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Abstract 

Background: Type 2 diabetes develops for many years before diagnosis. We aimed to reveal 

early metabolic features characterising liability to adult disease by examining genetic liability 

to adult type 2 diabetes in relation to detailed metabolic traits across early life. 

Methods and Findings: Data were from up to 4,761 offspring from the Avon Longitudinal 

Study of Parents and Children cohort. Linear models were used to examine effects of a 

genetic risk score (GRS, including 162 variants) for adult type 2 diabetes on 4 repeated 

measures of 229 traits from targeted nuclear magnetic resonance (NMR) metabolomics. 

These traits included lipoprotein subclass-specific cholesterol and triglyceride content, amino 

and fatty acids, inflammatory glycoprotein acetyls, and others, and were measured in 

childhood (age 8y), adolescence (age 16y), young-adulthood (age 18y), and adulthood (age 

25y). For replication, two-sample Mendelian randomization (MR) was conducted using 

summary data from genome-wide association studies of metabolic traits from NMR in an 

independent sample of adults (N range 13,476 to 24,925; mean (SD) age range 23.9y (2.1y) 

to 61.3y (2.9y)). Among ALSPAC participants (49.7% male), the prevalence of type 2 

diabetes was very low across time points (< 5 cases when first assessed at age 16y; 7 cases 

(0.4%) when assessed at age 25y). At age 8y, type 2 diabetes liability (per SD-higher GRS) 

was associated with lower lipids in high-density lipoprotein (HDL) particle subtypes – e.g. -

0.03 SD (95% CI = -0.06, -0.003; P = 0.03) for total lipids in very-large HDL. At age 16y, 

associations remained strongest with lower lipids in HDL and became stronger with pre-

glycemic traits including citrate (-0.06 SD, 95% CI = -0.09, -0.02; P = 1.41x10-03) and with 

glycoprotein acetyls (0.05 SD, 95% CI = 0.01, 0.08; P = 0.01). At age 18y, associations were 

stronger with branched chain amino acids including valine (0.06 SD; 95% CI = 0.02, 0.09; P 

= 1.24x10-03), while at age 25y, associations had strengthened with VLDL lipids and 

remained consistent with previously altered traits including HDL lipids. Results of two-

sample MR in an independent sample of adults indicated persistent patterns of effect of type 

2 diabetes liability, with higher type 2 diabetes liability positively associated with VLDL 

lipids and branched chain amino acid levels, and inversely associated with HDL lipids – 

again for large and very large HDL particularly (-0.004 SD (95% CI = -0.007, -0.002; P = 

8.45x10-04) per 1 log odds of type 2 diabetes for total lipids in large HDL). Study limitations 

include modest sample sizes for ALSPAC analyses and limited coverage of protein and 

hormonal traits; insulin was absent as it is not quantified by NMR and not consistently 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2019. ; https://doi.org/10.1101/767756doi: bioRxiv preprint 

https://doi.org/10.1101/767756
http://creativecommons.org/licenses/by/4.0/


 

3 

 

available at each time point. Analyses were restricted to white-Europeans which reduced 

confounding by population structure but limited inference to other ethnic groups.  

Conclusions: Our results support perturbed HDL lipid metabolism as one of the earliest 

features of type 2 diabetes liability which precedes higher branched chain amino acid and 

inflammatory glycoprotein acetyl levels. This feature is apparent in childhood as early as age 

8y, decades before the clinical onset of disease.  
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Author summary 

Why was this study done? 

• Type 2 diabetes develops for many years before diagnosis. Clinical disease is 

characterised by numerous metabolic perturbations that are detectable in circulation, 

but which of these reflect the developmental stages of type 2 diabetes – as opposed to 

independent causes of type 2 diabetes or markers of other disease processes – is 

unknown. Revealing traits specific to type 2 diabetes development could inform the 

targeting of key pathways to prevent the clinical onset of disease and its 

complications. 

• Genetic liability to type 2 diabetes is less prone to confounding than measured type 2 

diabetes or blood glucose and may help reveal early perturbations in the blood that 

arise in response to type 2 diabetes liability itself. 

 

What did the researchers do and find? 

• We examined effects of genetic liability to adult type 2 diabetes, based on a genetic 

risk score including 162 variants, on detailed metabolic traits measured on the same 

individuals across four stages of early life – childhood (age 8y), adolescence (age 

16y), young-adulthood (age 18y), and adulthood (age 25y).  

• We found that higher type 2 diabetes liability was associated most consistently across 

ages with lower lipid content in certain subtypes of HDL particles. Effects were more 

gradual on higher lipid content in VLDL particles and on higher branched chain 

amino acid and inflammatory glycoprotein acetyl levels. 

 

What do these findings mean? 

• Signs of type 2 diabetes liability are detectable in the blood in childhood, decades 

before the disease becomes noticeable. These signs, taken to reflect the early features 

of, or coincident with, disease, likely involve lower lipid content in HDL particles, 

followed by higher levels of branched chain amino acids and inflammation. 

• Genetic risk scores for adult diseases can be integrated with metabolic measurements 

taken earlier in life to help to reveal the timing at which signs of disease liability 

become visible and the traits most central to its development.  
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Introduction 

 

Type 2 diabetes is a metabolic disease affecting more than 400 million people 

globally [1]. Its incidence is driven largely by increased adiposity [2], a strong causal risk 

factor [3,4], yet the difficulty of achieving and maintaining non-surgical weight loss makes 

disease management a lifelong and expensive task [5]. This is particularly problematic 

considering that potentially half of those living with type 2 diabetes are undiagnosed and the 

future burden is expected to be greatest in lower income countries [1]. There is therefore a 

clear need to minimise the impact of type 2 diabetes on individuals and populations, and this 

requires biological understanding of the disease at its very earliest stages.   

Type 2 diabetes is typically diagnosed when blood glucose levels exceed 7 mmol/l in 

the fasting state or 11.1 mmol/l in the post-challenge state, or when glycated haemoglobin 

levels exceed 6.5% [6], yet glucose spikes relatively late in the disease process. Repeat 

clinical measures from the Whitehall II cohort study suggest that insulin sensitivity starts 

declining a decade before glucose changes are detectable [7]. Cohort studies with targeted 

metabolomic measurements also observe associations of numerous subclinical traits with 

lower insulin sensitivity including higher branched chain and aromatic amino acid 

concentrations; higher fatty acid and inflammatory glycoprotein concentrations; and elevated 

lactate and pyruvate levels [8-11]. Relations with ketone bodies are less clear, since higher 

levels are associated with both higher insulin sensitivity [9] and higher type 2 diabetes risk 

[12]. Hyperglycemia also associates strongly with cholesterol and triglyceride content across 

lipoprotein subclasses [13,14]. Whether such trait alterations reflect true developmental 

stages of type 2 diabetes is unclear because of inherent confounding by other disease 

processes.  

An alternative approach is to examine genetic liability to type 2 diabetes – rather than 

measured type 2 diabetes or hyperglycaemia – in relation to metabolic traits, which could 

help identify perturbations specific to the development of type 2 diabetes itself – i.e. its early 

metabolic features [15,16]. The few studies that have investigated this suggest effects of type 

2 diabetes liability on cholesterol and triglycerides in high-density lipoprotein (HDL) and 

very-low density lipoprotein (VLDL) particles [17], amino acids [18,19], and ketone bodies 

[12]. Most used a small set of genetic variants from early genome-wide association studies 

(GWAS) and did not examine their aggregate influence, and all relied on one-off measures of 
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metabolic traits among middle-to-older-aged adults which gives little insight as to when in 

the life course metabolic alterations first occur. Examining genetic liability to type 2 diabetes 

in relation to repeated measures of metabolic traits starting in childhood could reveal the 

existence and timing of subclinical trait perturbations most central to type 2 diabetes 

development.  

We aimed in this study to reveal early metabolic features characterising a genetic 

liability to adult type 2 diabetes. Using birth cohort study data, we examined genetic liability 

to adult type 2 diabetes in relation to detailed traits from targeted metabolomics among the 

same individuals at four key stages of early life – childhood (age 8y), adolescence (age 16y), 

young adulthood (age 18y), and adulthood (age 25y). The relative importance of traits was 

gauged by comparing patterns and magnitudes of genetic effects across time points. For 

replication analyses, two-sample Mendelian randomization [20] was also conducted in an 

independent sample of adults to confirm the persistence of any metabolic features of disease 

liability observed in early life.     
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Methods 

 

Study populations 

 

Data were from offspring participants of the Avon Longitudinal Study of Parents and 

Children (ALSPAC), a population-based birth cohort study in which 14,541 pregnant women 

with an expected delivery date between 1 April 1991 and 31 December 1992 were recruited 

from the former Avon county of southwest England [21]. Since then, 13,988 offspring alive 

at one year have been followed repeatedly with questionnaire- and clinic-based assessments 

[22], with an additional 811 children enrolled over the course of the study. Offspring were 

considered for the current analyses if they had no older siblings in ALSPAC (202 excluded) 

and of a white-European ethnicity (604 excluded) to reduce confounding of associations by 

high relatedness and ancestral population structure. 

Written informed consent was provided and ethical approval was obtained from the 

ALSPAC Law and Ethics Committee and the local research ethics committee. The study 

website contains details of all available data through a fully searchable data dictionary and 

variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/). 

 

Assessment of genetic liability to adult type 2 diabetes 

 

Genotype was assessed using the Illumina HumanHap550 quad chip platform. Quality 

control measures included exclusion of participants with sex mismatch, minimal or excessive 

heterozygosity, disproportionately missing data, insufficient sample replication, cryptic 

relatedness, and non-European ancestry. Imputation was performed using the Haplotype 

Reference Consortium (HRC) panel. Since this study aims to address causation (in the 

direction of type 2 diabetes liability to metabolic traits), not prediction, genetic liability to 

type 2 diabetes was based on genetic variants associated with type 2 diabetes case status at 

genome-wide significance (P-value < 5.00x10-8) in the largest GWAS to date which 

identified up to 403 independent polymorphisms among adults (74,124 cases and 824,006 

controls) of white-European ethnicity, explaining 18% of variance [23]. This set of variants 
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was refined by excluding variants identified only when adjusting for body mass index and by 

pruning-out those variants that were in linkage disequilibrium based on R2 > 0.001 (retaining 

those SNPs with the lowest P-values) using standard packages within the MR-Base platform 

(http://www.mrbase.org/beta) [24]. This left 167 genetic variants highly independently 

associated with type 2 diabetes, 162 of which were available in imputed ALSPAC genotype 

data post quality control (Supplementary (S) 1 Table). This set was combined into a genetic 

risk score (GRS) using PLINK 1.9 software, specifying the effect (type 2 diabetes raising) 

allele and coefficient (odds ratio) from the source GWAS as external weights. Scoring was 

done by multiplying the number of effect alleles (or probabilities of effect alleles if imputed) 

at each SNP (0, 1, or 2) by its weighting, summing these, and dividing by the total number of 

SNPs used. The score therefore reflects the average per-SNP effect on type 2 diabetes. 

 

Assessment of metabolic traits 

 

Offspring participants provided non-fasting blood samples during a clinic visit while 

aged approximately 8y, and fasting blood samples from clinic visits while aged 

approximately 16y, 18y, and 25y. Proton nuclear magnetic resonance (1H-NMR) 

spectroscopy as part of a targeted metabolomics platform [13,25] was performed using 

EDTA-plasma samples (stored at or below -70 degrees Celsius before processing) to quantify 

229 metabolic traits (149 concentrations plus 80 ratios). These included the concentration and 

size of lipoprotein subclass particles and their cholesterol and triglyceride content, 

apolipoproteins, fatty acids, pre-glycemic factors including lactate and glucose, amino acids, 

ketone bodies, and inflammatory glycoprotein acetyls.     

 

Assessment of adiposity and type 2 diabetes status 

 

For descriptive purposes, body mass index (BMI) was calculated at each time point as 

weight (kg) divided by squared height (m2) based on clinic measures of weight to the nearest 

0.1 kg using a Tanita scale and height measured in light clothing without shoes to the nearest 

0.1 cm using a Harpenden stadiometer. Type 2 diabetes status was not assessed at age 8y 
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because blood glucose was not quantified based on fasting samples and no data were 

collected regarding physician diagnosis. Type 2 diabetes was defined at age 16y as a clinic 

fasting glucose ≥ 7 mmol/l, and at age 18y and 25y as a clinic fasting glucose ≥ 7 mmol/l or 

reported physician diagnosis of type 2 diabetes by that age.  

 

Statistical approach 

 

In the first set of analyses, separate linear regression models with robust standard 

errors were used to estimate coefficients and 95% confidence intervals for associations of the 

type 2 diabetes GRS (in standard deviation (SD) units) with each metabolic trait measured at 

age 8y (also in SD units) as dependent variables, adjusted for sex and age at the time of 

metabolic trait assessment. These were repeated for metabolic traits measured at age 16y, 

18y, and 25y. Effect estimates are interpreted within a ‘reverse Mendelian randomization’ 

framework [15] and are taken to reflect ‘metabolic features’ of liability to type 2 diabetes (not 

‘metabolic causes’ of type 2 diabetes). To estimate the magnitude of associations at the 

extremes of genetic risk, models were repeated using the upper vs. lower quartile of an 

unstandardized type 2 diabetes GRS. For the purpose of comparing evidence of linear change 

in coefficients across time points, we ran separate linear mixed models utilising repeated 

measures of each metabolic trait and examined P-values from an interaction term between the 

type 2 diabetes GRS and mean age from these models at each time point. All models were 

additionally run using original (non-SD; mostly mmol/l) units to aid clinical interpretation 

and external comparisons.  

To allow full use of measured data, the aforementioned analyses were first conducted 

using maximum numbers of participants with N varying across ages and between traits. 

Participants were eligible for inclusion in analyses at any age if they had data on genotype, 

sex, age, and at least 1 metabolic trait. This resulted in 6,218 eligible participants, including 

up to 4,761, 2,928, 2,612 and 2,560 participants at age 8y, 16y, 18y and 25y, respectively. 

Analyses were repeated using a consistent sample of participants with complete data on 

genotype, sex, age, and each metabolic trait at each time point. These sampling approaches 

are illustrated in Figure 1. 
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Figure 1 Selection of participants into analyses 
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Additional analyses 

 

We conducted two-sample Mendelian randomization (MR) analyses to estimate the 

metabolic features of type 2 diabetes in an independent sample of adults. The exposure in this 

analysis (liability to type 2 diabetes) was the 167 SNP GRS as previously described 

(Supplementary (S) 1 Table). Outcome data were GWAS summary data on 123 metabolic 

traits quantified using the same NMR metabolomics platform as used in present ALSPAC 

analyses [26], measured on between 13,476 and 24,925 adults of European ancestry [26]. 

Across included studies, mean (SD) age ranged from 23.9y (2.1y) to 61.3y (2.9y) and female 

sex ranged from 37% to 64%. Three statistical methods were used to generate MR estimates 

using the TwoSampleMR R package within the MR-Base platform [24]: random-effects 

inverse variance weighted (IVW) [24], MR-Egger [27] and weighted median [28] models, 

which each make differing assumptions about directional pleiotropy [29]. Consistent 

estimation of effect using different MR models was considered to strengthen evidence against 

the null and reduce the probability of type 1 errors. These estimates are interpreted as the SD-

unit difference in metabolic trait per 1 log odds of type 2 diabetes. 

 

Seventeen principal components explain 95% of the variance in these highly 

correlated metabolic traits based on previous ALSPAC analyses [30]. These can be used to 

correct nominal significance thresholds for multiple testing using the Bonferroni method (e.g. 

alpha=0.05/17). Since our study aims align more with (non-threshold-based) statistical 

estimation than (threshold-based) statistical discovery, we provide exact P-values and focus 

on effect size and precision [31,32]. Analyses were conducted using Stata 15.1 (StataCorp, 

College Station, Texas, USA). 
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Results 

 

Sample characteristics 

 

As shown in Table 1, the sample of eligible participants was 49.7% male with 

progressively higher BMI at later ages; mean (SD) BMI in kg/m2 was 16.2 (2.0), 21.4 (3.5), 

22.7 (4.0), and 24.8 (4.9) at ages 8y, 16y, 18y, and 25y, respectively. Type 2 diabetes 

prevalence was very low across time points, with < 5 cases at age 16y, 6 cases (0.2%) at age 

18y, and 7 cases (0.4%) at age 25y. Summary metabolic trait levels were generally stable 

across time points, with a small reduction in mean (SD) glucose from 4.2 (0.5) mmol/l at age 

8y, to 3.9 (0.4) mmol/l at age 25y. Participants who were ineligible for any analysis had 

slightly higher BMI than those who were eligible – e.g. 25.4 kg/m2 vs. 24.8 kg/m2 at age 25y, 

respectively. Type 2 diabetes prevalence and summary metabolic trait levels were also 

comparable (S2 Table). 
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Table 1 Summary metabolic traits at different early life stages among 6,218 ALSPAC offspring eligible for inclusion in ≥ 1 analysis 
     
 Childhood Adolescence Young adulthood Adulthood 
     
Age – mean (SD) 7.5 (0.3) 15.5 (0.3) 17.8 (0.4) 24.5 (0.8) 
Male – % (N) 49.7 (3,089) 49.7 (3,089) 49.7 (3,089) 49.7 (3,089) 
Body mass index (kg/m2) – mean (SD) 16.2 (2.0) 21.4 (3.5) 22.7 (4.02) 24.8 (4.9) 
Has type 2 diabetes – % (N) NA NA (< 5) 0.2 (6) 0.4 (7) 
Lipid traits     
Cholesterol (mmol/l) – mean (SD)  3.9 (0.6) 3.5 (0.6) 3.5 (0.7) 3.6 (0.8) 
Cholesterol in VLDL (mmol/l) – mean (SD) 0.6 (0.2) 0.5 (0.1) 0.6 (0.2) 0.4 (0.2) 
Cholesterol LDL (mmol/l) – mean (SD)  1.2 (0.3) 1.04 (0.3) 1.03 (0.4) 1.2 (0.4) 
Cholesterol HDL (mmol/l) – mean (SD)  1.5 (0.2) 1.4 (0.2) 1.4 (0.2) 1.4 (0.3) 
Total triglycerides (mmol/l) – mean (SD)  1.1 (0.4) 0.9 (0.3) 0.9 (0.3) 0.9 (0.4) 
Triglycerides in VLDL (mmol/l) – mean (SD) 0.7 (0.3) 0.6 (0.3) 0.6 (0.3) 0.6 (0.4) 
Triglycerides in LDL (mmol/l) – mean (SD) 0.1 (0.1) 0.1 (0.04) 0.1 (0.1) 0.1 (0.04) 
Triglycerides in HDL (mmol/l) – mean (SD) 0.1 (0.02) 0.1 (0.02) 0.1 (0.02) 0.1 (0.03) 
Pre-glycemic traits     
Lactate (mmol/l) – mean (SD) 1.4 (0.5) 1.3 (0.6) 1.0 (0.5) 0.9 (0.5) 
Citrate (mmol/l) – mean (SD) 0.1 (0.03) 0.1 (0.02) 0.1 (0.02) 0.2 (0.02) 
Isoleucine (mmol/l) – mean (SD) 0.1 (0.02) 0.04 (0.01) 0.04 (0.01) 0.1 (0.01) 
Leucine (mmol/l) – mean (SD) 0.1 (0.01) 0.1 (0.01) 0.1 (0.01) 0.1 (0.01) 
Valine (mmol/l) – mean (SD) 0.1 (0.03) 0.1 (0.03) 0.1 (0.03) 0.1 (0.03) 
Glucose (mmol/l) – mean (SD)  4.2 (0.5) 4.3 (0.3) 4.1 (0.5) 3.9 (0.4) 
Inflammatory traits     
Glycoprotein acetyls (mmol/l) – mean (SD)  1.2 (0.1) 1.2 (0.1) 1.2 (0.1) 1.2 (0.2) 
     
Type 2 diabetes is defined in adolescence as a clinic fasting glucose ≥ 7 mmol/l, and in young adulthood and adulthood as a clinic 
fasting glucose ≥ 7 mmol/l or reported physician diagnosis.  

.
C

C
-B

Y
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted S
eptem

ber 17, 2019. 
; 

https://doi.org/10.1101/767756
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/767756
http://creativecommons.org/licenses/by/4.0/


 

14 

 

Of 8,701 participants with data on genotype, 4,614 additionally had data on each 

metabolic trait at age 8y. Of these, 1,712 additionally had data on each metabolic trait at age 

16y; 1,077 of which additionally had data on each metabolic trait at age 18y. Of these, 699 

participants also had data on each metabolic trait at age 25y and comprised the consistent 

(complete case) sample. Characteristics of this consistent sample were comparable to those of 

the wider sample (S3 Table), and differences between excluded and included participants 

were small (S4 Table).  

 

Associations of genetic liability to adult type 2 diabetes with metabolic traits at different 

early life stages in ALSPAC 

 

At age 8y, higher type 2 diabetes liability was unassociated with lipid content in most 

lipoprotein particle types including very-low density lipoprotein (VLDL) with effects of 

inconsistent direction and magnitudes near zero. Associations were more consistent in 

direction and magnitude with lower cholesterol, triglycerides, and other lipids in very-large 

and large high-density lipoprotein (HDL) – e.g. -0.03 SD (95% CI = -0.06, -0.003; P = 0.03) 

for total lipids in very large HDL per SD-higher GRS (Figure 2; S5 Table). 
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Figure 2 Associations of genetic liability to adult type 2 diabetes with metabolic traits at different early life stages among ALSPAC offspring  

 

Estimates shown are beta coefficients representing SD difference in metabolic trait per SD higher GRS for type 2 diabetes, ordered concentrically (

circle to outer circle) by increasing age at measurement.
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At age 16y, higher type 2 diabetes liability (per SD-higher GRS) was weakly but 

more consistently associated with higher lipid content in VLDL and lower lipid content in 

LDL. Associations were again strongest with lower lipid content in very-large and large HDL 

– e.g. -0.08 SD (95% CI = -0.11, -0.04; P = 3.30x10-05) for total lipids in very large HDL per 

SD-higher GRS. Associations were also evident with pre-glycemic traits including citrate (-

0.06 SD, 95% CI = -0.09, -0.02; P = 1.41x10-03) and glucose (0.05 SD, 95% CI = 0.02, 0.08; 

P = 0.004), and glycoprotein acetyls (0.05 SD, 95% CI = 0.01, 0.08; P = 0.01).  

At age 18y, higher type 2 diabetes liability (per SD-higher GRS) remained weakly 

associated with higher lipid content in VLDL and LDL, but more strongly associated with 

lower lipid content in HDL, particularly very-large and large HDL. Associations with 

branched chain and aromatic amino acids were also strengthened (e.g. valine: 0.06 SD; 95% 

CI = 0.02, 0.09; P = 1.24x10-03 and tyrosine: 0.04 SD; 95% CI = 0.001, 0.07; P = 0.04). 

Associations remained stable with glycoprotein acetyls (0.06 SD; 95% CI = 0.02, 0.10; P = 

1.69x10-03).  

At age 25y, associations had strengthened between higher type 2 diabetes liability and 

lipid content in VLDL subtypes such that effect size magnitudes were comparable to those 

seen with lipids in HDL subtypes – e.g. 0.05 SD (95% CI = 0.01, 0.09; P = 0.02) higher total 

cholesterol in VLDL vs. -0.06 SD (95% CI = -0.09, -0.02; P = 1.19x10-03) lower total 

cholesterol in very large HDL, each per SD-higher GRS. Increasing effect size for VLDL 

lipids were supported by relatively low P-values for trend across time points based on linear 

mixed models (S5 Table) – e.g. P-trend = 0.01 for total cholesterol in VLDL. These P-trend 

values were higher for lipids in HDL (e.g. P-trend = 0.15 for total lipids in very-large HDL), 

indicating more stable effect sizes across time points. Associations were also more evident 

with several fatty acid traits including a lower ratio of linoleic to total fatty acids (-0.07; 95% 

CI = -0.10, -0.03; P = 5.49x10-04) and lower ratios of omega-6-to-total and polyunsaturated-

to-total fatty acids. Associations remained relatively strong with branched chain amino acids 

– e.g. with leucine at 0.06 SD; 95% CI = 0.03, 0.10; P = 8.46x10-05, and with glycoprotein 

acetyls at 0.06 SD; 95% CI = 0.01, 0.10; P = 2.96x10-03.  

Quartile-based estimates (for the highest vs. lowest quartile of GRS) showed similar 

patterns with traits across time points (S6 Table), with effect sizes being consistently largest 

with lipids in very-large and large HDL – e.g. -0.08 SD at age 8y, -0.20 SD at age 16y, -0.12 

SD at age 18y, and -0.13 SD at age 25y for total lipids in very-large HDL. Elevations were 
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also consistently seen across time points for branched chain amino acids – e.g. 0.04 SD, 0.04 

SD, 0.06 SD, and 0.14 SD for leucine; for glycoprotein acetyls (-0.01 SD, 0.14 SD, 0.17 SD, 

and 0.13 SD); and for glucose itself (0.06 SD, 0.12 SD, 0.08 SD, and 0.15 SD).  

Association patterns were also comparable for standardized and quartile-based GRS 

estimates using a sample of 699 participants with complete data on all metabolic traits at each 

time point (S7-8 Table; S1 Figure), with effect sizes most consistently elevated for lipids in 

very-large and large HDL. These estimates were expectedly less precise given lower 

statistical power. Results based on original (non-SD) units for metabolic traits are presented 

in S9-12 Table. Mean and SD values for each metabolic trait are provided in S13 Table to 

aid effect size conversions. 

 

Associations of genetic liability to adult type 2 diabetes with metabolic traits in adulthood in 

GWAS summary data 

 

Results of two-sample MR analyses in an independent sample of adults indicated a 

largely persistent pattern of associations between genetic liability to type 2 diabetes and 

metabolic traits seen across early life (Figure 3; S14 Table). Higher genetic liability to type 

2 diabetes was generally positively associated with VLDL lipid subtypes and inversely 

associated with HDL lipid subtypes, again for large and very large HDL specifically – e.g. -

0.004 SD (95% CI = -0.007, -0.002; P = 8.45x10-04) per 1 log odds of type 2 diabetes for total 

lipids in large HDL. Type 2 diabetes liability was positively associated with branched chain 

amino acid levels (e.g. 0.004 SD of leucine, isoleucine and valine per 1 log odds of type 2 

diabetes). There was less evidence of association between type 2 diabetes liability and 

glycoprotein acetyls, at 0.003 SD (95% CI = 0.0001, 0.005; P = 0.04) per 1 log odds of type 2 

diabetes. Glucose was the most strongly associated metabolic trait at 0.008 SD (95% CI = 

0.006, 0.010; P = 5.27x10-11) per 1 log odds of type 2 diabetes. Evidence of effect 

heterogeneity was strong for most metabolic traits – e.g. Cochrane’s Q P-value=7.83x10-16 

for the glucose IVW estimate. Where IVW estimates suggested evidence of a causal 

association, weighted median estimators were consistent whereas MR Egger estimates were 

imprecise, although there was little evidence to suggest that MR Egger intercept estimates 

differed from zero for any of the metabolic traits (P > 0.003).   
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Figure 3 Associations of genetic liability to adult type 2 diabetes with metabolic traits in an independent sample of adults based on two-sample MR

 

Estimates shown are beta coefficients representing the SD-unit difference in metabolic trait per 1 log odds of type 2 diabetes based on the IVW me
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Discussion 

 

This study aimed to reveal early metabolic features of type 2 diabetes liability by 

integrating genetic liability to adult type 2 diabetes with detailed metabolic traits measured 

across early life (from age 8y to 25y). These metabolic traits were measured long before the 

expected clinical onset of type 2 diabetes [33], and consequently, their perturbations are 

expected to reflect early signs of disease that are detectable in circulation. Our findings 

suggest that one of these earliest features is lower lipid content in HDL – particularly in large 

and very large particle subtypes – which precedes lower citrate and higher branched chain 

amino acid and inflammatory glycoprotein acetyl levels. This feature is apparent in childhood 

as early as age 8y, several decades before the clinical onset of disease. Persistent patterns of 

effect were observed in an independent sample of adults based on two-sample MR, 

supporting their continued relevance with advancing age.  

Adiposity is expected to be a key driver of type 2 diabetes and its metabolic 

intermediates, with several MR [20] studies supporting profound effects of higher BMI on 

metabolic dysfunction [34,35] and clinical type 2 diabetes in adulthood [4,35]. More 

specifically, higher BMI is strongly associated with lower cholesterol in HDL and higher 

cholesterol in more atherogenic lipid types including VLDL, remnant particles, and 

apolipoprotein-B; higher branched chain amino acid levels, and higher glycoprotein acetyls – 

a marker of chronic inflammation [36] heavily implicated in type 2 diabetes pathogenesis via 

impaired secretion and sensitivity of insulin [37,38]. These effects are evident in early 

adulthood (mean age 24y) [34] and likely also in childhood, with recent observational 

findings in ALSPAC suggesting these same patterns of effect at age 10y [39]. Visceral fat 

mass is in turn expected to drive metabolic effects of total adiposity, with recent 

observational findings based on NMR metabolomics in the Netherlands Epidemiology of 

Obesity (NEO) study suggesting that lipids in HDL are inversely associated, while lipids in 

VLDL are positively associated, with visceral fat volume [40]. As seen presently in response 

to type 2 diabetes liability, HDL associations were strongest for very-large and large particle 

subtypes, while branched chain amino acid and glycoprotein acetyl levels also showed 

similar patterns of association in NEO in relation to visceral fat volume as seen here in 

response to type 2 diabetes liability, supporting visceral fat as a common influencer.  
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Pressing questions concern which of these BMI-induced intermediates are causes of 

type 2 diabetes, and which arise in response to the developing disease process – i.e. are part 

of type 2 diabetes itself. One recent MR study suggested that higher branched chain amino 

acid levels are associated with higher type 2 diabetes risk, implying that perturbed branched 

chain amino acid metabolism causes type 2 diabetes [41]. However, instrumenting metabolic 

traits is difficult in an MR framework because their genetic architecture overlaps greatly 

[42,43], resulting in use of common genetic variants discovered in GWAS that are not 

typically specific to one metabolic trait. Using the same genetic variant for multiple traits 

outside of a multivariable MR framework [44] can lead to inflated MR estimates via a 

‘double-counting’ of allele effects, as was likely the case in that study [41,43] where the same 

single genetic variant (rs1440581) was used as an instrument for both leucine and valine. 

In contrast, a more recent MR study suggested that higher genetic liability to insulin 

resistance – a precursor of type 2 diabetes – raises branched chain amino acid levels [45], 

positioning these as consequences of type 2 diabetes development, a conclusion further 

supported by present results based on a GRS for type 2 diabetes itself and metabolomics data 

across early and adult life. Elevated branched chain amino acid levels are attributed to an 

inability to properly suppress protein breakdown in the insulin resistant state [46], and results 

of experimental studies in humans suggest that infusions of branched chain amino acids 

acutely worsen insulin sensitivity [47-50]. Experimental animal studies suggest that in the 

context of high fat consumption, increased dietary intake of branched chain amino acids 

contributes to the development of obesity-associated insulin resistance [51], while 

pharmacological activation of branched chain amino acid dehydrogenase complex – the 

second step in branched chain amino acid catabolism – leads to increased branched chain 

amino acid disposal and improved insulin sensitivity in Zucker rats [52].  

In that same MR study [45], strong effects of higher insulin resistance were also 

found on higher total-lipid content in VLDL subtypes; on lower total lipid content in very-

large, large, and medium HDL subtypes; on higher total triglycerides and apolipoprotein-B; 

and on lower beta-hydroxybutyrate and citrate – patterns much like those seen presently. 

Effect sizes were, however, much larger in previous results. This is likely because insulin 

resistance is more biologically distinct than type 2 diabetes (a highly heterogenous disease) 

and likely has more precise metabolic effects. Differences in effect size also likely reflect the 

much younger ages at which traits were measured in the present study; effects of the disease 

process are expected to strengthen over time. Effect sizes pertaining to the earliest stages of 
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disease are expected to be small, but their patterns and relative magnitudes are nevertheless 

informative. For example, perturbations were detected early for circulating citrate – an 

important substrate of cellular energy metabolism that has been shown to dramatically 

increase in people with rapid diabetes improvement following bariatric surgery [53]. Citrate 

synthase activity is also impaired in myotubes from people with type 2 diabetes [54].   

Bi-directional effects between metabolic traits and liability to type 2 diabetes remain 

plausible, but larger GWAS and methodological advancements are needed for handling 

overlapping genetic instruments to confirm this. Additional clues come from another recent 

MR study that examined effects of type 2 diabetes liability on metabolic traits derived from 

NMR and mass-spectrometry platforms; and effects in the reverse direction for 20 

instrumentable traits [19]. Genetically higher cholesterol in HDL – again in very-large and 

large subtypes – were most strongly associated with lower fasting glucose, but these effects 

did not extend to type 2 diabetes itself. Metabolic traits with the strongest genetic evidence of 

effect on type 2 diabetes were phospholipids in VLDL and intermediate-density lipoprotein 

(IDL) particles, and total triglycerides [19]. Conversely, type 2 diabetes genetic liability had 

the greatest effect on the amino acid alanine, along with several phosphatidylcholine alkyl-

acyls, providing further evidence that such perturbations are more a consequence than a cause 

of type 2 diabetes liability.      

Importantly, results of both recent MR studies [19,45] were based solely on samples 

of middle-to-late aged adults, which are useful for examining clinical disease endpoints and 

their intermediates, but are on their own less useful for examining the timing of their onset. 

Our results based on younger participants affirm the patterns seen among older adults [19,45] 

and shed light on the temporal nature of type 2 diabetes development, suggesting that 

perturbed HDL cholesterol metabolism is one of the first events in the developmental stages 

of type 2 diabetes (a consequence of processes leading to the disease), even before 

perturbations in VLDL cholesterol, triglycerides, branched chain amino acids, or 

inflammation become apparent. The patterns of effect seen amongst young people here were 

also seen in an independent sample of adults based on two-sample MR, with higher genetic 

liability to type 2 diabetes related to lower lipids in large and very large HDL subtypes, 

higher lipids in VLDL, and higher branched chain amino acid levels. The particularly early 

tracking of HDL lipids suggests that HDL metabolism aligns most closely with adipose tissue 

insulin resistance and may be a reliable early marker of impending type 2 diabetes.  
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Limitations 

 

Limitations of this study include modest sample sizes for ALSPAC analyses, 

particularly for consistent (complete case) analyses. This stems from the rarity of 

participation at four clinic occasions spanning childhood to adulthood and the need for data 

on an extensive set of variables. Descriptive comparisons were made for key measured traits 

between excluded and included participants, and these differences appeared small – e.g. BMI 

was 25.0 kg/m2 vs. 24.5 kg/m2 at age 25y in the compete-case sample, respectively. The 

metabolic traits examined had limited coverage of pre-glycemic, protein, and hormonal traits; 

insulin was notably absent as it is not quantified by NMR and was not available at the first 

time point. Six metabolic traits (diacylglycerol, ratio of diacylglycerol to triglycerides, fatty 

acid chain length, degree of unsaturation, conjugated linoleic acid, and ratio of conjugated 

linoleic acid to total fatty acids) were not measured at the final age 25y time point; however 

these traits were analysed at earlier time points to meet the aim of comparing early 

perturbances. Blood samples from the first occasion of metabolic trait assessment were 

derived while non-fasting, but trait concentrations have shown stability over different 

durations of fasting time in previous analyses [55]. Diagnoses of type 2 diabetes in ALSPAC 

were based on fasting plasma glucose or reported physician diagnosis; glycated haemoglobin 

(HbA1c) measures were not available. However, recommendations by the American Diabetes 

Association in 2018 note the equal appropriateness of fasting plasma glucose and HbA1c as 

diagnostic traits for type 2 diabetes [6], and prevalence is expected to be low at the young 

ages studied regardless of the criteria used.  

Our analyses were restricted to white-Europeans which helps to reduce confounding 

by ancestral population structure, but limits inference to other groups. This requires more 

comprehensive GWAS studies of non-white-European populations together with 

metabolomic measurements in cohort studies with higher representation of those groups. 

Extending analyses to other populations with high present and future burdens of type 2 

diabetes, such as African and east-Asian populations [1], is vital for understanding the early 

features of type 2 diabetes in these groups and how disease burden could be mitigated. 

Although our two-sample MR analysis confirmed the same metabolic features in an 

independent sample, differences in the units of exposure (measured as ‘per SD higher GRS 
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for type 2 diabetes’ in ALSPAC vs. ‘per 1 log odds of type 2 diabetes’ in summary GWAS 

data) prevent direct comparison of effect sizes between these analyses; however patterns of 

effect across metabolic traits are still considered informative. We aimed to reveal early 

metabolic features of type 2 diabetes, but objectives are only strictly feasible within a 

framework of liability to type 2 diabetes because the current study population is without 

clinical disease. This was deliberate on our part as a novel approach for identifying early 

features of disease based on genetic susceptibility to adult disease and repeat metabolomics in 

early life, with implications for pre-clinical populations. Lastly, although we primarily 

interpret results as reflecting the metabolic effects of type 2 diabetes liability, alternative 

scenarios including bias or pleiotropy remain possible explanations (7 such scenarios are 

proposed by Holmes and Davey Smith [15]). Directly interrogating each scenario remains 

difficult, but methodological flexibility together with an increasingly large scale and scope of 

genomic and metabolomic data should make doing so more feasible in the near future.    

 

Conclusions 

 

Our results based on genetic liability to adult type 2 diabetes in relation to repeated 

measures of detailed metabolic traits across early life suggest that one of the earliest 

metabolic features of type 2 diabetes liability is lower lipid content in HDL particles – 

particularly in very-large and large HDL subtypes – which precedes other perturbations 

including lower citrate and higher branched chain amino acid and inflammatory glycoprotein 

acetyl levels. This feature is apparent in childhood as early as age 8y, several decades before 

the clinical onset of disease.  
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S1 Figure Associations of genetic liability to adult type 2 diabetes with metabolic traits at different early life stages among a consistent sample of 6

ALSPAC offspring 

 

Estimates shown are beta coefficients representing SD difference in metabolic trait per SD higher GRS for type 2 diabetes, ordered concentrically (

circle to outer circle) by increasing age at measurement.  
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