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Abstract 17 

Background/Objectives: The continuing increase in many countries in adult body mass index (BMI 18 

kg/m2) and its dispersion is contributed to by interactions between genetic susceptibilities and an 19 

increasingly obesogenic environment. Whether population susceptibility to obesogenic environments 20 

is mainly determined by a subgroup with high genetic susceptibility or  susceptibility is more evenly 21 

distributed throughout the population is unresolved, due to uncertainties around relevant genetic and 22 

environmental architecture. We aimed to test the predictions of a Mendelian genetic architecture 23 

based on collectively common but individually rare large-effect variants and its ability to account for 24 

current trends in a large population-based sample. 25 

Subjects/Methods: We studied publicly available adult BMI data (n = 9102) from 3 cycles of 26 

NHANES (1999, 2005, 2013) adjusted for age, gender and race/ethnicity. A first degree family 27 

history of diabetes (FH) served as a binary marker (FH0/FH1) of genetic obesity susceptibility. We 28 

tested for multi-modality in BMI non-parametrically using a runs tests in conditional quantile 29 

regression (CQR) models of FH effects, obtained parametric fits to a Mendelian model in FH1, and 30 

estimated FH-environment interactions in CQR models and in ANCOVA models incorporating 31 

secular time. 32 

Results: A unimodal FH effect on BMI was excluded (p≤0.0001) in CQR models and parametric fits 33 

to a Mendelian model in FH1 identified 3 modes at 25.8±1.0 (SEM), 32.1±1.8 and 40.6±2.5 kg/m2.  34 

Mode separation accounted for ~40% of BMI variance in FH1 providing a lower bound for the 35 

contribution of large effects. CQR analysis identified strong interactions between FH and 36 

environmental factors (p≤0.01) and FH1 accounted for ~60% of the secular trends in BMI and its SD 37 

in ANCOVA models. 38 

Conclusions: Multimodality in the FH effect is inconsistent with a predominantly polygenic small 39 

effect architecture. We conclude that large genetic effects interacting with obesogenic environment 40 

provide a better, quantitative explanation for current trends in BMI.  41 
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Introduction 42 

The recent and continuing increase in the global mean adult BMI, first seen in high income countries, 43 

is now apparent in most countries across a wide range of ethnic composition and socio-economic 44 

conditions (1) and is accompanied by increases in measures of dispersion (2, 3). Although BMI is 45 

known from family-based studies to be under strong genetic influences (4) population genetic 46 

backgrounds have been effectively constant over this time, implying that BMI trends are driven by 47 

change in environmental factors (obesogenic environment, OE).  Evidence from twin studies, which 48 

demonstrate increased genetic variance over time, supports an important role for interactions between 49 

OE and genetic susceptibility (G x OE) on both mean and dispersion of BMI (3, 5), but how large a 50 

role is not yet clear. Defining the role of G x OE in “epidemic” obesity, and hence of genetic 51 

susceptibility itself, is hindered by problems of measurement and modeling of interactions (6) and by 52 

uncertainty around both the genetic architecture (4) and the exact nature of the environmental drivers 53 

(7). Whether a population's susceptibility to OE is predominantly determined by a subgroup with high 54 

genetic susceptibility or is more evenly spread within populations is unresolved despite important 55 

implications for the management of obesity and related disorders at population and individual levels 56 

(2, 8–10). 57 

 58 
The genetic variants responsible for obesity susceptibility remain largely unknown. Genome-wide 59 

association studies (GWAS) have identified significant associations with >200 markers with small 60 

effects on BMI (polygenes), together explaining only approximately 3-4 % of total variance 61 

compared to family-based heritabilities (h2) of 50-75% (11). Few causative mechanisms responsible 62 

for these phenotypically weak associations are known (4). The sources of the h2 unaccounted for by 63 

GWAS are uncertain; proposals include overestimation of h2, large numbers of common genetic 64 

variants with small, statistically insignificant effects on phenotypes (12, 13)  and importantly, 65 

candidates not tested in most GWAS. Among the latter are rare genetic variants with large phenotypic 66 
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effects and G x OE interactions (4). Recently significant G x OE interactions have been detected in 67 

individual GWAS loci and in composite genetic risk scores, which explain little of the missing 68 

component of h2 (14, 15).   69 

 70 
A family history of diabetes (FH) is a potent, predominantly genetic (16, 17) risk factor for diabetes 71 

diagnosis (DM) and for obesity-related phenotypes (18–21) consistent with the strong association 72 

between type 2 DM and overweight/obesity. Familial effects on obesity-related phenotypes in adults 73 

are also predominantly genetic (3, 22), so to the extent that the DM generating FH is of type 2 74 

(approximately 94% of DM in the US population (23)), FH is a prevalent and readily obtained marker 75 

of genetic susceptibility both to diabetes and to the obesity commonly preceding it. We have reported 76 

evidence from a small sample of a multi-modal effect of FH on a composite adiposity index 77 

consistent with segregation in families of discrete obesity risk (21). Polygenic risk scores (PRS) 78 

based on large numbers of small effects are expected to be, and appear to be, normally-distributed 79 

(24, 25) and cannot account for familial segregation of risk.  The present work is based on the 80 

alternative hypothesis that individually rare, but collectively common, genetic variants with large 81 

phenotypic effects are the source of most of the missing h2 and of most of G x OE, and that their 82 

effects can be detected through analyses of phenotypic segregation in high-risk families (26). 83 

 84 
The Continuous National Health and Nutrition Examination Survey (NHANES) is a continuing 85 

(1999-) large-scale population-based survey incorporating an index of adiposity (Body Mass Index, 86 

BMI) and first-degree FH (FH0/FH1) together with potential covariates and confounders. Although 87 

BMI has recognized limitations as an adiposity phenotype (26, 27) it is the basis for most large-scale 88 

genetic studies and like other authors, we assume that a large enough scale and appropriate modeling 89 

of covariates will reduce effects of imprecision and bias (11). We aimed to test in a large multi-cycle  90 

NHANES sample for the presence of familial segregation of genetic risk and to estimate the 91 

contribution of FH, and by extension all discrete genetic risk, to recent secular trends in adult BMI. 92 
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Our results support a predominant role for large genetic effects interacting with OE in the obesity 93 

“epidemic”. 94 

 95 

Data and Methods 96 

Data 97 

We used data from the 1999-2000, 2005-2006 and 2013-2014 cycles of NHANES 98 

(https://www.cdc.gov/nchs/nhanes/index.htm accessed 25 Aug 2017). We extracted records for 99 

participants age 20-65 years with non-missing gender, race/ethnicity, BMI, diabetes family history 100 

(FH) and diabetes diagnosis data, and current smoking status if available.  The definitions of two 101 

fields changed over the sampling period: 1) Diabetes family history was defined in terms of 1° and 2° 102 

relatives in 1999-2000 but by 1° relatives only in subsequent cycles. We recoded the 1999-2000 103 

diabetes family history data to conform to the later definition using the separately collected data for 104 

affected parents and siblings. 2) The self-identified race/ethnicity field (RIDRETH1) code was used 105 

excluding other races (OR) to maintain consistency across cycles (Supplementary Methods). We 106 

excluded from the primary analyses subjects diagnosed with diabetes because of possible 107 

confounding by effects of either diabetes or diabetes therapies on BMI.  The resulting data set is 108 

summarized in Table 1. 109 

Statistical analyses 110 

Approach 111 

We treat the data as a convenience sample and took no account of the sampling weights provided by 112 

NHANES to permit nationally representative estimates. Our results are not intended to be 113 

representative of the US population.  114 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2019. ; https://doi.org/10.1101/749606doi: bioRxiv preprint 

https://doi.org/10.1101/749606
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 
 
 

6

Our primary analyses are based on non-parametric visualization (kernel-smoothing) and analyses 115 

(conditional quantile regression, CQR) of distributions requiring no prior distributional assumptions. 116 

Parametric fits to multimodal distributions were then used to quantify the contributions of the 117 

predicted large genetic effects model. FH(0/1) is treated as a binary genetic risk marker and calendar 118 

time as a continuous surrogate of OE. Effects of OE interacting with FH were assessed in CQR 119 

models, and also in least-squares ANCOVA models using bootstrap resampling to minimize 120 

distributional assumptions in the calculation of effect size estimates and errors. All analyses were 121 

performed using R 3.3.1 (28). 122 

 123 

Summary statistics 124 

Heterogeneity of the samples across cycles was assessed by Chi square test for categorical variables 125 

and by one-way ANOVA for age. Effects on BMI were assessed by ANCOVA against continuous 126 

time (yr = calendar start year - 1999). Effects on phenotype SD's were assessed by Bartlett's test in 127 

one-way ANOVA models. 128 

 129 

Adjustment 130 

Prior to analysis BMI was adjusted for effects of age, gender and race/ethnicity in a linear model (age 131 

+ age2 + race x gender).  The adjustment model accounted for 4 % of the total variance in BMI 132 

(Supplementary Table S1). 133 

 134 
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Distributions 135 

Visualization 136 

The effect of FH on the distribution of adjusted BMI was visualized using kernel-smoothed density 137 

estimates by FH status (R base function density). The degree of smoothing is controlled by the 138 

bandwidth parameter (bw) which was obtained in the full non-diabetic data set (bw = 0.99) from a 139 

measure of the dispersion of the data (29). This produces a continuous distribution function and is 140 

widely used to visualise features of potential interest which may be obscured in histograms. The 141 

credibility of apparent effects of FH on the shape of the distribution was assessed by post-hoc 142 

analysis of density differences (FH1 – FH0) by quantiles (n=20) of the full sample. Mean density 143 

differences with SE were obtained by quantile by bootstrap resampling with replacement (1000 144 

draws, stratified by FH status with resample sizes = strata sizes) and tested against zero using a Z-145 

test. 146 

 147 

Conditional Quantile Regression (CQR) 148 

Conditional quantile regression is a powerful tool for analyzing the effect of covariates on 149 

distributions without assumptions of distributional shape.  In contrast to ordinary least-squares (OLS) 150 

regression which characterizes effects on global features of a distribution, CQR analyses local effects 151 

of covariates independently at any specified quantiles and can detect and test variations in covariate 152 

effects across quantiles.  Originating in econometrics (30) it is now used in other areas including 153 

genetics (31). In the CQR framework developed by Abadi et al (14) for analysis of genomic markers, 154 

trends in effect sizes across quantiles represent interactions between genetic effects and unobserved 155 

environmental and/or genetic factors. We treat FH as a binary genetic risk marker (FH0/FH1) and a 156 

linear trend in quantile regression coefficients (ß1i) across quantiles (τi) represents summed linear 157 

interactions of FH with unobserved factors.  We analysed the effects of FH on adjusted BMI by CQR  158 
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using the R package quantreg.  The effect of all interactions on the FH effect was tested in in a 2 159 

parameter linear model: 160 

for each quantile  τi in y, 161 

y(τi | FH=fh)= ß0i + ß1i * FH 162 

where y(τi | FH=fh) = the ith quantile of adjusted BMI conditional on the value of FH (0,1), the 163 

intercept ß0i is the ith quantile value in FH0 and ß1i is the FH effect size in quantile i. 164 

 165 

The interaction between FH and continuous calendar time was estimated in the ANCOVA model: 166 

y(τi | FH=fh)= ß0i + ß1i * FH + ß2i*yr + ß3i*FH*yr 167 

where yr = cycle start year – 1999, ß0i is the ith quantile value in FH0 at yr =0 and ß2i and ß3i are CQR 168 

coefficients for time and time*FH interaction effects in quantile i. 169 

 170 

Equality of CQR parameter effect sizes across quantiles was tested using a Khmaladze test (32) (R 171 

package quantreg). 172 

  173 

The shape of the interaction relationship on the BMI scale was assessed in an OLS relationship 174 

between quantile coefficients ß1 and ß0, which represents a linear model of a transformed quantile-175 

quantile plot between FH1 and FH0 after adjustment for covariates, and models a unimodal effect.   176 

Residuals from the relationship were tested against randomness using a Wald-Wolfowitz runs test (R 177 

package randtests), a simple, general non-parametric test of randomness in ordered binary 178 

observations. The number of runs is compared to expectations under a normal approximation to the 179 

random sampling distribution. Randomness is rejected in a two-sided test if the number of observed 180 

runs is too high indicating high frequency oscillations, or too low indicating longer structures. We 181 

applied a left-sided runs test to residuals from regression relationships testing for large structures and 182 
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interpret significance as excluding a unimodal effect and therefore as evidence of multiple modes in 183 

the effect. 184 

 185 

Parametric fits 186 

We obtained fits to a 3-component normal mixture distribution representing a simple Mendelian 187 

model of fixed genetic effect using an expectation-maximization algorithm (normalmixEM function 188 

in the R package mixtools) . The models are characterised by the fitted means (µi), standard 189 

deviations (σi)  and mixing proportions (λi) of  the three component distributions. Full model fits 190 

were obtained in FH1 but were not obtainable in FH0 or DM1 groups and we constrained µi in those 191 

groups to values estimated in FH1 in order to obtain comparable estimates of σi and λi. Risk allele 192 

frequencies (q) under an additive Mendelian model of large genetic effects were calculated from the 193 

fitted λi: 194 

q = 0.5*λ2 + λ3 195 

where λ2 and λ3 represent the proportions of carriers of 1 and 2 risk alleles respectively.Within-196 

sample consistency of calculated q across the three groups analysed was  assessed by comparing 197 

fitted qFH1
 with the prediction from random mating of DM1 into the full sample:  198 

predicted qFH1
 = (qDM + n-weighted mean(qDM, qFH1

, qFH0
))/2 199 

Secular trends 200 

 Effects of diabetes family history status (FH0, FH1) and continuous time (yr = calendar start year - 201 

1999) on adjusted BMI and its standard deviation (SD) were assessed in ANCOVA models of the 202 

form: 203 

y = ß0 + ß1 * FH + ß2*yr + ß3*FH*yr 204 
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where y = adjusted BMI mean or SD by FH status (0/1) and cycle, and yr = cycle start year – 1999.  205 

Each OLS fit estimated 4 parameters from the 6 data points. Mean parameter estimates with 95% CI 206 

were obtained by bootstrap resampling with replacement (1000 draws stratified by FH status and 207 

cycle with resample sizes = strata sizes). 208 

 209 

Comparison of cross-sectional and secular trend effects 210 

Effects of FH on BMI distribution and on secular trends in BMI were compared by calculating the 211 

contribution (%) of FH1 to the effect in the full non-diabetic sample for calculated risk allele 212 

frequency (q%) and to the slope (ß%) of the relationships between time and BMI in ANCOVA model 213 

described above. Mean (± SE where possible)  q% and ß% were calculated in the relevant bootstrap 214 

samples. 215 

 216 

Results 217 

Participant characteristics 218 

Data from 9102 non-diabetic subjects met the inclusion criteria, approximately equally distributed 219 

across the 3 cycles. Gender balance varied little but there was a cycle effect in race/ethnicity, most 220 

obvious in the reduced representation of MA in the two later cycles. Average age varied across cycles 221 

but not its SD, while adjusted BMI and its SD showed linear trends with cycle time. FH1 prevalence 222 

was higher in the two later cycles compared to 1999-2000 as was DM1 prevalence.  Current smoking 223 

status was predominantly missing in the data (55%) and was not included in the BMI adjustment 224 

model. However smoking status was not related to FH whether analysed in the full data (Χ2 = 2.80, 2 225 

df , p = 0.25) or in those with non-missing smoking status (Χ2 = 0.43, 1 df , p = 0.51), hence is 226 
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unlikely to confound analyses of FH effects. The mean age at diagnosis of DM (43.6 yr) is consistent 227 

with predominantly type 2 DM in the sample. 228 

Distributions 229 

Visualization 230 

Adjusted BMI in the non-diabetic sample showed an apparently unimodal distribution, right-skewed 231 

compared to a normal model and closer to a log-normal model (Fig 1A). When visualized by FH 232 

status (Fig 1B) the predicted multimodality in FH1 was indicated with modes in the normal weight, 233 

overweight and obese regions of the BMI distribution. In contrast FH0 showed an apparently 234 

unimodal distribution and a difference in shape between the two groups was supported by the pattern 235 

of formal significance in the post-hoc analysis of density differences between groups (Fig 1B). BMI 236 

distribution in the diabetic sample appeared to be depleted in the lower mode and enriched in the 237 

upper modes compared to FH1 (Fig 1C). 238 

 239 

CQR 240 

Analysis of the effect of FH status on the shape of the BMI distribution using CQR demonstrated 241 

increasing FH effect size at higher levels of BMI (p  ≤  0.01, Fig 2A, main panel), indicating strong 242 

interactions between FH1 and other variables not included in the model. FH1 effect size ranged from 243 

< 1 kg/m2 in the lower quantiles to ~3 kg/m2 in the upper quantiles, substantially different in both 244 

regions to the OLS estimate (1.7 kg/m2). The approximate linearity of FH1 effects by quantile seen in 245 

main panel of Fig 2A supports simple 1st order interactions, with that linearity emphasised by an OLS 246 

analysis on the BMI scale between quantile coefficients ß1 (FH1) and ß0 (FH0) ( slope = 0.148 ± 0.003 247 

(SE), R2 = 0.98). Adjustment for main and interaction effects of calendar time in the model 248 

(Supplementary Fig S2) weakened the trend in ß1 across quantiles (p > 0.1, Fig 2B main panel) and 249 

the OLS relationship between ß1 and ß0 (slope = 0.103 ± 0.006, R2 = 0.86), supporting the conclusion 250 
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that calendar time is a strong surrogate of obesogenic environmental influences interacting with 251 

genetic factors as represented by FH status. 252 

While the overall OLS relationship between ß1 and ß0 was linear there was strong evidence for 253 

additional non-linear structure in an analysis of residuals from the relationship (Fig 2A inset) which 254 

found significant non-randomness (runs test, p = 7.4 x 10-5) attributable to a small number of broad 255 

excursions. Adjustment for time effects accentuated the pattern (Fig 2B inset, runs test p = 2.2 x 10-5). 256 

While these patterns in the conditional quantiles do not map directly onto the unconditional quantile 257 

plots in Fig 1B, by rejecting the unimodal effect hypothesis they add strong support to the conclusion 258 

that FH1 has multimodal discrete effects on BMI. The pattern of residuals after adjustment for time 259 

effects (Fig 2B inset) exhibits 3 broad peaks, with suggestions of finer structure particularly in the 260 

central peak. The lower peak in the low-normal weight range  may derive from the presence of type 1 261 

diabetes family history in the sample, while the upper two are consistent with the predicted discrete 262 

effects of FH1 derived from type 2 diabetes. 263 

Parametric analysis 264 

The distribution of BMI in FH1 appears consistent with a simple Mendelian model and fitting a 3-265 

component normal distribution model to the FH1 data resulted in robust estimates of component 266 

means and separations (Fig 3A), as well as mixing coefficients and SDs (Table 2). Approximately 267 

50% of FH1 occupied the upper two modes and separation between modes accounted for 268 

approximately 40% of the total variance in adjusted BMI with the remainder assigned to dispersion 269 

within modes (Fig 2B). Under a Mendelian model the variance due to mode separation represents a 270 

lower bound on the contribution of large effects as some of the dispersion within modes represents 271 

variance in effect sizes of individual contributing causal loci (see Discussion) which will contribute to 272 

the ~60% of variance assigned to within-modes. Estimates of component SDs and mixing proportions 273 

with component means, constrained for FH0 and DM1 to those identified in the FH1 data, support 274 

enrichment in the two upper components in FH1 compared to FH0 (48% vs. 33%) and more strongly 275 
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in DM1 (72%).  Predicted risk allele frequencies in FH1 (q - Table 2) express these distributional 276 

properties in Mendelian terms and show within-sample consistency in that qFH1 predicted from 277 

random mating of DM1 (0.37) is not different to the fitted estimate (0.30 ± 10). 278 

 279 

Secular trends 280 

Adjusted BMI mean (Fig 2A) and SD (Fig 2B) increased over the sampling period significantly faster 281 

in FH1 compared to FH0 in the bootstrapped ANCOVA model, and estimates of ß and ∆ß in the mean 282 

data were indistinguishable from the OLS estimates provided by the CQR analysis (Supplementary 283 

Fig S2).  Similar results were obtained with log-transformed BMI (Supplementary Fig S3).  FH1 284 

accounted for 62% of the BMI mean trend and 60% of the BMI SD trend in this sample over the 285 

period 1999-2014, effects similar in magnitude to the estimated FH1 contribution to the sample risk 286 

allele frequency (50%, Supplementary Table S2). 287 

 288 

Discussion 289 

Summary 290 

We tested the prediction of segregation of discrete effects of FH on adult BMI (21),  modeled as 291 

modes of distribution,  and estimated the contribution of FH1 to recent trends in BMI mean and 292 

dispersion in a large population-based sample. The results support a predominant role in the recent 293 

obesity "epidemic" for rare genetic variants with large effects interacting with OE. 294 

 295 

Segregation of genetic susceptibility 296 

The non-parametric analysis provided evidence for a multi-modal distribution in the FH1 group 297 

consistent with the prediction of segregation of large genetic effects in families (21). Multi-modality 298 

was supported by the analysis of density differences between FH1 and FH0 by unconditional quantiles 299 
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(Fig 1B) and by evidence of shape in the relationship between CQR coefficients on the BMI scale 300 

(Fig 2A&B insets).  Polygenic risk scores (PRS) in population-based samples are expected to be 301 

normally-distributed, and appear to be so (24, 25). Any elevated polygenic obesity risk in DM1 will 302 

dilute into the mating population resulting in a right-shifted distribution in FH1 compared to FH0, not 303 

multi-modality. Alternative explanations for multi-modality might be discrete stratification of OE 304 

which seems unlikely, or un-modeled interactions between FH and other covariates.  Un-modeled 305 

interactions between FH and stratified residual confounders may exist and contribute but we found no 306 

evidence for this in plots of distributions by gender and race/ethnicity (Supplementary Fig S1) or in 307 

an analysis of  smoking status against FH. Discrete inheritance of genetic variants with large effects 308 

remains the most likely explanation for multi-modality in the BMI distribution. 309 

 310 

Approximately 40% of the adjusted BMI variance in FH1 was accounted for by between-modes 311 

variance (Fig 3B) but this represents a lower bound since the identified modes are likely to be 312 

synthetic ie composed of a range of effect sizes due to rare variants at different loci. Indications of 313 

fine structure within the broad peaks (Fig 2B inset) are suggestive. Examples of rare variants with 314 

large effects on BMI in adults (ß) are known from studies of candidate genes and monogenic obesity 315 

loci (26) while more recently a common variant in Samoans (EAF = 0.26, ß ≈ 1.4 kg/m2 ), very rare 316 

in other populations (33), and an African-specific rare variant (EAF = 0.008, ß =4.6 kg/m2) 317 

undetected in Europeans and Asians (34) have been identified by GWAS. Overall, ß in these nine 318 

examples ranges from 1.4- 9 kg/m2 and a similar range in effect sizes in the NHANES sample would 319 

contribute substantially to the within-mode variance estimated here. A combination of within-subject 320 

variance (~5% (35)) with polygenic variance (~ 5% (4)) sets a lower bound for within-modes 321 

variance and hence the upper bound for between modes, implying that between 40% and 90% of total 322 

variance in FH1 may be attributed to large genetic effects. 323 

 324 
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G x OE 325 

FH1 is a prevalent (36%) and powerful determinant of the rate of change of mean BMI and its 326 

dispersion over time, accounting for 62% of the BMI trend and 60% of the BMI SD trend in this 327 

sample over 1999-2014. Under a polygenic model the familial risk would be distributed normally 328 

over FH1 which would then be a marker of a large fraction of the at-risk population. However under 329 

the Mendelian model supported here genetic risk would segregate in families and only approximately 330 

50% of FH1 would acquire the excess familial risk and only ~18% of the sample would then account 331 

for ~60% of the trends. Individuals with DM1 must represent a fraction of individuals with elevated 332 

genetic obesity risk and it is likely that the remainder, particularly those with a family history of 333 

obesity without DM, would substantially increase the genetic component of the trends consequent to 334 

the high heritability of BMI (22). This Mendelian model is internally consistent in estimates of risk 335 

allele frequencies (q) in FH1, FH0 and DM1 (Table 2) and in comparisons of FH1 effect sizes in cross 336 

section (q, ~50%) and over time (ß, ~60%) (Supplementary Table S2). Our results support the 337 

proposition that the largest part and perhaps all of recent trends in mean and dispersion of BMI are 338 

due to a minor subset of individuals with elevated genetic susceptibility to OE. 339 

  340 

Limitations 341 

The design and interpretation of fits to parametric mixture distribution models involves choices 342 

concerning the number of components, parameter starting values and algorithms, and fit to a specific 343 

model cannot be taken in isolation as support for its structural validity. We base our choice and 344 

structural interpretation of 3-component normal mixture model fits and parameters on the a priori 345 

hypothesis of Mendelian segregation of obesity risk in families (21) supported by the non-parametric 346 

distributional plots (Fig 1B,C) and CQR analysis (Fig 2A,B insets).  Like Abadi et al (14) we 347 

interpret interactions in the CQR analysis as predominantly G x OE although a contribution from G x 348 

G interactions cannot be excluded. Our interpretation is supported by the effects on the interaction of 349 
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including calendar time in the CQR model (Fig 2B). Other limitations discussed above include our 350 

inability to exclude discreet stratification of OE and the possible influence of unmeasured/unknown  351 

confounders of FH. 352 

 353 

Conclusions 354 

We conclude that a Mendelian model of individually rare but collectively common genetic risk 355 

variants with large effects interacting with OE provides a plausible quantitative explanation for recent 356 

trends in obesity and should be favored over a predominantly polygenic model which does not. The 357 

evidence for a predominant role for polygenes (13) can appear to be strong (eg “Polygenic obesity is 358 

the most common form of obesity in modern societies..." (36)) but recent interpretations seek to 359 

explain the still missing heritability in obesity in terms of unidentified large genetic effects and G x 360 

OE (4, 37) and recommend a renewed focus on family-based designs and on specific populations in 361 

which large effect variants may be enriched (33, 34). Our results strengthen that view by showing that 362 

a model based on unidentified segregating variants with large effects interacting with OE can account 363 

for the largest part of the secular trend in obesity and its dispersion in a large population-based 364 

sample. We can’t predict what positive clinical or public health changes might follow from these 365 

findings but they should help refocus research away from the under-performing but entrenched big 366 

idea (38) that is polygenic obesity. 367 

 368 

Supplementary information is available at The International Journal of Obesity’s website. 369 

Supplementary Methods: Race/Ethnicity coding 370 

Supplementary Table S1: BMI-adjustment model parameters 371 

Supplementary Table S2: Comparison of effects of diabetes family history on secular trends in 372 

adjusted BMI and its SD and on calculated risk allele frequencies (q) in non-diabetic participants. 373 

Supplementary Fig S1: Kernel-smoothed adjusted BMI densities by FH, gender and race/ethnicity 374 
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Supplementary Fig S2: time and time x FH interaction effects in a Conditional quantile regression 375 

of adjusted BMI in an ANCOVA model. 376 

Supplementary Fig S3: Secular trends in log-transformed adjusted BMI mean and SD 377 
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Figure legends 470 

Fig 1:  Distribution of adjusted BMI in non-diabetic (DM0) and diabetic (DM1) participants in 471 

combined NHANES 1999-2000, 2005-2006 and 2013-2014 cycles.  A) Full non-diabetic sample 472 

(n=9102)  binned by quantiles (n=20) with superimposed kernel-smoothed and fitted densities in 473 

normal and log-normal models. B) Kernel-smoothed adjusted BMI density by FH status. * significant 474 

(p<0.05) difference in empirical density (FH1 – FH0) by quantiles of the full sample shown in panel 475 

A. C) Kernel -smoothed adjusted BMI density in non-diabetic FH1 (n=3297) compared to diabetic 476 

participants (n=793). 477 

Fig 2: Conditional quantile regression effects of FH on adjusted BMI in non-diabetic participants in 478 

models consisting of FH alone (A) and in interaction with calendar time (B). The main panels show 479 

the FH main effect size (ß1) by quantile with 95% CI (grey-shaded area), the OLS estimate of the 480 

average effect (solid black line) with 95% CI (dotted black lines) and p-values associated with 481 

Khmaladze tests for equality of ß1 across quantiles. The insets show the patterns of residuals (∆ß1) 482 

from linear regressions of ß1 against conditional quantiles in FH0 (ß0) , with 95% CI on the fits 483 

(dotted lines) around the lines ∆ß1 = 0 representing perfect fits. 484 

Fig 3: A) Adjusted BMI density in FH1 by quantile  (grey bars) and kernel-smoothed (black line) with 485 

fits to a three component normal mixture distribution. B) Estimated contributions in FH1 of the 486 

components of the mixture distribution to the prevalence (mixture coefficients, λ) and variance of 487 

adjusted BMI. 488 

Fig 4: Effects of diabetes family history (FH0/1) on linear secular trends in age-, gender- and 489 

race/ethnicity-adjusted BMI mean ± se (A) and standard deviation ±  se (B).  Parameter estimates 490 

with 95% CI were obtained in ANCOVA models by stratified bootstrap resampling of all non-491 

diabetic individuals (see Methods). Dotted lines enclose 95% CI on fitted values at each point; ß = 492 

regression slope vs. time (kg/m2 per year); ∆ß = ßFH1 – ßFH0 (95%CI). 493 

 494 
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Table 1: Participants by diabetes status (DM0/DM1)

All cycles 1999-2000 2005-2006 2013-2014 p†

n 9102 2865 3076 3161 -

Gender (F%) 53 55 54 52 0.06

Race/Ethnicity (%)

 (MA/OH/NHW/NHB)¥ 23/8/46/ 23 30/7/44/20 24/4/49/24 16/11/48/25 7.8 x 10-56

Age (yr):         Mean 40.5 40.7 39.4 41.5 4.5 x 10-9

                        SD 13.2 13.2 13 13.2 0.63

BMI (kg/m2)*:  Mean 28.7 28.3 28.6 29.2 4.6 x 10-9

                          SD 6.6 6.3 6.4 7.1 1.2 x 10-11

Diabetes Family History (Y%) 36 29 42 38 4.1 x 10-25

Current smoking
(%, Y/N/missing)

25/20/55 -

n (%) 793 (8.0) 211 (6.9) 252 (7.6) 330 (9.5) 0.0003

Age at Diagnosis (yr) 43.6 44.3 42.9 43.6 0.47

* Adjusted for age, gender and race/ethnicity in a linear model (see Table S1).

NHANES cycle

DM0

DM1

† Cycle effects (p) by ANOVA (age), ANCOVA (BMI), Bartlett's test  (SD's) and Chi-squared 
test for categorical variables.
¥ MA = Mexican American, OH = Other Hispanic, NHW = Non-Hispanic White, NHB = Non-
Hispanic Black
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 by FH and DM status¥

DM1

Component FH0 FH1

1 * 25.8±1.0 *
2 * 32.1±1.8 *
3 * 40.6±2.5 *

1 3.8 3.8±0.9 3.7
2 5.7 5.1±1.2 4.5
3 10 8.2±0.8 8.4

1 0.67 0.52±0.16 0.28
2 0.29 0.37±0.15 0.47
3 0.04 0.11±0.06 0.25

q - 0.18 0.30±0.10 0.49

(0.37)§

¥  ± bootstrap standard error for FH1 only
* Means in FH0 and DM1 constrained to fitted values in FH1
† Calculated risk allele frequency in an additive Mendelian model of large effects

Table 2: Three-component normal mixture distribution fits to adjusted BMI

mean

sd

λ

§  Predicted from DM1 mating randomly into the full sample.

DM0
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