did not markedly decrease directional inconsistency of estimated causal effects using either lipids 

or CHD as outcomes (Appendix Figures 18-21).  
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Potential role of enhancer regions 

Finally, to determine the influence of enhancer variants, we associated the number of tissue 

specific enhancers (extracted from HACER50) to the MR results from the 4 positive control loci, 

which did not reveal any significant association (Appendix Figure 22). Additionally, we explored 

if the number of enhancers could be associated to the direction of effect (encoded as a binary 

indicator) which did not show a significant association either (Appendix Figure 22). In Figure 8, 

we associated the tissue-specific heterogeneity statistics of the MR estimates to the distance to 

the nearest enhancer variants which again did not demonstrate a clear relationship.   

 

Discussion 

In the current manuscript we have formalised the difference between Mendelian randomization 

(MR) for biomarker validation and MR for drug target validation cis-region encoding a druggable 

protein. Using algebraic derivations, we show that because drug target MR considers the effects 

of perturbing a protein drug target on disease, this type of MR may be applied in settings where 

biomarker MR will be biased through horizontal pleiotropy. We discuss that because drug target 

MRs can be framed as a cis-focus analyses, instrument selection is distinct from that in generic 

MR, and investigate strategies characterizing the drug target encoding region as whole through 

linkage disequilibrium (LD), increasing precision and robustness. Simple grid-search algorithms 

were introduced aiding researcher in optimizing LD-threshold as well as genetic regions, with 

intuitive sensitivity analyses to determine estimate robustness to the choices of LD reference 

panel, the presence of functional variants as well as regulatory enhancers, and outliers (using 

heterogeneity statistics).  
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Due to our focus on four positive control examples, we were able to perform exhaustive 

analyses on the robustness of drug target MR findings based on regulatory vs coding variants 

showing that robust causal inferences could be drawn from regulatory variants despite a widely 

held view that functional variants should be naturally preferred in (drug target) MR analyses 

because most drugs affect protein action not level. Instead we showed that modelling an entire 

cis region resulted in the same odds ratio compared to selecting functional variants, with greater 

precision (increased power) by including larger numbers of (independent) variants. Similarly, we 

showed that limited influence of LD-reference panels used in LD modelling with non-European 

ancestry panels resulting in comparable estimates. While promising, these findings should be 

replicated and above all extended to a larger set of drug targets, for example to analyses outside 

of the lipids-cardiovascular domain presented.  

 

In the current manuscript we pursued drug target Mendelian randomization by applying a 

generalized least squares (GLS) solution51 to genetic cis-regions known to encode protein drug 

targets. This GLS method is by no means the only relevant estimator function and one can 

“repurpose” many general MR methods for use in drug target MR. For example, the MR-base 

platform clumps variants to such a low level (e.g., R-squared of 0.001) that one can apply 

weighted regression solutions (e.g., IVW), foregoing LD correction13. Generalised Summary-

data-based Mendelian Randomisation (GSMR)52 provides similar LD-modelling MR functionality 

as the GLS method applied here, which GSMR extents by allowing for automated outlier 

removal through HEIDI, as well as providing a solid integration with the Genome-wide Complex 

Trait Analysis (GCTA) suite. Similar outlier removal steps can be readily implemented using the 

Q-statistic, and standard leverage or Cook’s statistics53. Automated outlier removal does 

however make an implicit assumption that the outlying observations are incorrect, and not the 

statistical model; which is unlikely to be generally true. Nevertheless, outlier removal is an 

important step in assessing the robustness of results.  
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While there are an impressive number of estimator functions, going well beyond the ones just 

mentioned, there is surprisingly limited advice on what type of instrument should ideally be used 

for drug target MR (with the exception of Swerdlow et al.19), with even less attention given to 

empirically exploring the influence of such advice on MR estimates. This manuscript addresses 

both issues and introduces a generic framework (Figure 9) for obtaining robust inference of a 

drug target’s effect on disease, irrespective of the type of MR estimator method preferred. In this 

framework we suggest that for each exposure outcome pair grid-searches are employed to 

select the optimal LD threshold and genetic region, while at the same time exploring the 

robustness of MR estimates to LD-reference panel, the influence of functional and regulatory 

variants, as well as asses the influence of outlying instruments.  

 

On theoretical grounds, weighting by protein expression is to be preferred in drug target MR 

analysis since proteins are the targets of most drugs. Nevertheless, when available, downstream 

biomarker exposure variables (such as lipids or blood pressure) may provide informative 

additional exposures, often derived from larger sample sizes than the currently available pQTLs 

(although this may change in the future). However, many diseases (e.g. neurological disorders) 

will not have relevant biomarkers and, in the absence of sufficiently large pQTL data, eQTLs 

provide a seemingly relevant alternative exposure that might closely proxy pQTLs. We have 

shown however, that eQTL based MR estimates may differ both in magnitude as well as 

direction across tissues, as demonstrated by exhaustive analyses for the four positive control 

loci. This tissue-specific heterogeneity was independently reported by the GTEx consortium 54 

for PCSK9. We extend those observations to demonstrate their potential to undermine reliable 

causal inference when using mRNA expression as a weighting variable in MR analysis. Drug 

compounds have the potential to affect protein targets in any human tissue in which they are 

expressed (with the exception of privileged sites such as brain and eyes), however a priori it may 
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be unclear which tissue is most relevant for the therapeutic efficacy of a compound, and 

interpreting the tissue-related heterogeneity may therefore be difficult in pre-clinical settings. It is 

possible that, despite using methods robust to horizontal pleiotropy, this may have persisted in 

these analyses, resulting in tissue-specific heterogeneity. Alternatively, the observed 

heterogeneity may relate to the inclusion of non-European ancestries in the GTEx database49, or 

due to the post-mortem collection of samples55. For example, GTEx previously reported that 

gene expression changed post-mortem in a tissue-specific manner, which they attempted to 

ameliorate with multiple regression55. Without positive control data, however, it is unclear how 

successful such adjustments have been, and further sensitivity analyses could determine the 

influence of post-mortem sample interval in MR analysis based on eQTL data.  

 

Throughout this manuscript we used a type I of error rate of 0.05 (or 95% confidence interval) 

and did not correct for multiple testing. While appropriate multiplicity protection is important, by 

focussing on four thoroughly studied drug targets (NPC1L1, HMGCR, PCSK9, and CETP) there 

is an abundance of prior evidence on the expected CHD effect, making analytical control of the 

false positive rate less relevant. In other settings, appropriate control of false discovery rates is 

clearly essential.it could be argued that applying a genome-wide association p-value threshold 

(e.g.  5 × 10ି଼) will be needlessly conservative. Instead, of applying the typical GWAS 

multiplicity correction one could control for the number of druggable proteins (about 5000; 

resulting in a 1 × 10ିହ threshold). However, (early) drug development is not performed in 

isolation, and genetic evidence will be evaluated alongside evidence from cells, tissues, and 

animal experiments. As such, appropriate false discovery control will depend on the position of 

drug target MR within this pre-existing evidence framework. For example, p-value threshold of 

1 × 10ିହ might be applied when drug target MR is used as a screening tool, before validating 

promising leads in further experiments. Positioning drug target MR after successful in-vivo 

experimentation, for example, to check for possible unknown side effects in human subjects, will 
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likely call for a less-stringent multiplicity correction considering themore extensive prior 

knowledge and the aim of early detection of possible safety concerns.  

 

In conclusion, we expect that combining the discussed concepts with the ever-increasing 

magnitude of genetic data will move drug target MR from manually curated, often proof of 

concept like analyses, to more automated and scalable projects able to systematically guide and 

enrich the entire drug development process.   

 

Methods 

 

Data resources 

Information on the four positive control loci (HMGCR, PCSK9, CETP, and NPC1L1) were 

sourced from the Drug Target Validation Database (DTAdb), developed by Chris Finan31. 

Specifically, for the current analyses we identified variants within a megabase upstream or 

downstream from each of the four loci. Outcome data were extracted from 

CARDIOGRAMplusC4D including the genetic association (log odds ratio) with CHD, as well as 

their standard errors. Exposure data were leveraged from GLGC36 (lipids), INTERVAL8 (HMGCR 

protein level), Blauw et al48 (CETP protein level), and GTEx49 version 7 (expression level).  

 

The 1000 genomes56 data were used as a source of LD. Enhancer data were derived from the 

Human ACtive Enhancer to interpret Regular variants (HACER50) resource. All information was 

curated and normalized to genetic build 37 as described in detail in Finan et al31. A ±2.5KB 

subset of the data is provided in Appendix tables 1-4, with the remainder easily extracted from 

cited publicly available sources. 
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Statistical analysis 

Mendelian randomization was conducted using the “Inverse Variance Weighted” (IVW) and “MR-

Egger” methods for correlated variants as detailed in Burges et al37. Here we note that these 

methods are specific parametrizations of Generalized Least Squares (GLS) technique and 

simply refer to IVW as GLS, and MR-Egger as GLS with Egger correction.  

 

In the context of MR, a GLS without an Egger correct, regresses the genetic association with an 

outcome (CHD in our case) on the genetic association with an exposure (here lipids, protein 

level, or exposure level), forcing the intercept through zero; reflecting the no-pleiotropy 

assumption when a zero exposure effect should be matched by a zero outcome effect. Here the 

slope estimate equates to a causal estimate of the exposure to outcome effect. GLS with Egger 

correction refers to a similar linear model without forcing the intercept through the origin. Here 

the intercept estimate reflects the amount of horizontal pleiotropy, while the slope estimates 

reflects the causal estimate of the exposure on the outcome corrected for (potential) horizontal 

pleiotropy). Estimates are presented as fixed effects (with a regression standard error of unity), 

or as random effects (where the regression standard error is equal or larger than 1).  

 

All analyses were conducted using the R programming language57, with packages dplyr58, 

ggplot259, gridExtra60, openxlsx61, and wesanderson62. Diagrams were programmed in TikZ63, 

and the appendix written in LaTeX and knitr64.   
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All data are publicly available, as described in the methods section. The data specifically used 

for these analyses is available through (URL will be made available after acceptance) 
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Figure legends 

Figure 1 Directed acyclic graphs of potential Mendelian randomization pathways.  

 

n.b. nodes are presented in bold face, with G representing a genetic variant, P a protein drug 

target, X a biomarker, D the outcome, and U (potentially unmeasured) common causes of both P, 

X, D. Labelled paths represent the (causal) effects between nodes.  

 

Figure 2 Instrument selection related variation in the point estimates of drug target Mendelian 

randomization studies on the lipid’s association with CHD.  

 

n.b. each estimate is based on randomly (500 iterations) selecting 4 SNPs out of 17 HMGCR, 30 

PCSK9, 21 NPC1L1, 36 CETP candidate variants. Lipids data was used from the GLGC, and 

linked to coronary heart disease data from CardiogramPlusC4D. estimates were grouped by the 

inclusion of instruments with worsted predicted functional or regulatory consequence; categories 

occurring less than 5 times were removed. Any pairwise LD was accounted for using the 1000 

genomes “EUR” reference panel and a generalized least squares method12.  

 

Figure 3 Mendelian randomization estimates of the lipids weighted associations with CHD under 

increasingly liberal LD-clumping thresholds. 

 

n.b. Lipids data was used from the GLGC, and linked to coronary heart disease data from 

CardiogramPlusC4D. Pairwise LD remaining after LD-clumping was accounted for using the 

1000 genomes “EUR” reference panel56 and a generalized least squares method12. Estimates 

for PCSK9, HMGCR, and NPC1L1 are given per SD in LDL-C, CETP estimates per HDL-C 

reflecting the likely effectiveness pathway to CHD. The number of included variants is depicted 

and the lower end of the y-axis.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/781039doi: bioRxiv preprint 

https://doi.org/10.1101/781039
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

 

Figure 4 Mendelian randomization estimates of the lipids weighted associations with CHD 

stratified by functionally of the included variants. 

 

n.b. Lipids data was used from the GLGC, and linked to coronary heart disease data from 

CardiogramPlusC4D. Pairwise LD remaining (after clumping on R-squared of 0.60) was 

accounted for using the 1000 genomes “EUR” reference panel56 and a (GLS) generalized least 

squares method12. Estimates for PCSK9, HMGCR, and NPC1L1 are given per SD in LDL-C, 

CETP estimates per HDL-C reflecting the likely effectiveness pathway to CHD.  

 

Figure 5 Mendelian randomization estimates of protein level effects on CHD, with a grid of LD 

threshold. 

 

n.b. Pairwise LD was  accounted for using the 1000 genomes “EUR” reference panel56 and a 

(GLS) generalized least squares method12 with or without Egger correction for possible 

horizontal pleiotropy. The number of included variants in the 1 mega base flanking region is 

depicted above the y-axis of the top panels. is depicted and the lower end of the y-axis. The top 

panel depicts the variant to CHD or protein level effect for clumping threshold 0.3 for HMGCR 

and 0.5 for CETP, with the GLS Egger slope.  

 

Figure 6 Mendelian randomization estimates utilizing GTEx eQTL weights. 

 

Variant were included after clumping on an R-squared threshold of 0.6, with remaining pairwise 

accounted for using the 1000 genomes “EUR” reference panel56 and a generalized least squares 

method48 with, or without accounting for potential pleiotropy using the Egger correction. OR and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/781039doi: bioRxiv preprint 

https://doi.org/10.1101/781039
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

multiplicative random effects confidence interval per SD chance in expression level are stratified 

by tissue.  

 

Figure 7 Exploring the influence of the genetic region on the association between CETP 

expression and CHD.  

 

Left hand side selecting from ±the genetic region, right hand side selecting from either the 

upstream region or the downstream region; colours represent z-statistics direction and stars 

indicate significant associations at a type 1 error rate of 0.05. 

 

Figure 8 Heterogeneity estimates of the tissue specific MR estimates of the expression level 

effects on CHD ranked by enhancer distance. 

 

Figure 9 Drug target MR analysis framework.  

 

Tables 

Table 1 Glossary 

Term Description  

Confounder  A common cause of both the exposure and outcome. Ignored confounding (measured or 
unmeasured) biases the exposure to outcome association.  

Estimand  The parameter to be estimated. For example, the population mean 𝜇 

Estimate The result of an estimator function. For example, the sample estimate  𝜇̂ 

Estimator  A function that provides an estimate of an estimand. For example, an estimator of the 
population mean would be 

ଵ

௡
∑ 𝑥௜

௡
௜ୀଵ  for 𝑛 measurements.  

Exposure  A phenotype which may cause an outcome trait (disease state or risk factor). In the manuscript 
often refers to mRNA expression, protein, or biomarker levels. 

Generalised least squares 
(GLS)   

Generalised least squares is an extension of ordinary least squares (linear regression) to 
account for correlation between variants (due to LD). In the manuscript GLS refers to a linear 
model regressing the variant to outcome association on the variant to exposure association 
with the intercept forced through the origin. A GLS with Egger correction (see MR-Egger) 
refers to a similar linear model with the intercept is a free parameter.  

Inverse variance weighted 
(IVW) 

The IVW is an IV-estimator assuming an absence of directional pleiotropy. Can be implement 
using a GLS with the intercept forced through the origin.  

Mendelian randomization  A study or principle that use genetic instrumental variables, often in a formal instrumental 
variable analysis.  
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Mendelian randomization for 
biomarker validation 

 

Drug target Mendelian 
randomization 

 

MR-Egger MR-egger is an IV-estimator which account for potential directional pleiotropy by allowing the 
intercept of an (weighted) OLS to differ from zero.  

Intermediate exposure or 
intermediate phenotype  

See exposure; Intermediate refers to the assumed position of the exposure between the 
genetic variant and the (outcome) trait. 

Instrument  Any variable that fulfils the three instrumental variable (IV) assumptions: 
1. The instrument is strongly associated with exposure  
2. The instrument is independent of observed and unobserved confounders of the 

exposure-outcome relation. 
3. Conditional on exposure and confounders, the instrument is independent of the 

outcome.  

Instrumental variable See instrumental variable 

Instrumental variable analysis  A method to estimate the causal effect of a potentially confounded exposure-outcome relation.  

Outcome  A disease state, risk factor, or general phenotype that is thought to be caused by an exposure 
or genetic variant.  

P-value as a random variable A p-value can be interpreted as a random variable, meaning that a single experiment can have 
a randomly high or low value (centred around an unknown mean, with unknown standard 
deviation). 

Pleiotropy  A genetic variant being associated with multiple phenotypes. Vertical pleiotropy refers to 
variants being associated to traits in the same pathway (or cascade), for example, PCSK9 
LDL-C  CHD. Horizontal pleiotropy occurs when a genetic variant is associated with the 
outcome of interest via direct pathway that is not mediated by the exposure; in the previous 
example this would be PCSK9 affecting CHD via a non-lipids pathway.  
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