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  Abstract 

Background: Antidepressant medication adherence is among the most important problems in 

health care worldwide. Interventions designed to increase adherence have largely failed, pointing 

towards a critical need to better understand the underlying decision-making processes that 

contribute to adherence.  A computational decision-making model that integrates empirical data 

with a fundamental action selection principle could be pragmatically useful in 1) making 

individual level predictions about adherence, and 2) providing an explanatory framework that 

improves our understanding of non-adherence.    

Methods: Here we formulate a partially observable Markov decision process model based on the 

active inference framework that can simulate several processes that plausibly influence 

adherence decisions.  

Results: Using model simulations of the day-to-day decisions to take a prescribed selective 

serotonin reuptake inhibitor (SSRI), we show that several distinct parameters in the model can 

influence adherence decisions in predictable ways.  These parameters include differences in 

policy depth (i.e., how far into the future one considers when deciding), decision uncertainty, 

beliefs about the predictability (stochasticity) of symptoms, beliefs about the magnitude and time 

course of symptom reductions and side effects, and the strength of medication-taking habits that 

one has acquired.  

Conclusions: Clarifying these influential factors will be an important first step toward 

empirically determining which are contributing to non-adherence to antidepressants in individual 

patients. The model can also be seamlessly extended to simulate adherence to other medications 

(by incorporating the known symptom reduction and side effect trajectories of those 
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medications), with the potential promise of identifying which medications may be best suited for 

different patients.  
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Introduction 

Medical treatment depends crucially on a patient’s decision to adhere. Unfortunately, the number 

of patients who follow treatment recommendations is quite low (1). Nearly half of prescribed 

medications are not taken and roughly 125,000 deaths each year are due to non-adherence; costs 

associated with non-adherence are between $100 and $300 billion annually (2). In the context of 

mental healthcare – the focus of this paper – roughly one in five patients adhere to antidepressant 

medication treatment for more than four months (3), and the majority discontinue within 30 days 

(4).  Low adherence rates do not appear fully attributable to an objective lack of efficacy, as 

those who follow treatment recommendations show lower recurrence risk (5), cardiovascular 

mortality (6), overall mortality (7, 8) and lower suicide rates (9). Individuals who adhere also 

report greater perceived benefits and fewer concerns than those who do not (1). Thus, it is 

somewhat perplexing that patients often do not adhere.  

Beliefs about medication and personality attributes both influence adherence. Adherence 

to psychiatric interventions is lower in those with lower treatment expectancy (10) and in those 

who experience sexual side effects (11). Such findings have led to the 'necessity-concerns 

framework' (12) which proposes that adherence decisions involve weighing expected negative 

outcomes against beliefs about the necessity/efficacy of treatment (13-18). Personality variables 

associated with greater adherence include higher persistence (19, 20), greater self-efficacy (21-

23), lower optimism (24), greater self-control (25), and greater internal locus of control (26)(27).  

Habit formation may also be central to the development of stable health behaviors (28), 

an effect that could generalize to adherence behavior (29, 30). However, studies have found that 

the amount of time required to form strong habits is highly variable (e.g., 18 to 254 days in one 
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study (31)). The processes that moderate habit formation time are therefore also relevant to 

understanding long-term adherence. 

While several interventions to promote adherence have been tested, involving educational 

(32, 33) counseling (34), and coaching (35) approaches, they have shown low efficacy in 

randomized controlled trials (36). There is therefore a need to better understand the decision-

making processes contributing to adherence. A precise and quantitative delineation of these 

processes could help inform and develop targeted interventions focused on specific adherence-

related processes and provide better measures for predicting adherence.  

Computational psychiatry approaches have recently gained prominence, due in part to their 

potential to quantitatively model behavior and illustrate how several underlying processes can 

contribute to maladaptive perception and decision-making (37-40). In this manuscript we 

introduce a computational model of antidepressant medication adherence, based on the active 

inference framework (41), and examine how it might provide a detailed characterization of 

different probabilistic beliefs and related inference processes that plausibly contribute to 

adherence decisions. This approach could help clarify the way individual differences in 

computational processes can arbitrate between adherence and non-adherence in individual 

patients. We will focus on the initial decision to adhere over the first 12 weeks of treatment, in 

which symptoms typically decline and stabilize (42) and in which side effects first appear and 

subsequently reduce somewhat in severity (43). We also simulate processes that may moderate 

the speed with which individuals develop strong medication-taking habits after their initial 

decision to adhere.  

 

Method 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/743542doi: bioRxiv preprint 

https://doi.org/10.1101/743542
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

An active inference model of adherence 

The active inference framework (41) is one approach to provide a computational 

framework for adherence. This framework assumes the brain develops a generative model that 

represents different possible states of the world and generates predictions about the outcomes it 

will observe if its beliefs are accurate. It uses observations to update the model and to generate 

sequences of actions (policies) that minimize a statistical quantity called ‘expected free energy’ 

(G); briefly, policies that minimize G are those expected to produce the most preferred 

(rewarding) observations while also maximizing information gain (see table 2).  The specific 

model we use is a Markov decision process (MDP; figure 1), which is particularly useful for 

modeling decision processes that require consideration of distal future outcomes under 

uncertainty (44, 45). The formal basis for these models has been thoroughly detailed elsewhere 

(41, 46-49) (also see tables 1 and 2 for more mathematical detail). 
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Figure 1. Illustration of the Markov decision process formulation of active inference used in the 

simulations described in this paper. The generative model is here depicted graphically on the right, such 

that arrows indicate dependencies between variables. Here observations (o) depend on hidden states (s), 

where this relationship is specified by the A-matrix, and those states depend on both previous states (as 

specified by the B-matrix, or the initial states specified by the D-vector) and the sequences of actions 

(policies; π) selected by the simulated patient. The probability of selecting a particular policy in turn 

depends on the expected free energy (G) of each policy with respect to the prior preferences (C) of the 

simulated patient. The degree to which expected free energy influences policy selection is also modulated 

by an expected policy precision parameter (γ), which is in turn dependent on a prior over expected 

precision (β; the rate parameter of a gamma distribution, 𝑃(𝛾)  =  Γ(1, 𝜷)) – where higher β values 

promote lower confidence in policy selection (i.e., less influence of the differences in expected free 

energy across policies). The E-vector is a prior distribution over policies, p(π), which also influences 

policy selection and can be thought of as encoding a patient’s habits. For more details regarding the 

associated mathematics, see (46, 53). In our model, the observations were depression symptom levels and 

antidepressant side effects, the hidden states included beliefs about progress in treatment over time and 

beliefs about adherence decisions, and the policies included the choice to adhere or cease adherence at 

each week over 12 weeks of treatment (e.g., choosing to discontinue on a Wednesday vs. a Saturday of a 

given week was treated as the same choice in the model; as described in the main text, this modeling 

choice allowed the integration of week by week empirical data on symptom and side effect trajectories on 

antidepressants). As depicted on the left, our simulations began at “week 0” when treatment was initially 

recommended; the simulated patient then chose whether or not to adhere to treatment based on her beliefs 

about the way that symptoms and side effects would change over time if they did vs. did not adhere (and 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/743542doi: bioRxiv preprint 

https://doi.org/10.1101/743542
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

her subsequent observations over time). Preferences were set such that the patient had stronger and 

stronger preferences to observe lower and lower symptom levels as well as lower and lower side effect 

levels.  

 

 

One approach to examine the computational processes that might affect adherence is to 

model the decision-making situation for an individual that is newly prescribed an antidepressant 

for a depressive episode (see figure 2). We selected a time frame of the first 12 weeks since most 

antidepressant trials focus on this period.  Moreover, we utilized previously reported decreases in 

depressive severity (42) and the temporal emergence of unwanted effects (43). In our model, the 

policy to adhere or not on (any day during) each of 12 weeks of treatment (13 policies total, 

formally modeled as one choice per week) was based on initial expectations about how 

depressive symptom severity (from 0-10) and side effect severity (from 0-3) would change over 

time given each policy, and on how these expectations were subsequently updated when changes 

in symptoms and side effects were observed by the simulated patient. The 2 state factors in our 

model correspond to beliefs about “progress in treatment” (which predict different combinations 

of observed symptom and side effect levels), and beliefs about whether one is currently choosing 

to adhere (which predict different patterns of change over time in symptom and side effect 

levels).  
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Figure 2. Displays the levels of hidden state factor 1 and 2 (treatment progress and adherence decisions) 

and their mapping to different lower-level representations of symptom levels and side effect severity (here 

modelled as outcomes). Each combination of levels in the two hidden state factors generated different 

observation patterns and state transitions with different probabilities. Red arrows correspond to the 

observations (and state transitions) generated when the simulated patient chooses to continue medication, 

whereas blue arrows correspond to the observations (and transitions) generated when the patient chooses 

to discontinue medication (see text for details). Black arrows correspond to observations generated by 

hidden states that do not depend on the selection of one policy vs. another. Each of the six parameters in 

the model are also illustrated with a brief description (and described in the text in more detail). For 

example, symptom predictability was modulated by reducing the precision of the mapping from hidden 

state levels to symptom severity observations. Response magnitude was modulated by shifting the 

observable symptom severities toward lower or higher levels. Side effect severity was modulated by 

shifting the observable side effect levels to higher or lower values. For example, while in the figure it 

shows that moderate side effects are generated in the first six weeks of treatment and mild side effects are 

observed thereafter, this could be shifted such that they instead transition from severe to moderate, or 

from mild to none. Policy depth controlled the number of future transitions in treatment progress specified 

for each allowable policy in the patient’s model, only allowing the patient to consider the outcomes of 

different policies over a limited number of weeks into the future. See the text and tables for a thorough 

description of these and other parameters.  
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Table 1. Model variables 

Model 
variable 

General Definition Model-specific specification 

ot Observable outcomes at time t Outcome modalities: 
1. Depressive symptom severity (0 - 

10) at each week of treatment. 
2. Side effect severity (0 - 3) at each 

week of treatment. 

st Hidden states at time t Hidden state factors: 
1. Progress in treatment (0 - 12) at 

each week of treatment. 
2. Adherence vs. non-adherence at 

each week of treatment. 

π A distribution over action policies 
encoding the predicted value of each 
policy. In this model, each policy is a 
series of allowable actions, where 
actions correspond to different state 
transitions (i.e., different ‘B’ matrices) 
that can be chosen by the patient. 
Policies are chosen by sampling from this 
distribution. 

Allowable policies included the decision to 
continue taking the medication over 12 
weeks or to cease medication at any week 
prior to week 12. That is, the patient could 
choose to transition from the state of 
‘adhering’ to the state of ‘not adhering’ at 
each week. 
 

A matrix 
 
𝑝(𝑜𝑡 | 𝑠𝑡) 

A matrix encoding beliefs about the 
relationship between hidden states and 
observable outcomes (i.e., the 
probability that specific outcomes will be 
observed given specific hidden states). 

Encodes beliefs about the relationship 
between treatment progress, adherence 
decisions, depressive symptoms, and side 
effects. 

B matrix 
 
𝑝(𝑠𝑡+1 | 𝑠𝑡) 

A matrix encoding beliefs about how 
hidden states will evolve over time 
(transition probabilities). For states that 
are under the control of the patient, 
there are multiple B matrices, where 
each matrix corresponds to one action 
(state transition) that the patient may 
choose at a given time point (if 
consistent with an allowable policy). 

Encodes beliefs about the way treatment 
progress will change given the choice to 
adhere or not adhere at each week of 
treatment. For the hidden state factor 
corresponding to being in a state of 
‘adhering’ or ‘not adhering’, distinct B 
matrices encoded the controllable 
transitions of either remaining in the state 
of ‘adhering’ or transitioning to the state of 
‘not adhering.’ 

C matrix 
 
𝑝(𝑜𝑡) 

A matrix encoding the degree to which 
some observed outcomes are preferred 
over others (technically modeled as prior 
expectations over outcomes). 

Encodes the stronger preference for lower 
depressive symptoms and lower side effect 
severities. 
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D matrix 
 
𝑝(𝑠1) 

A matrix encoding beliefs about (a 
probability distribution over) initial 
hidden states. 

The simulated patient always begins in an 
initial state of being “undecided” about 
choosing to adhere or not, and always 
begins in an initial state of being at 0 weeks 
of treatment progress. 

E matrix 
 
𝑝(𝜋) 

A matrix encoding beliefs about what 
actions will be chosen a priori (a prior 
probability distribution over policies 
implemented as a vector assigning one 
value to each policy), based on the 
number of times different actions have 
been chosen in the past. 

Higher values in this matrix indicate a 
greater number of previous choices to 
adhere vs. not adhere to medications in the 
past. 

 
 

Several matrices/vectors in an MDP define the probabilistic relationships between each 

of these variables (see figure 3A); these include matrices encoding the relationships between 

states and observations (A-matrices; 1 per observation modality), how states are expected to 

change over time (B-matrices; at least 1 per state factor – if greater than 1, each possible 

transition corresponds to an action option), the relative preference for some observations over 

others (C-matrices; 1 per observation modality), expectations about the initial states one will 

start out in (D-vectors; 1 per state factor), and prior expectations about which policies one is 

most likely to choose in general (E-vector; 1 probability entry assigned to each policy). For more 

mathematical detail about each of these variables/matrices, see tables 1 and 2 and figure 1. 
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 Figure 3. (A) Displays select A-, B-, C-matrices, and D-vectors, that specify the generative model. A 

encodes state-observation mappings (i.e., columns = states, rows = observations), B encodes policy-

dependant state transitions (i.e., columns = states at time t, rows = states at time t+1), C encodes 

preference distributions (i.e., columns = time, rows = observed symptoms [top] or side effects [bottom]), 

and D encodes priors over initial states (indicating that each simulation starts in an undecided state and at 

0 weeks of treatment progress), respectively. Lighter colors indicate higher probabilities. (B) Illustrates 

how A-matrices, the allowable policy space, and the E-vector (encoding priors over policies, 

implementing habits) are altered under different parameter values. Symptom predictability: the precision 

of the first A-matrix (i.e., encoding beliefs about how precisely different “progress in treatment” levels – 

corresponding to the amount of time on the medication – will lead to different observed symptom levels) 

could be adjusted via specifying the standard deviation of an associated Gaussian probability density 

function (SDs = 1, 2, and 4 are shown here from left to right). This allowed symptoms to fluctuate both 

upward or downward around the mean of the symptom response trajectory with different degrees of 

predictability. (Middle row, left) Response magnitude: Relative to that shown in figure 3A, medication 

response magnitude could be modulated down (from left to right) to moderate, weak, and very weak 

responses, corresponding to incremental shifts upward and to the right in the same matrix. (Bottom row, 

left) Side effect levels: The second A-matrix (i.e., encoding beliefs about how taking the medication will 

generate different side effect severities over time) could also be modulated to simulate the magnitude of 

side effect responses over time. From left to right, the patient either initially experienced severe side 

effects that eventually settled at moderate levels, initially moderate levels of that eventually settled at mild 

levels, or initially mild levels that eventually resolved. Each parameterization could be performed 

separately for the generative process and the simulated patient’s generative model – allowing the patient 

to observe outcomes inconsistent with her initial expectations. (Right, top) Policy depth: illustrates the 

allowable policies under different policy depths (number of future timesteps considered in decision-

making). (Right, bottom) Habit strength: In specific simulations (with a policy depth of 1) described 

below, the E-vector (a prior over policies) was specified so as to simulate medication taking habits based 

on 1, 15, 30, and 60 previous choices to take medication. 
 

 
Table 2. Model update equations 

Model update 
component 

Update equation Model-specific description 

Updating beliefs 
about initial states 
expected under 
each allowable 
policy 

𝐬𝜋,1 = 𝜎 (
1

2
(ln 𝐃 + ln 𝐁 ∙ 𝐬𝜋,2) + ln 𝐀  ∙ 𝑜𝑡) Updating beliefs about initial states 

(e.g., treatment progress after 
perceiving initial symptom and side 
effect levels), based on initial 
expectations (D), initial transition 
beliefs (B), and consistency with new 
observations (A ∙ o). The 𝜎 symbol 
indicates a softmax operation which 
allows state estimates to make up a 
proper probability distribution. (Note: the 
dot (∙) notation here indicates 
transposed matrix multiplication). 

Updating beliefs 
about subsequent 
states expected 

𝐬𝜋,𝑡 = 𝜎 (
1

2
(ln 𝐁 𝐬𝜋,𝑡−1 + ln 𝐁 ∙ 𝐬𝜋,𝑡+1)

+ ln 𝐀 ∙ 𝑜𝑡) 

Updating beliefs about subsequent 
states over time (e.g., treatment 
progress over time based on observed 
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under each 
allowable policy 
over time 

symptom and side effect levels at each 
subsequent week of treatment), based 
on prior beliefs about transition 
probabilities (B) associated with each 
possible policy and consistency with 
new observations (A ∙ o). The 𝜎 symbol 
indicates a softmax operation which 
allows state estimates to make up a 
proper probability distribution. (Note: the 
dot (∙) notation here indicates 
transposed matrix multiplication). 

Probability of 
selecting each 
allowable policy 

𝛑 = 𝜎(ln 𝐄 − 𝛾𝐆 −  𝐅) The distribution over policies from 
which actions are sampled (e.g., 
encoding the probability that the 
patient will choose to adhere or not 
adhere). This is determined by learned 
priors over policies (E), the expected 
free energy of each allowable policy (G), 
and the observed free energy (F) of 
each policy with new observations over 
time. The influence of expected free 
energy is modulated by an expected 
policy precision term (γ) encoding the 
expected uncertainty of desired 
outcomes. The 𝜎 symbol indicates a 
softmax operation which allows policy 
values to make up a proper probability 
distribution. 

Expected free 
energy of each 
allowable policy 

𝐆π = ∑(𝐨𝜋,𝑡 ⋅ (ln 𝐨𝜋,𝑡 − ln 𝐂)

𝑡

− 𝑑𝑖𝑎𝑔(𝐀 ⋅ln 𝐀)  ⋅ 𝐬𝜋,𝑡)  

This quantity evaluates the value of 
each policy based on beliefs about the 
ability of each policy to lead to the most 
desired outcomes (e.g., the lowest 
combination of symptoms and side 
effects over time), while also reducing 
uncertainty about states. Achieving the 
most desired outcomes corresponds to 
minimizing the divergence between the 
observations expected conditional on 
each policy (𝑜𝜋,𝑡) and preferred 
observations (C). (Note: when applied to 
matrices, the dot (∙) notation here 
indicates transposed matrix 
multiplication). 
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Free energy of 
each allowable 
policy 

𝐅𝜋 =  ∑  𝐬𝜋,𝑡 ∙ (ln𝐬𝜋,𝑡

𝑡

−
1

2
(ln 𝐁 𝐬𝜋,𝑡−1 + ln 𝐁

∙ 𝐬𝜋,𝑡+1) − ln 𝐀  ∙ 𝑜𝑡) 

This quantity evaluates the evidence 
that inferred states provide for each 
policy based on new observations at 
each time point. In this case, inferred 
changes in treatment progress over 
time provide evidence supporting the 
policy to adhere or not adhere. (Note: 
when applied to matrices, the dot (∙) 
notation here indicates transposed 
matrix multiplication). 

Expected policy 
precision 

𝑃(𝛾)  =  Γ(1, 𝛽) 
 

𝛃 = 𝛽 + (𝛑 − 𝛑0) ⋅ 𝐆 
 

𝛄 =  1/𝛃 
 

The prior on expected policy precision 
term (𝛃) is the 'rate' parameter of a 
gamma distribution, which is a standard 
distribution to use as a prior for 
expected precision (𝛾). This latter term 
modulates the influence of expected 
free energy on policy selection. When 𝛽 
is high (reflecting low confidence about 
whether one should choose to adhere 
to medication), policy selection 
becomes less deterministic and is more 
strongly influenced by prior habits. 
When subsequent observations alter 
the precision of the distribution over 
policies (𝛑 − 𝛑0), the value for 𝛽 is 
updated to reflect this change in 
decision uncertainty. 

 

The A-matrices were constructed such that steadily lowering (but fluctuating) symptom 

levels were generated for each week the patient continued to take the medication. Specifically, 

Gaussian distributions were specified over a symptom severity scale from 0 to 10, with 

empirically based means that probabilistically decreased from baseline levels over the 1st 6 

weeks of treatment and then remained somewhat stable thereafter (i.e., depending on the 

standard deviations set for these distributions). The means were based on dose response time 

courses characterized in a mega analysis of three SSRIs (42): 9.36, 8.04, 6.91, 5.94, 5.10, 4.38, 

3.77. Adherence also generated moderate side effect levels in the first six weeks and mild side 
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effect levels from weeks 7-12 (based on the antidepressant side effect time courses characterized 

in (43)). The choice to cease adherence led to the cessation of side effects and a gradual return to 

baseline symptom levels.  

The B-matrices were constructed so that the patient controlled the transition from the 

state of ‘continue medication’ to the state of ‘discontinue medication’ at each week (i.e., if two 

individuals ceased taking the medication on different days during the same week, these were 

formally treated as the same choice). Simultaneously, each action was associated with transitions 

toward increasing or decreasing “progress in treatment” levels, respectively. The C-matrices 

were constructed such that the patient most preferred the lowest symptom levels (ln 𝑃(𝑜): from -

10 to 0) and the lowest side effect severity (ln 𝑃(𝑜): 0, -2, -4, -6). The D-vectors were 

constructed such that the patient always began in an initial state of being “undecided” about 

choosing to adhere, and always began in an initial state of being at 0 weeks of treatment 

progress. The E-vector was initially set such that the patient had no bias (habit) for choosing to 

adhere or not (i.e., a flat prior distribution over policies).  

The parameters in our model are described in table 3, and their influence on the 

matrices/vectors defining the model are depicted in figure 3B. These correspond to individual 

differences in (beliefs about) the predictability and magnitude of changes in symptoms and side 

effects, how far into the future one considers when making decisions (policy depth), confidence 

in the consequences of choosing different actions (expected policy precision), and the strength of 

medication-taking habits. 

 

Table 3. Model parameters 

Parameter Formal definition Brief explanation Observed effects 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/743542doi: bioRxiv preprint 

https://doi.org/10.1101/743542
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Objective 
symptom 
predictability 

The standard deviation 
of a Gaussian 
probability density 
function specified over 
the A matrix in the 
generative process that 
produces observed 
symptom reductions 
over time when 
choosing to take the 
medication.  

Lower levels of 
predictability (a high 
standard deviation) 
indicate that 
changes in 
symptoms while on 
medication will be 
less 
stable/predictable 
(around the mean 
trajectory) from 
week to week. 

Generally, less predictable 
symptoms (greater day-to-day 
symptom fluctuations) deter 
adherence. Greater random 
(upward) fluctuations can also be 
sufficient in certain cases to 
change an individual’s beliefs 
such that they now think the drug 
is ineffective. 

Subjective 
symptom 
predictability 

The standard deviation 
of a Gaussian 
probability density 
function specified over 
the A matrix encoding 
beliefs in the generative 
model about the 
symptom reductions 
that will be observed 
over time when 
choosing to take the 
medication. 

Lower levels of 
predictability (a high 
standard deviation) 
indicate the prior 
belief that changes 
in symptoms while 
on medication will 
be less 
stable/predictable 
(around the mean 
trajectory) from 
week to week. 

Overly optimistic beliefs about 
symptom predictability tend to 
promote adherence even in the 
face of highly fluctuating 
symptoms. 

Objective 
medication 
response 
magnitude 

A parameter that 
transforms (shifts) the A 
matrix in the generative 
process that produces 
observed symptom 
reductions over time 
when choosing to take 
the medication. This 
was specified as single 
symptom level shifts up 
and to the right from 
baseline mean symptom 
level trajectories 
(strong, moderate, 
weak, and very weak 
response magnitudes 
corresponded to 0, 1, 2, 
and 3 up/right shifts, 
respectively).  

Lower response 
magnitude values 
indicate that there 
will be a longer 
delay before 
symptoms begin to 
decrease and that a 
smaller overall 
decrease in 
symptoms will be 
achieved by the 
final week of 
treatment. 

Higher response magnitude 
promotes adherence because 
they more easily outweigh the 
individual’s concerns about the 
side effects of the drug. 
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Subjective 
medication 
response 
magnitude 

A parameter that 
transforms (shifts) the A 
matrix encoding beliefs 
in the generative model 
about the symptom 
reductions that will be 
observed over time 
when choosing to take 
the medication. This 
was specified as single 
symptom level shifts up 
and to the right from 
baseline mean symptom 
level trajectories 
(strong, moderate, 
weak, and very weak 
response magnitudes 
corresponded to 0, 1, 2, 
and 3 up/right shifts, 
respectively). 

Lower response 
magnitude values 
indicate the prior 
belief that there will 
be a longer delay 
before symptoms 
begin to decrease 
and that a smaller 
overall decrease in 
symptoms will be 
achieved by the 
final week of 
treatment.  

Overly optimistic beliefs about 
symptom response magnitudes 
show a trend toward improving 
adherence in some cases (but the 
effects are complex). 

Objective side 
effect severity 

A parameter that 
transforms (shifts) the A 
matrix in the generative 
process that produces 
observed side effects 
over time when 
choosing to take the 
medication. This was 

specified as shifts 
upward or downward 
one level in the baseline 
side effect time course 
(severe, moderate, and 
mild levels 
corresponded to shifts 
of 1, 0, and -1, 
respectively). 

Lower side effect 
severity indicates 
that milder side 
effects will be 
experienced 
initially, and that 
they will eventually 
become less over 
time.  

Higher side effect severity 
promotes non-adherence in 
general, as more severe side 
effects are not preferred. 

Subjective 
side effect 
severity 

A parameter that 
transforms (shifts) the A 
matrix encoding beliefs 
in the generative model 
about the side effects 
that will be observed 
over time when 

Lower side effect 
severity indicates 
the prior belief that 
milder side effects 
will be experienced 
initially, and that 
they will eventually 

Overly optimistic beliefs about 
side effects promote non-
adherence, because they lead to 
immediate disappointment upon 
observing higher-than-expected 
side effect levels. 
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choosing to take the 
medication. This was 

specified as shifts 
upward or downward 
one level in the baseline 
side effect time course 
(severe, moderate, and 
mild levels 
corresponded to shifts 
of 1, 0, and -1, 
respectively). 

become less over 
time.  

Policy depth The number of time 
steps over which action 
policies are specified. 
This ranged from 1 to 12 
weeks, indicating the 
distance in the future 
one considers when 
planning how to act. A 
12-week time period 
was chosen to match 
with the typical 
timeframe studied in 
antidepressant drug 
trials. Reducing policy 
depth was implemented 
by simply reducing the 
number of time steps in 
the simulation over 
which allowable policies 
were specified (i.e., 
while holding all other 
transition probabilities 
and other contingencies 
identical). 

Lower policy depth 
indicates that, when 
people are deciding 
whether or not to 
adhere, they do not 
consider the 
changes in 
symptoms and side 
effects that will 
occur as far into the 
future. For example, 
they might think 
“I’m not going to 
take the medication 
because it’s going to 
make me feel bad 
tomorrow” without 
considering that it 
will make them feel 
much better after 
several weeks. 

A high policy depth promotes 
adherence when an individual 
expects that, despite initially 
feeling worse (or not improving), 
in the long run they will 
ultimately feel better overall. 

Prior on 
expected 
policy 
precision (β) 

An “inverse 
temperature” 
parameter modulating 
the impact of current 
beliefs on policy 
selection. Encodes how 
confident an individual 
is in general in their 
ability to make the best 

Lower expected 
policy precision 
(higher β values) 
indicates less 
confidence in the 
choice to adhere vs. 
not adhere in 
general. When 
expected policy 

Lower expected policy precision 
tends to promote adherence in 
the context of pessimistic beliefs 
about the overall effectiveness of 
medication. For example, an 
individual who does not believe 
the medication is likely to help 
may still “give the medication a 
try” if they have less confidence 
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decision regarding 
adherence. High 
precision was modeled 
with a value of 1, and 
low precision was 
modeled with a value of 
10. 

 

precision is low, 
learned medication-
taking habits have a 
stronger influence 
on policy selection. 

that their beliefs will lead to the 
best decision. 

Habit 
strength 

Magnitude of the prior 
expectation in the E 
matrix that the decision 
to adhere will be chosen 
– based on the number 
of times the individual 
has chosen to take the 
medication in the past. 

Higher medication-
taking habit 
strength reduces 
the influence of 
explicit beliefs 
about the 
consequences of 
taking medication 
on decision-making. 

Higher medication-taking habit 
strength promotes adherence, 
even if an individual doesn’t have 
strong beliefs that the medication 
will increase their quality of life 
overall. Adherence is chosen “out 
of habit” without consideration 
of expected effects. 

 

 

Results 

 

Simulating individual differences in adherence 

 

Initial simulations  

The left panel of figure 4 illustrates an example simulation under one set of parameter values, in 

which policy depth was at its maximum value of 12, symptom predictability was moderate (SD = 

2), symptom reductions were high (i.e., the simulated patient was a “strong responder” to the 

medication), side effects were moderate, expected policy precision was high (β = 1), and no 

medication-taking habit had been formed (the E-vector distribution remained flat over all 

policies). Here the patient chose to adhere and observed steady symptom reductions and some 

initial moderate side effects that decreased to mild levels after the first six weeks. The middle 
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panel illustrates another example simulation in which symptom predictability was moderate (SD 

= 2), symptom reductions were moderate, and side effects were severe. In this case, the patient 

chose not to adhere. In these simulations, the patient’s expectations were consistent with 

subsequent observations. The right panel illustrates a simulation in which the patient believed 

symptom predictability was higher than it really was (SD = 0.5 vs. 2) and side effects and 

symptom reductions were moderate (which was expected). The patient took the medication the 

first two weeks, but ceased adhering after observing an unexpected increase in symptom levels.  

 

 

Figure 4. Example trials displaying different adherence decisions under different parameter values. In the 

top plots, cyan dots indicate the true action taken, and darker colors indicate higher levels of confidence 

in one action over others. In the middle and bottom plots, cyan does indicate observations, whereas darker 

colors indicate more strongly preferred observations. The top plots illustrate the choice to adhere or not 
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adhere at each of the 12 weeks, the middle plots display observed symptoms over time with severities 

from 10 to 1, and the bottom plots illustrate observed side effects from mild to severe. Under the 

parameter values used in the left simulation, including (accurate) expectations for moderate side effects, 

strong symptom reductions, and moderate symptom predictability (SD = 2), the patient chose to adhere. 

Under the parameter values used in the middle simulation, in which there were (accurate) expectations for 

moderate symptom reductions, moderate symptom predictability (SD = 2) and severe side effects, the 

patient chose not to adhere – leading to an absence of side effects and symptoms continuing to fluctuate 

around baseline levels. Under the parameter values used in the right simulation, in which the patient 

expected symptoms to be more predictable than they actually were, (SD = 0.5 vs. 2) the patient initially 

chose to adhere but then stopped when she observed an unexpected fluctuation upward in symptom 

intensity and a moderate increase in side effects (side effects and symptom reductions were moderate, 

which was expected). After ceasing medication, side effects resolved and symptoms continued to 

fluctuate around baseline levels. See the main text for more details about the parameter manipulations in 

each simulation. 

 

Parameter interactions in the context of accurate expectations 

To better characterize this parameter space, we repeated the simulations above under 

many combinations of parameter values. Figure 5 illustrates two example plots from part of this 

parameter space where the patient had accurate expectations; medication response magnitude 

and side effect severity were fixed at moderate levels. Here, the x-axis in each plot corresponds 

to symptom predictability (from low to high: SDs from 4 to 0.1); the y-axis corresponds to policy 

depth (from 2 to 12 weeks). The left plot corresponds low expected policy precision (β = 10), 

and the right corresponds to high expected policy precision (β = 1). Black squares correspond to 

patients that remained adherent, whereas white squares indicate ceased adherence prior to week 

12. As can be seen, there is a clear boundary in which, below a certain policy depth and level of 

symptom predictability, adherence ceases. Interestingly, adherence increases across the space 

when expected policy precision is low. This suggests that, with greater decision uncertainty (it is 

less clear that one policy will produce more preferred observations than others), one is more 

likely to adhere in an “exploratory” manner (e.g., “I don’t think this will work, but who 

knows?”). 
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Figure 5. Two example plots from a larger parameter space with dimensions corresponding to different 

values for policy depth, symptom predictability, drug response magnitude, side effect severity, and 

expected policy precision. In these two plots the simulated patient had accurate expectations about what 

she would observe under different policies, and medication response magnitude and side effect severity 

were fixed at moderate levels. The x-axis in each plot corresponds to symptom predictability (from low to 

high: i.e., SDs from 4 to 0.1), whereas the y-axis corresponds to policy depth (from 2 to 12 weeks). The 

plot on the left corresponds to a simulated patient with low expected policy precision (β = 10), whereas 

the plot on the right corresponds to a patient with high expected policy precision (β = 1). Black squares in 

these plots correspond to patients that remained adherent all the way into week 12, whereas white squares 

indicate patients that ceased adherence prior to week 12. The main text for interpretation. 

 

 

Figure 6 provides a more complete depiction of this parameter space under different 

levels of medication response magnitudes (larger x-axis across plots, from very weak to strong 

response) and side effect severities (larger y-axis across plots, from low to high severity). Under 

high side effect severity and low response magnitude, adherence does not occur no matter the 
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policy depth or symptom predictability (upper left plot), whereas adherence occurs broadly when 

side effects are low and response magnitude is high (bottom left plot). 

 

 

Figure 6. A more complete depiction of the parameter space illustrated in figure 5 including different 

levels of medication response magnitudes (larger x-axis across plots, left to right from very weak to 

strong response) and side effect severities (larger y-axis across plots, bottom to top from low to high 

severity). As in figure 5, within each plot black indicates continued adherence and white indicates non-

adherence. Within each plot, the expected predictability of symptom changes over time increases from 

left to right (i.e., SDs from 4 to 0.1), and policy depth increases from bottom to top (from 2 to 12 weeks). 

The plot on the left corresponds to a simulated patient with low expected policy precision (β = 10), 

whereas the plot on the right corresponds to a patient with high expected policy precision (β = 1). See 

main text for interpretation. 

 

Parameter interactions in the context of inaccurate expectations 
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Crucially, in the previous simulations it was assumed that the patient’s beliefs about the 

effects of medication were accurate. However, a patient’s beliefs need not match reality. As 

such, we then dissociated the patient’s beliefs from the statistics of subsequent observations to 

see if surprise would influence adherence in interesting ways. Supplementary figure S1 depicts 

some illustrative locations in this space. The x-axis in each graph corresponds to subjective 

beliefs about symptom predictability, where actual symptom predictability instead varies 

between groups of plots (see figure legend for more details). Similarly, beliefs about drug 

response magnitude and side effect severity are now depicted across plots within each group of 

plots, whereas actual drug response magnitude and side effect severity vary across groups of 

plots.  

 

When observed symptom reductions were highly unreliable/noisy, the patient only 

remained adherent if prior expectations very precisely predicted that they would be reliable. 

When observed symptom reductions were instead highly consistent/reliable, the patient 

surprisingly also chose to adhere when expecting symptom reductions to be highly unreliable. 

Thorough inspections of the parameter space confirmed that, in these cases of highly reliable or 

unreliable symptom reductions, there was little influence of expected policy precision, drug 

response magnitude, or side effect severity. Other interesting results were observable in cases of 

objectively moderate levels of symptom reduction reliability. For example, there appears to be a 

general effect in which adherence was higher when expectations about side effects matched the 

actual side effects observed. This effect was more pronounced in the case of objectively strong 

drug responses; in the case of objectively weak drug responses and severe side effects, adherence 

levels became more dependent on the expected reliability of symptom reductions. In cases of 
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objectively low side effects, adherence went up in general, most notably in cases of high policy 

depth and the belief that symptom reductions would be unreliable (unless expected side effects 

were severe). 

The finding that adherence is higher when expected observations about side effects are 

confirmed appears sensible, in that, if one initially chose to “try out” adherence based on one’s 

expectations, non-preferred surprising observations would be more likely to “change one’s 

mind” later. The finding that, in the context of objectively reliable symptom reductions, 

adherence occurs at low but not intermediate levels of expected symptom predictability is 

initially more surprising. However, when symptoms are expected to fluctuate very unreliably, it 

makes sense retrospectively that being “pleasantly surprised” that observations are more reliable 

than expected would promote adherence. In contrast, if one initially expects moderate 

predictability, the level of surprise may not be sufficient to change one’s mind. Finally, it is 

fairly intuitive that, in the face of highly fluctuating symptoms, adherence would require a strong 

counteracting belief that they would still be reliable at future time points (e.g., “it’s been a 

bumpy ride to start, but I think things are going to stabilize soon”). 

 

Parameter interactions in the context of habit formation 

To investigate why some individuals take much longer to form strong habits than others 

(as reviewed in the introduction), we ran a final set of simulations in which we manipulated the 

strength of the patient’s habit to take medication. We manipulated the E-matrix to simulate the 

effect of a patient having previously taken the medication different numbers of times (i.e., 1, 15, 

30, and 60 previous medication-taking decisions). Policy depth was set to 1, such that the patient 

was not forward-looking beyond the immediate expected consequences of adhering. As can be 
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seen in figure 7, different simulated patients begin to adhere habitually after different lengths of 

time depending on other parameter values. Longer time periods of previous adherence lead to 

habitual adherence. Habits took longer to develop when expected drug responses were low and 

unpredictable, and when expected side effect severity was high (i.e., the medication-taking 

“impulse” less effectively competed against explicit planning when strongly non-preferred or 

unpredictable outcomes were expected to occur immediately). Low expected policy precision led 

to much faster habit formation. Psychologically, this might be interpreted as indicating an 

interesting (and somewhat paradoxical) predicted effect. That is, in the context of higher side 

effects and lower drug responses, individuals who are less confident in decision-making should 

be more likely to adhere long-term than those who confidently predict at treatment onset that the 

drug will not be very helpful. 
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Figure 7. A depiction of the influence of habit formation at different habit strengths, based on the 

previous number of times (e.g., days) that a simulated patient has chosen to take the medication, under 

different values for the other parameters in the model. Within each square, black indicates adherence and 

white indicates non-adherence. Within each square, the expected predictability of symptom changes over 

time increases from left to right (i.e., SDs from 4 to 0.1). The expected magnitude of symptom reductions 

increases between squares from left to right (from very weak to strong response). The expected severity 

of side effects increases between squares from bottom to top (from low to high severity). The left and 

right plots within each quadrant correspond to low vs. high expected policy precision values (β = 10 and β 

= 1, respectively). Each quadrant corresponds to the number of previous medication taking actions. Habit 

formation was modeled via manipulation of the E-vector by increasing the probability, in terms of counts 

(i.e., 1, 15, 30, and 60 previous medication-taking decisions), of the medication-taking action relative to 

other allowable actions. Here the patient also had a policy depth of 1 (i.e., y-axis within each square only 

has 1 value), such that she was not forward-looking beyond the immediate expected consequences of 

adhering. The patient otherwise had accurate expectations about the observations she would make under 

different actions. See main text for interpretation. 

 

Discussion 
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The goal of this manuscript was to provide a computational framework to develop novel 

approaches that can be used to increase adherence.  Simulations were used to quantitatively 

illustrate distinct decision-making processes that could contribute to differences in adherence 

behavior. These simulations demonstrate how adherence can be influenced by several underlying 

computational processes. This supports the plausibility of heterogeneous causes of non-

adherence (for a summary of possible causes in our model, see table 3). For example, while some 

patients may focus on proximal as opposed to distal future outcomes (i.e., low policy depth), 

others may focus on distal future outcomes but believe those outcomes are highly unreliable or 

that they will be worse overall if they follow treatment recommendations. Some patients may be 

characterized by intermediate combinations, such as intermediate policy depth and competing 

beliefs about moderately beneficial medication effects and moderately aversive side effects, both 

weighted by the relative confidence they have in each of those beliefs. Finally, differences in 

previous experience taking medication can lead to differences in adherence-promoting habit 

formation – where each of the other factors described above can influence how quickly such 

habits gain sufficient strength to maintain long-term adherence behavior. One advantage of the 

model is that each of these factors and their interactions can be simulated mathematically. The 

pragmatic utility of this approach will depend on developing experimental paradigms and/or 

questionnaires to estimate parameter values based on a given individual’s behavior. This model 

could potentially make predictions about where interesting “tipping points” would begin to favor 

non-adherence over adherence in that individual’s decision process.  

At least three important research implications follow. First, it will be important to either 

identify or design simple measures (e.g., that could be administered in a clinic) capable of 

characterizing where an individual patient falls within the parameter space we have described. 
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Such measures could potentially improve prediction of who will and will not adhere to a 

prescribed treatment. For example, our model would predict lower adherence in those who self-

report overconfidence in their current plan of action, the tendency to focus on short-term 

outcomes, and either pessimistic or unrealistic expectations about how their symptoms and side 

effects would change over time.  

With respect to existing measures, the values for some parameters might be assessed by 

those used within the “necessity versus concerns” framework, such as the Beliefs about 

Medicines Questionnaire (12) or the revised Medication Adherence Reasons Scale (50) – 

perhaps most plausibly the parameters associated with beliefs about the magnitude of symptom 

reductions and side effects. In table 4, we have also listed a number of example self-report items 

that, based on our model (and straightforward extensions of it), could be useful for gathering 

information about a patient’s adherence-relevant beliefs. Once in a validated form, this type of 

questionnaire could be tested for its utility in predicting adherence behavior in advance. 

The values of other parameters, in contrast, might be informed by personality measures. 

For example, the behavior associated with persistence (20) and locus of control (26) could follow 

from a combination of beliefs in high future predictability and high expected policy precision 

(and likely preferences with strong magnitudes as well). Low self-efficacy (21) could instead 

follow from a combination of low expected policy precision and precise expectations for non-

preferred outcomes (while optimism  may correspond to precise expectations for preferred 

outcomes, perhaps with or without taking medication – which could explain why more optimistic 

individuals are less likely to adhere; (24)). This is speculative, however, and will need to be 

examined in future work. 
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A second implication is that it will be important within the field of computational 

psychiatry to attempt to develop tasks, or find ways of acquiring detailed adherence behavior 

data, that could be used in conjunction with a formal model (such as the one we described above) 

to explicitly fit to patient behavior. This would potentially allow for a more detailed and 

informative way to phenotype decision-making processes within individual patients and afford 

more precise empirical predictions. It should be mentioned, however, that this may be 

challenging since the behavior in question involves simple binary decisions. If multiple 

parameter value combinations can produce the exact same behavior, this prevents identification 

of unique parameter values that best explain individual patients’ behavior. As such, this endeavor 

will likely require use of very detailed behavioral data, perhaps involving day-by-day 

medication-taking actions.  

A third implication pertains to the need for effective adherence-promoting interventions. 

As reviewed above, current interventions have met with limited success (36), which could be due 

to heterogeneity in underlying mechanisms as well as a failure to specifically target those 

mechanisms. Based on the factors highlighted in our model, it might be possible to improve the 

ability of current interventions (or design new interventions) to intervene in a targeted manner. 

The degree of modifiability in those factors is an open question, but certainly one worth 

pursuing. Based on our simulations, we would predict that both of the following should improve 

adherence: 

1. Increasing future-oriented thinking (policy depth) 

2. Attenuating overconfidence (expected policy precision) 

Additionally, we would predict that adherence would be improved by first providing 

patients with available information about what to expect regarding likely symptom and side 
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effect trajectories (and the actual uncertainty around those expectations) – and then using 

observations early in treatment to update expectations about the most likely trajectory for that 

individual. This goes beyond simple psychoeducation, which alone has been found to be 

ineffective in improving antidepressant adherence rates (51), and should motivate future research 

into how individual symptom and side effect trajectories could be diagnosed as early as possible. 

This also relates to potential uses of our model for psychoeducation. For example, by making the 

various model components salient to a patient (e.g., by considering their own answers to the 

example questions in table 4), they could become more aware of how these beliefs influence 

their own decision-making. 

It is important to stress the oversimplified and incomplete nature of the model we have 

presented. For simulations one must unavoidably make somewhat arbitrary decisions about the 

values that should be assigned to fixed parameters (and what parameters to fix). For example, we 

chose to set the preference magnitudes for side effects and symptom levels to specific values, 

and the simulation results would be expected to differ somewhat if different values had been 

chosen. A possible future direction could be to calibrate the model to individuals’ preference 

magnitudes (e.g., how much they personally dislike particular symptoms and side effects) and 

use this to simulate/predict their future adherence behavior. We also did not manipulate beliefs 

about the predictability of side effects, which could influence adherence decisions. In these 

cases, we instead chose to hold these factors fixed and examine the effect of altering the 

dynamics of observed symptoms/side effect levels over time on versus off treatment.  

There may also be additional factors that were not modeled explicitly, but that could be 

simulated within the model we have presented (and in principle used in characterizing patients’ 

decisions). For example, some individuals may simply forget to take their medication a couple of 
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times and then cease altogether (50). In our model, this could be captured in part by low 

expected policy precision (i.e., increasing randomness in behavior), but would need to be 

combined with other factors such as the belief that all progress has been lost (as could be 

encoded within the individual’s transition beliefs [B-matrix]). As another example, some people 

might cease medication after experiencing symptom improvement because they expect such 

improvements to remain stable after ceasing to take the drug (and the belief that side effects 

would go away (52)). This could also be captured in our model with straightforward adjustments 

to the B-matrix.  

Conclusion 

This active inference model is an important first step in developing a precise and 

quantitative delineation of decision-making factors and dynamics that influence a patient’s 

decision to adhere to treatment. Because of the model’s generality, it can also be very easily 

extended to model adherence to other medications, simply by inserting the symptom reduction 

and side effect profiles that characterize those medications. For example, it follows from the 

general model structure that adherence to immediately rewarding medications (e.g. 

benzodiazepines) would be high and promote fast habit formation, but behavior would also be 

influenced by the same parameters used here to investigate antidepressant adherence. The next 

steps in using these models will require identifying means of empirically characterizing and 

intervening on these mechanisms in an individualized manner. 

 

Table 4: Assessment questions motivated by our model: 

We would like to ask you about your beliefs regarding different experiences you may have when you 

take medications or engage in other types of treatment for your mental health condition. For each 

applicable question, please also let us know how certain you feel about your stated belief. 
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Sometimes how people feel (and other symptoms) can change a lot from day-to-day. How much do 

you think your symptoms will change from one day to the next if you were to take the medication? (1 

= not at all, 10 = quite a lot) 

Not at all        Quite a lot 

1 2 3 4 5 6 7 8 9 10 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

How much do you think your symptoms will change from one day to the next if you choose not to 

take the medication? (1 = not at all, 10 = quite a lot) 

Not at all        Quite a lot 

1 2 3 4 5 6 7 8 9 10 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

When people are trying to decide whether to take a medication, they sometimes think mainly about 

how it will make them feel immediately. At other times they might instead focus on how it will make 

them feel farther in the future. Please indicate below how far into the future you typically consider 

when trying to decide whether to take the medication. (Circle one) 

When deciding whether to take the medication, I usually focus most on how it will make me feel in: 

1-3 days 1 week  2 weeks 1 month 2 months 3 months or more 

How confident are you that you will make the right choice when you decide whether or not to take 

the medication? (1 = not at all confident, 10 = highly confident) 

Not at all confident        Highly confident 

1 2 3 4 5 6 7 8 9 10 

If you take the medication regularly starting today, how do you think you will feel in two weeks? (1 = 

about the same as now, 10 = my symptoms will completely disappear) 

About the same as now      Completely well (no symptoms) 

1 2 3 4 5 6 7 8 9 10 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 
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Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

If you take the medication regularly starting today, how do you think you will feel after several 

months? (1 = about the same as now, 10 = my symptoms will go away completely) 

About the same as now      Completely well (no symptoms) 

1 2 3 4 5 6 7 8 9 10 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

If you do not start treatment now, how do you think you will feel in two weeks? (1 = about the same 

as now, 10 = my symptoms will go away completely) 

About the same as now      Completely well (no symptoms) 

1 2 3 4 5 6 7 8 9 10 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

If you do not start treatment now, how do you think you will feel after several months? (1 = about the 

same as now, 10 = my symptoms will go away completely) 

About the same as now      Completely well (no symptoms) 

1 2 3 4 5 6 7 8 9 10 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

How much does how you feel (and other symptoms) interfere with your usual activities? (1 = does not 

interfere at all, 10 = interferes with all activities)  

Does not interfere at all      Interferes with all activities 

1 2 3 4 5 6 7 8 9 10 

If you take the medication regularly starting today, how certain are you that you will experience 

unwanted effects from the treatment? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 
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1 2 3 4 5 6 7 8 9 10 

If you take the medication regularly starting today, how much do you think unwanted effects from 

the treatment will interfere with your usual activities in the first two months? (1 = will not interfere at 

all, 10 = will interfere with all activities)  

Will not interfere at all      Will interfere with all activities 

1 2 3 4 5 6 7 8 9 10 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

How do you think unwanted effects from the treatment will change in the long-term? (Circle one)  

They will get worse  They will stay the same  They will eventually get better  

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

How much do you think unwanted effects of treatment will change from day to day if you choose to 

take the medication? (1 = at all, 10 = quite a lot) 

Not at all        Quite a lot 

1 2 3 4 5 6 7 8 9 10 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

If the treatment makes you feel better, what do you think will happen if you stop taking the 

medication? (Circle one) 

I will feel worse again  I will continue to feel better 

How certain are you that this belief is accurate? (1 = highly uncertain, 10 = highly certain) 

Highly Uncertain        Highly Certain 

1 2 3 4 5 6 7 8 9 10 

Sometimes people are surprised by how much better or worse they feel when they take medications. 

How likely do you think it is that the medication will make you feel better than you expect? (1 = very 

unlikely, 10 = very likely) 
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Very Unlikely          Very Likely 

1 2 3 4 5 6 7 8 9 10 

How likely do you think it is that the medication will make you feel worse than you expect? (1 = very 

unlikely, 10 = very likely) 

Very Unlikely          Very Likely 

1 2 3 4 5 6 7 8 9 10 

People do not always get everything done that they set out to do on a daily basis.  For example, 

sometimes people forget about a task that they intended to complete. How often does this happen to 

you? (1 = never, 10 = all the time) 

Never           All the Time 

1 2 3 4 5 6 7 8 9 10 

Have you taken any psychiatric medications in the past? (Circle one) 

No  Yes 

If so: 

 

How long did you take them? (Circle one) 

less than 2 weeks 2 – 4 weeks 1 – 3 months  3 – 6 months greater than 6 

months 

And how often did you accidentally forget to take them on average? (Circle one) 

never  less than 1 time per month 1 time per month 2 times per month   

1 time per week greater than 1 time per week 

Have you generally had a negative or positive experience when taking medications previously? (1 = 

extremely negative, 10 = extremely positive) 

Extremely Negative        Extremely Positive 

1 2 3 4 5 6 7 8 9 10 

 

 

 

Software note 
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Although the generative model – specified by the various matrices described in this paper – 

changes from application to application, the belief updates are generic and can be implemented 

using standard routines (here spm_MDP_VB_X.m). These routines are available as Matlab code 

in the DEM toolbox of the most recent versions of SPM academic 

software: http://www.fil.ion.ucl.ac.uk/spm/. The simulations in this paper can be reproduced via 

running the Matlab code included here as supplementary material (adherence_model.m). 
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