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Abstract

Background and purpose

Handling missing values is a prevalent challenge in the analysis of clinical data. The rise

of data-driven models demands an efficient use of the available data. Methods to

impute missing values are thus crucial. Here, we developed a publicly available

framework to test different imputation methods and compared their impact in a typical

stroke clinical dataset as a use case.

Methods

A clinical dataset based on the 1000Plus stroke study with 380 completed-entries

patients was used. 13 common clinical parameters including numerical and categorical

values were selected. Missing values in a missing-at-random (MAR) and

missing-completely-at-random (MCAR) fashion from 0% to 60% were simulated and
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consequently imputed using the mean, hot-deck, multiple imputation by chained

equations, expectation maximization method and listwise deletion. The performance

was assessed by the root mean squared error, the absolute bias and the performance of a

linear model for discharge mRS prediction.

Results

Listwise deletion was the worst performing method and started to be significantly worse

than any imputation method from 2% (MAR) and 3% (MCAR) missing values on. The

underlying missing value mechanism seemed to have a crucial influence on the identified

best performing imputation method. Consequently no single imputation method

outperformed all others. A significant performance drop of the linear model started

from 11% (MAR+MCAR) and 18% (MCAR) missing values.

Conclusions

In the presented case study of a typical clinical stroke dataset we confirmed that listwise

deletion should be avoided for dealing with missing values. Our findings indicate that

the underlying missing value mechanism and other dataset characteristics strongly

influence the best choice of imputation method. For future studies with similar data

structure, we thus suggest to use the developed framework in this study to select the

most suitable imputation method for a given dataset prior to analysis.

Introduction 1

Missing values are a prevalent challenge in the analysis of clinical data [1–3]. Validated 2

guidelines for handling missing data are more important now than ever with the rise of 3

data-driven applications [4–8]. Here, an efficient utilization of the data is crucial in the 4

limited settings of usually fairly small medical datasets [9]. Additionally, while deletion 5

of patient entries with missing values (listwise deletion) is a common practice, it can 6

lead to biased results and is therefore highly discouraged [1, 10,11]. 7

An alternative approach is to apply imputation methods on the missing data [12,13]. 8

Imputation methods allow replacing missing values with substituted values that estimate 9

the true underlying value. Most commonly used methods in clinical datasets include 10
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simple imputation methods like mean imputation and hot-deck imputation (“sampling”) 11

as well as more complex algorithms like multiple imputation by chained equations 12

(MICE) [14] and expectation maximization (EM) using multiple imputation [15]. 13

However, there is a controversy regarding which imputation method should be 14

used [12,16,17]. More importantly, only few studies exist which assessed imputation 15

methods in the medical field [13,16–18]. This is also true in the stroke field. While 16

Young-Saver et al. investigated the imputation of stroke outcome data, to date no study 17

has compared and validated imputation methods for a typical clinical stroke dataset as 18

a whole [19]. 19

The objectives of this work were thus to 1) develop a publicly available framework 20

(https://github.com/tabeak/missing-value-analysis) which can identify the best 21

imputation method for a given tabular dataset and 2) to compare different imputation 22

method for handling missing data in clinical stroke dataset as a use case for the 23

framework. When comparing the different imputation methods, we assessed both how 24

much the imputed values differed from the ground truth as well as how the different 25

imputation methods influenced the performance of a data-driven predictive model. 26

Materials and methods 27

Patients 28

A clinical dataset based on the 1000Plus stroke study with 380 completed-entries of 29

acute stroke patients was used [20]. The study was approved by the institutional review 30

board of the Charité Universitätsmedizin Berlin. All patients gave their written 31

informed consent. Because of the sensitive nature of the data collected for this study, 32

requests to access the dataset from qualified researchers trained in human subject 33

confidentiality protocols may be sent to the institutional ethics commitee of Charité 34

Universitätsmedizin Berlin. 35

Data analysis 36

13 common clinical parameters were analyzed. Among them, seven were numerical: 37

hours-to-MRI, age, pre-stroke mRS, acute National Institutes of Health Stroke Scale 38
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(NIHSS), discharge NIHSS, discharge mRS and discharge 39

Trial-of-ORG-10172-in-Acute-Stroke-Treatment (TOAST). Six were categorical: sex, 40

treatment with tissue plasminogen activator (tPA), occlusion, hyperlipidemia, diabetes 41

and hypertonia. 42

Missing values from 0% to 60% were simulated following two different cases of 43

missing values: missing-at-random (MAR) and missing-completely-at-random (MCAR). 44

MAR means that the probability for a value missing depends on same values of other 45

observed variables. MCAR, on the other hand, describes the scenario that values are 46

missing completely at random. In contrast to MAR, there is no systematic reason for a 47

missing value and the probability for a value missing is the same for each value. 48

Performance was estimated for different imputation methods in two fashions: 1) Error 49

assessment using RMSE and absolute bias and 2) Performance assessment of stroke 50

discharge mRS. The imputation methods included 1) mean imputation, 2) hot-deck 51

imputation, 3) MICE and 4) multiple imputation by EM and 5) listwise deletion. 52

Error assessment 53

For the error assessment analysis, we chose two common measures for evaluating 54

imputation methods, RMSE and absolute bias [21]. In this analysis, the parameters 55

were split into numerical and categorical. For numerical parameters, the RMSE of the 56

normalized data is defined according to: 57

RMSE =
1

n

n∑
i=1

√
(Yi − Ŷi)2, (1)

where n is the number of imputed samples, Ŷi the estimated sample value and Yi the 58

true value. For categorical parameters, the RMSE corresponds to the percentage of 59

misclassified values: 60

% of misclassified samples =
number of misclassified samples

total number of samples
, (2)

As a second error assessment, the mean absolute bias was calculated. It is defined as: 61
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bias =
1

n

n∑
i=1

∣∣∣∣∣∣
 m∑

j=1

Ŷj


i

− Yi

∣∣∣∣∣∣ , (3)

where m is the number of iterations for each imputation, i.e. how often the value 62

was imputed. The absolute bias was then averaged over all imputed samples n. 63

Both RMSE as well as the absolute bias was assessed for each variable at a time and 64

then averaged for each parameter-type (i.e. numerical vs. categorical). 65

Predictive model analysis 66

The second part of the analysis included the incorporation of a supervised predictive 67

model, the generalized linear model (GLM). We constructed a model predicting the 68

modified Rankin Scale (mRS) at discharge, which is a measure of the early clinical 69

outcome after stroke. It can take values from 0 (no symptoms) to 6 (death). The mRS 70

was split into 0-2 (good outcome) and 3-6 (bad outcome) [4, 22]. Other discharge 71

parameters (discharge NIHSS and discharge TOAST) were excluded for this analysis to 72

maintain the integrity of the model. This predictive modelling framework is used as a 73

standard method for this use case [23–25]. As the MAR mechanism deletes parameter 74

values with respect to other parameter’s values, the mechanism could only be simulated 75

for up to 9% missing values. Therefore, missing values from 10% to 60% are deleted 76

combining the MAR mechanism with the MCAR mechanism. For simplicity, this 77

mechanism is hence termed “MAR+MCAR” throughout this work. 78

Receiver operating characteristics (ROC) analysis was applied to assess the model 79

performance and the imputation methods were then compared based on the area under 80

the curve (AUC). Further, the methodologies were compared to listwise deletion. 81

Listwise deletion removes every patient that has at least one missing value and thus, 82

reduces the size of the dataset. Due to this limitation, the GLM could only be 83

computed for up to 10% missing values for this sub-analysis. 84

Statistical analysis 85

Both the error and the predictive model analyses were repeated 100 times for randomly 86

simulated missing values. For the RMSE, each imputation method was compared to 87
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each of the other methods using the paired Wilcoxon signed-rank test for each respective 88

percentage value. The same analysis was conducted for performance assessment of the 89

predictive model. To calculate the mean absolute bias, the 100 repeated imputations are 90

averaged and then compared to the true value. This results in one value per percentage. 91

Thus, a statistical analysis cannot be performed for each percentage. 92

Finally, the threshold of the percentage of missing values to significantly impair 93

performance was determined for the different imputation methods: The performance of 94

the completed-entry dataset (0% missing values) was compared to the performance for 95

each percentage of missing value using the paired Wilcoxon signed-rank test. The 96

threshold was identified when the performance drop was found to be significant 97

according to the standard value of p < 0.05. 98

Results 99

Clinical data 100

380 acute stroke patients had complete entries for the 13 clinical parameters. The 101

median age was 72 and the median NIHSS score was 3. The distribution of the clinical 102

parameters is given in Table 1. 103

Error assessment 104

Figs 1 to 4 show the RMSE and absolute bias for increasing MAR and MCAR missing 105

values. The figures are separated into the averaged and the accumulated values of both 106

numerical (Figs 1 and 4) and categorical data (Figs 2 and 4). While the accumulated 107

error increases with larger percentages of missing values, the averaged RMSE and 108

absolute bias remains relatively steady. No single imputation method consistently 109

outperformed all other methods. 110

The RMSE is shown in Figs 1 and 2. For the numerical data MICE and mean 111

imputation show the lowest error rate for MAR missing values and mean imputation for 112

MCAR missing values (Fig 1). For the categorical data the lowest percentage of 113

misclassified samples could be observed for mean imputation (Fig 2). For MAR missing 114

values the mean imputation appears less steady and stable compared to the MCAR 115
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Table 1. Original distribution of clinical parameters.

Clinical parameter Value
median hours-to-MRI (IQR) 11 (15)
median age (IQR) 72 (15)
median mRS prestroke (IQR) 0 (1)
median acute NIHSS (IQR) 3 (4.25)
median discharge NIHSS (IQR) 1 (3)
median discharge mRS (IQR) 1 (2)
median discharge TOAST (IQR) 1 (1)
females (%)/ males (%) 247 (65) / 133 (35)
tPA treatment yes / no (%) 93 (24.47) / 287 (75.53)
occlusion yes / no (%) 219 (57.63) / 161 (42.37)
hyperlipidemia yes / no (%) 224 (58.95) / 156 (41.05)
diabetes yes / no (%) 286 (75.26) / 94 (24.74)
hypertonia yes / no (%) 309 (81.32) / 71 (18.68)

Median values and IQR of the numerical clinical parameters hours-to-MRI, age, mRS
pre-stroke, acute NIHSS, discharge NIHSS, discharge mRS and discharge TOAST. Total
amount of patients and percentages of the categorical parameters sex, treatment with
tPA, occlusion, hyperlipidemia, diabetes and hypertonia. (Abbreviations: IQR =
interquartile range, MRI = magnetic resonance imaging, mRS = modified Rankin scale,
NIHSS = National Institutes of Health Stroke Scale, TOAST =
Trial-of-ORG-10172-in-Acute-Stroke-Treatment, tPA = tissue plasminogen activator).

Fig 1. Mean RMSE for increasing percentages of missing data for
numerical parameters. Mean RMSE for increasing missing values from 0% to 60%
using mean imputation (blue), hot-deck imputation (olive), MICE (purple) and EM
(red) for numerical data. (A) describes the accumulated average RMSE if missing values
are generated in a MAR fashion, (B) in a MCAR fashion. (C) shows the average RMSE
if missing values are generated using the MAR mechanism and (D) the MCAR
mechanism. (Abbreviations: EM = expectation maximization, MAR =
missing-at-random, MCAR = missing-completely-at-random, MICE = multiple
imputation by chained equations, RMSE = root mean squared error)

Fig 2. Mean percentage of misclassified samples for increasing percentages
of missing data for categorical parameters. Mean percentage of misclassified
samples for increasing missing values from 0% to 60% using mean imputation (blue),
hot-deck imputation (olive), MICE (purple) and EM (red) for categorical data. (A)
describes the accumulated average percentage of misclassified samples if missing values
are generated in a MAR fashion, (B) in a MCAR fashion. (C) shows the average
percentage of misclassified samples if missing values are generated using the MAR
mechanism and (D) the MCAR mechanism. (Abbreviations: EM = expectation
maximization, MAR = missing-at-random, MCAR = missing-completely-at-random,
MICE = multiple imputation by chained equations)

missing values. 116

Both mean imputation and MICE show a significantly lower RMSE than hot-deck 117

and EM for numerical data in the MAR type-case (p < 0.05). For MCAR missing 118

values as well as MAR missing values on categorical data mean imputation in terms of 119
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Fig 3. Mean absolute bias for increasing percentages of missing data for
numerical parameters. Mean absolute bias for increasing missing values from 0% to
60% using mean imputation (blue), hot-deck imputation (olive), MICE (purple) and
EM (red) for numerical data. (A) describes the accumulated average bias if missing
values are generated in a MAR fashion, (B) in a MCAR fashion. (C) shows the average
bias if missing values are generated using the MAR mechanism and (D) the MCAR
mechanism. Note that the error margin in (C) and (D) corresponds to the standard
deviation of the samples estimates and not the bias. (Abbreviations: EM = expectation
maximization, MAR = missing-at-random, MCAR = missing-completely-at-random,
MICE = multiple imputation by chained equations)

Fig 4. Mean absolute bias for increasing percentages of missing data for
categorical parameters. Mean absolute bias for increasing missing values from 0% to
60% using mean imputation (blue), hot-deck imputation (olive), MICE (purple) and
EM (red) for categorical data. (A) describes the accumulated average bias if missing
values are generated in a MAR fashion, (B) in a MCAR fashion. (C) shows the average
bias if missing values are generated using the MAR mechanism and (D) the MCAR
mechanism. Note that the error margin in (C) and (D) corresponds to the standard
deviation of the samples estimates and not the bias. (Abbreviations: EM = expectation
maximization, MAR = missing-at-random, MCAR = missing-completely-at-random,
MICE = multiple imputation by chained equations)

RMSE performed significantly better than the other imputation methods (p < 0.05). 120

Figs 3 and 4 show the absolute bias. For numerical data MICE and EM showed the 121

lowest absolute bias in the MAR case and mean and hot-deck imputation in the MCAR 122

case. Mean imputation showed the lowest bias for categorical data for both MAR and 123

MCAR. The mean imputation yielded less stable results for categorical data compared 124

to numerical data. 125

Predictive model analysis 126

Fig 5 shows the performance of the GLM for an increasing amount of missing values 127

that were generated in a MAR+MCAR fashion. Generally, the more values were 128

imputed, the lower the resulting performance. The best overall performance was yielded 129

by mean imputation (Fig 5A). Compared to the other imputation methods, this 130

difference is significant only in the range of 25% to 45% missing values (Fig 5C). 131

Listwise deletion showed the lowest performance compared to all other imputation 132

methods (Fig 5B). Starting from 2% missing values every other imputation method 133

performed significantly better than listwise deletion (Fig 5D). 134

The completed-entry model (0% missing values) showed higher AUC values 135

compared to all imputation methods. The difference started to be significant for the 136
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Fig 5. GLM performance on the dataset with increasing percentages of
MAR+MCAR missing values and comparison of imputation methods with
listwise deletion and mean imputation. (A) and (B) show the predictive model
performance in terms of AUC for increasing MAR+MCAR missing values from range
0% to 60% and 0% to 10% respectively using mean (blue), hot-deck imputation (olive),
MICE (purple), EM imputation (red) and listwise deletion (green). The plots in the
bottom (C) and (D) show the corresponding p values of the different imputation
methods compare to mean imputation (C) and listwise deletion (D) using a paired
Wilcoxon signed-rank test. The horizontal dashed black line indicates 0.05, the
threshold of significance for the p values. (Abbreviations: AUC = area under the curve,
GLM = generalized linear model, EM = expectation maximization, MAR =
missing-at-random, MICE = multiple imputation by chained equations)

MAR case-type between 2% to 3% missing values. From 11% on every model is 137

significantly worse than the complete-entry model. 138

Similar results could be observed for MCAR missing values (Fig 6). The more values 139

imputed, the lower the resulted AUC is. Mean imputation yielded the best performance, 140

yet significance was shown only for 45% missing values and above (Figs 6A and 6C). 141

Listwise deletion performed significantly lower than all other imputation methods 142

starting from 3% missing values (Fig 6D). 143

Fig 6. GLM performance on the dataset with increasing percentages of
MCAR missing values and comparison of imputation methods with listwise
deletion and mean imputation. (A) and (B) show the predictive model
performance in terms of AUC for increasing MCAR missing values from range 0% to
60% and 0% to 10% respectively using mean (blue), hot-deck imputation (olive), MICE
(purple), EM imputation (red) and listwise deletion (green). The plots in the bottom
(C) and (D) show the corresponding p values of the different imputation methods
compare to mean imputation (C) and listwise deletion (D) using a paired Wilcoxon
signed-rank test. The horizontal dashed black line indicates 0.05, the threshold of
significance for the p values. (Abbreviations: AUC = area under the curve, GLM =
generalized linear model, EM = expectation maximization, MCAR =
missing-completely-at-random, MICE = multiple imputation by chained equations)

For the MCAR case-type, the completed-entry model performed the best as well. 144

The first significant AUC value was for 1% missing values. Starting from 18% every 145

model was significantly worse than the complete-entry model. 146

Discussion 147

In the present study, we developed a publicly available framework to investigate 148

different imputation methods for handling missing values and tested it in a clinical 149
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stroke dataset as a use case. The utilized dataset 1000Plus represents a typical dataset 150

in stroke regarding size and recorded values. For the predictive model, the results show 151

that listwise deletion performs significantly worse than imputation methods starting 152

from a low percentage (2% for MAR and 3% for MCAR). Additionally, our results 153

indicate that for this type of data you should not impute data above 10% 154

(MAR+MCAR) and 17% (MCAR). For the error assessment no method outperformed 155

all other methods for every analysis. Furthermore, it seems to be crucial which missing 156

value mechanism is underlying in the dataset. 157

Listwise deletion is still commonly practiced yet highly discouraged [1, 10]. Our 158

results corroborate this notion and strongly suggest to use imputation methods. The 159

performance of our predictive model started to drop significantly already when only 2% 160

of the values were missing using listwise deletion. This implies that the available 161

incomplete patient information still adds crucial value to the predictive model and 162

should not be neglected. 163

Our results do not provide a strict recommendation for one imputation method. 164

While mean imputation seemed to show the lowest RMSE and highest performance in 165

terms of AUC, these results should be interpreted with caution. Mean imputation is a 166

method that aims to reduce the RMSE, thus this measurement is biased towards mean 167

imputation. Therefore, we additionally compared the methodologies using the absolute 168

bias. Here, mean imputation performs well for categorical data as well as numerical 169

data with MCAR missing values. Looking at the error assessment for categorical data, 170

however, we observed that mean imputation performed less robustly. In the particular 171

case of categorical data, mean imputation means imputing the value that occurs most 172

often in the remaining dataset. Hence, the imputation method highly depends on which 173

category the missing value belonged to. The resulting error is then less stable and more 174

easily corrupted by the missing value pattern. 175

In the predictive model analysis, mean imputation showed significantly better results 176

than other imputation methods in the range of 25% to 45% (MAR+MCAR) and 45% to 177

60% (MCAR) missing values. For the given dataset we establish a threshold of 11% 178

(MAR+MCAR) and 18% (MCAR) over which imputation of missing values is 179

discouraged. Consequently, the significant improvement of mean imputation is a priori 180

not within the practical range where values should be imputed [26,27]. 181
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For numerical data in the MAR case-type, we found MICE and EM to show the 182

lowest absolute bias. In other studies, complex algorithms like MICE and EM also 183

appeared to be superior to seemingly old-fashioned imputation methods like mean or 184

hot-deck imputation [16,17,26]. In the case of numerical data and MCAR missing 185

values, however, mean and hot-deck imputation showed the lowest bias. It seems 186

unintuitive that simple algorithms like mean and sampling as the best performing 187

imputation methods. The higher bias for MCAR compared to simpler imputation 188

methods might, however, be explained by inherent characteristics of the more 189

sophisticated methods. The MICE algorithm builds upon strong dependencies between 190

the covariates. The missing value is estimated based on the corresponding values of the 191

other parameters. When removing values in a completely random fashion, i.e. MCAR, 192

the dependencies between the covariates might not be as strong anymore in our dataset. 193

Thus, it is hard to reconstruct. If values are missing in a non-completely random 194

fashion, i.e. MAR, there is pattern for missingness available that complex algorithms 195

like MICE can learn from. The same holds true for the EM. The EM algorithm 196

estimates the underlying log likelihood of the complete dataset [28,29]. Given this 197

distribution, the missing values are approximated. In the MAR case unlike MCAR, the 198

existing pattern of missing values might help to capture the likelihood to yield a good 199

estimation. To conclude, the underlying missing value mechanism might be very crucial 200

regarding which imputation method is the most suitable for the given dataset. 201

In the error assessment, we observed that the error rate was quite constant for an 202

increasing percentage of missing data. While appearing counterintuitive on first sight, 203

the explanation for this phenomenon is simple: For each imputation method, we assess 204

a value from a distribution that estimates the true underlying distribution. When 205

drawing an increasing number of samples from both distributions, the difference 206

between the values drawn from the two distributions remains the same on average. 207

Thus, the error rate does not increase for more missing samples. Nevertheless, when 208

looking at the accumulated error, we can see that for each imputed sample the new 209

error is added so that the error rate is in fact increasing. 210

In the predictive model performance assessment, however, we see a different 211

behavior. With increasing amount of missing values we can see decreasing predictive 212

performance [30–32]. Depending on the size of the dataset and the number of covariates, 213
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the performance drops at a certain threshold. Thus, the significant decrease in 214

performance can occur at a different percentage of missing values. In our study with 380 215

patients and 10 predictive parameters, the significant performance drop was measured 216

starting from 11% missing values for MAR+MCAR missing values and 18% for MCAR 217

respectively. Therefore, we suggest to only use imputation methods until 10% missing 218

values. Our results confirm findings from the literature identifying numbers in a similar 219

range of missing value percentages leading to a performance drop [26,27]. 220

Importantly, our results implicate that there is no generally “best” imputation 221

method. Our findings suggest that – under certain circumstances – simple mean 222

imputation might be superior to the other sophisticated imputation techniques. In other 223

cases, i.e. MAR as the underlying missing value mechanism, MICE or EM performed 224

better. This is corroborated also in theory by the ”no free lunch theorem” [33,34]. The 225

theorem states that there is no algorithm that performs best in all tasks. The good 226

performance of one algorithm in one task comes with the cost of low performance in 227

another task [33]. Since the imputation methods are in fact algorithms and the different 228

dataset can be seen as tasks, the theorem could apply here as well. Hence, our results 229

are specific for our dataset. Distinct characteristics of any other given dataset like its 230

size, mechanism of data missingness and the type of features will influence which 231

imputation method should be preferred. Thus, we make our framework publicly 232

available (https://github.com/tabeak/missing-value-analysis). It can easily be 233

used and adapted by other researchers to test their own datasets and identify the 234

optimal imputation method for their data. Especially given the often limited size of 235

datasets in medical applications, such an approach might allow increasing the validity of 236

statistical testing and predictive modeling. Finally, our work is strongly encouraging 237

further research on the performance of imputation methods in other tabular datasets. 238

Our study has several limitations. First of all, we could simulate MAR missing values 239

only up to 9% due to mathematical constraints on covariates dependencies and the 240

limited size of our dataset. Hence, our analysis mostly relates to mixed MAR+MCAR 241

and MCAR mechanisms. The real underlying mechanism for missing values in clinical 242

stroke datasets remains unknown. It is likely, however, that the true missing data 243

mechanism is a mixture of MAR and MCAR as missing values can occur systematically 244

as well as randomly in medical datasets. Secondly, due to data availability, we trained 245
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our predictive model on discharge mRS and not on final three months mRS, which is 246

the clinically more useful measure. However, given the methodological nature of our 247

study, the predictive model is only exemplary to show the impact of different methods 248

dealing with missing data. The impact of missing data and different imputation 249

methods on models predicting three months mRS must be elucidated in future studies. 250

Conclusion 251

We developed a publicly available R framework to evaluate different imputation 252

methods and tested it on a typical clinical stroke dataset as a use case. Our main 253

finding was that listwise deletion should not be performed and the choice of imputation 254

methods might depend highly on the underlying missing value mechanism and other 255

characteristics of a given dataset. Thus, we suggest that the optimal imputation method 256

is dataset-dependent and we strongly encourage other researchers to adapt our openly 257

available framework to their own datasets prior to analysis. 258
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